JPH02222728A - Catalyst for positionally selective hydrogenation of carbon-carbon double bond - Google Patents

Catalyst for positionally selective hydrogenation of carbon-carbon double bond

Info

Publication number
JPH02222728A
JPH02222728A JP4020789A JP4020789A JPH02222728A JP H02222728 A JPH02222728 A JP H02222728A JP 4020789 A JP4020789 A JP 4020789A JP 4020789 A JP4020789 A JP 4020789A JP H02222728 A JPH02222728 A JP H02222728A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
hexenol
double bond
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4020789A
Other languages
Japanese (ja)
Inventor
Hideyuki Kunou
公納 秀幸
Makoto Shibagaki
柴垣 真
Hajime Matsushita
松下 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP4020789A priority Critical patent/JPH02222728A/en
Publication of JPH02222728A publication Critical patent/JPH02222728A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an easily handleable catalyst for selective hydrogenation of a carbon-carbon double bond on the hydrophilic moiety side of an aliphat. compd. having a hydrophilic functional group and carbon-carbon double bonds by adsorbing carboxylic acid on alumina supporting Pt. CONSTITUTION:Alumina supporting Pt is mixed with carboxylic acid such as 3-20C aliphat. or arom. carboxylic acid in an aprotic polar solvent such as DMF. The carboxylic acid is electrostatically adsorbed on the surface of the alumina and this alumina is separated by filtration, washed and dried to obtain an easily handleable catalyst for positionally selective catalytic hydrogenation of a double bond on the hydrophilic functional group side of an aliphat. compd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素−炭素二重結合を有し、かつ親水性官能
基を有する化合物を選択的に水素添加する触媒に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a catalyst for selectively hydrogenating a compound having a carbon-carbon double bond and a hydrophilic functional group.

従来、不均一触媒系における炭素−炭素二重結合を有し
、かつ親水性官能基を有する脂肪族化合物の二重結合の
位置選択的水素添加は二重結合の周辺の立体的障害の差
により行われてきた。従って、立体的環境がほとんど等
価な二重結合を識別して水素添加することは非常に困難
であった。最近になって、コロイド状の金属触媒を水溶
性のポリマー[ポリ (N−ビニル−2−ピロリドン)
等]で修飾してミセル類似機能を有する触媒を調製し、
水溶液中において疎水部側の二重結合の位置選択的水素
添加を試みている例がある(ケミストリーレターズ(C
hea+1stry Letters)、1988年、
573ペ一ジ等1゜しかし、この触媒は適用できる物質
が長鎖の不飽和カルボン酸等であり、かつ二重結合の位
置がかなり離れたく例えばウンデセン酸の場合は2位と
10位)化合物に限るため適用範囲が狭く、また、反応
後触媒を反応系から分離するのが困難であるという欠点
がある。
Conventionally, regioselective hydrogenation of the double bond of aliphatic compounds having a carbon-carbon double bond and a hydrophilic functional group in a heterogeneous catalyst system has been carried out due to the difference in steric hindrance around the double bond. It has been done. Therefore, it has been very difficult to identify and hydrogenate double bonds whose steric environments are almost equivalent. Recently, colloidal metal catalysts have been synthesized into water-soluble polymers [poly(N-vinyl-2-pyrrolidone)].
etc.] to prepare a catalyst with micelle-like functions,
There is an example of attempting regioselective hydrogenation of a double bond on the hydrophobic side in an aqueous solution (Chemistry Letters (C
hea+1stry Letters), 1988,
Page 573, etc. 1゜However, this catalyst can only be applied to long-chain unsaturated carboxylic acids, and the double bonds are located quite far apart (for example, in the case of undecenoic acid, the 2nd and 10th positions). However, the range of application is narrow and it is difficult to separate the catalyst from the reaction system after the reaction.

〔従来の技術〕[Conventional technology]

[発明が解決しようとする問題点] 不均一反応系において、炭素−炭素二重結合を有する親
水性脂肪族化合物の親水部側の二重結合を選択的に水素
添加する触媒はこれまでまったく知られていない。しか
し、この触媒が得られると、例えば香料として利用され
ているシトロネロールをゲラニオールより容易に得るこ
とができ、有機合成上で有用なものとなる。
[Problems to be solved by the invention] Until now, no catalyst has been known that selectively hydrogenates the double bond on the hydrophilic side of a hydrophilic aliphatic compound having a carbon-carbon double bond in a heterogeneous reaction system. It has not been done. However, once this catalyst is obtained, for example, citronellol, which is used as a fragrance, can be obtained more easily than geraniol, making it useful in organic synthesis.

本発明者らは、親水性官能基と炭素−炭素二重結合を有
する脂肪族化合物の親水部側の二重結合を選択的に水素
添加し、かつ、取扱いが容易な触媒を得ることを目的と
して鋭意研究した結果、本発明を完成するに室った〇 [問題を解決する手段] すなわち、白金担持アルミナにカルボン酸を吸着させた
ことを特徴とし、親水性官能基と炭素−炭素二重結合と
を有する脂肪族化合物の親水性官能基の近傍にある炭素
−炭素二重結合を選択的に水素添加する触媒である(以
下、本触媒という)。
The present inventors aimed to selectively hydrogenate the double bond on the hydrophilic side of an aliphatic compound having a hydrophilic functional group and a carbon-carbon double bond, and to obtain a catalyst that is easy to handle. As a result of intensive research, we have completed the present invention. [Means for solving the problem] In other words, it is characterized by adsorbing carboxylic acid to platinum-supported alumina, and it is characterized by a hydrophilic functional group and a carbon-carbon double bond. This catalyst selectively hydrogenates carbon-carbon double bonds near the hydrophilic functional group of an aliphatic compound having a bond (hereinafter referred to as the present catalyst).

本触媒のrA製は、白金担持アルミナとカルボン酸を非
プロトン性極性溶媒中に混ぜてかくはんした後、濾過、
洗浄して乾燥すればよい。反応はへ牛サン等の極性の低
い溶媒中で行う。反応生成物との分離は濾過する操作を
行うだけでよい。白金担持アルミナの白金担持量は重量
比0.1−10%であればよく、望ましくはl−7%で
ある。カルボン酸は特に限定されるものではない。炭素
数3−20の脂肪酸または芳香族カルボン酸であればよ
いが、6−14の脂肪酸または芳香族カルボン酸が好ま
しい。非プロトン性極性溶媒としては、ジメチルホルム
アミド、ジメチルスルホキシドが挙げられる。
This catalyst made by rA mixes platinum-supported alumina and carboxylic acid in an aprotic polar solvent, stirs the mixture, and then filtrate.
Just wash and dry. The reaction is carried out in a less polar solvent such as hexane. Separation from the reaction product can be achieved by simply performing a filtration operation. The amount of platinum supported on the platinum-supported alumina may be 0.1-10% by weight, preferably 1-7% by weight. Carboxylic acids are not particularly limited. Any fatty acid or aromatic carboxylic acid having 3 to 20 carbon atoms may be used, but fatty acids or aromatic carboxylic acids having 6 to 14 carbon atoms are preferred. Examples of the aprotic polar solvent include dimethylformamide and dimethyl sulfoxide.

本触媒は、アルミナの表面にカルボン酸が静電的に吸着
しているものと考えられる。従って、本触媒は、極性溶
媒中ではカルボン酸が脱離するかへキサン等の極性の低
い溶媒中においてカルボン酸の脱離はほとんどなく、反
応中の触゛媒の安定性には問題はない。本触媒の反応は
カルボン酸修飾により構築される反応場の効果によって
、比較的近接していて、なおかつ立体的環境の類似して
いる二重結合のうち親水性官能基側を位置選択的に接触
水素添加を行うことができる特徴を有する。
In this catalyst, carboxylic acid is considered to be electrostatically adsorbed on the surface of alumina. Therefore, with this catalyst, carboxylic acid is eliminated in a polar solvent, but there is almost no elimination of carboxylic acid in a less polar solvent such as hexane, and there is no problem with the stability of the catalyst during the reaction. . The reaction of this catalyst uses the effect of the reaction field constructed by carboxylic acid modification to regioselectively contact the hydrophilic functional group side of double bonds that are relatively close and have similar steric environments. It has the characteristic of being able to perform hydrogenation.

反応の対象である炭素−炭素二重結合を有し、かつ親水
性官能基を有する化合物は特に限定されるものではない
、親水性官能基としては水酸基、カルボキシル基、アミ
7基が挙げられ、好ましくは水酸基である。
The compound having a carbon-carbon double bond that is the target of the reaction and having a hydrophilic functional group is not particularly limited. Examples of the hydrophilic functional group include a hydroxyl group, a carboxyl group, and an amide group, Preferably it is a hydroxyl group.

以下実施例により説明する。This will be explained below using examples.

[実施例1コ 1免二鼠1 5%の白金担持アルミナ(日本エンゲルノ\ルド社製)
 1.0gをデカン酸100mgのジメチルホルムアミ
ド溶液10+nlに加えて1晩ゆっくりかくはんした。
[Example 1 1 5% platinum-supported alumina (manufactured by Nippon Engelno/Rudo Co., Ltd.)
1.0 g was added to 10+nl of a solution of 100 mg of decanoic acid in dimethylformamide and stirred slowly overnight.

その後、不溶固体を濾別しジメチルホルムアミド10m
1で洗浄した。濾別した固体は十分乾燥させ、デカン酸
修飾白金担持アルミナ触媒1.04gを得た。デカン酸
に代え、ヘキサン酸、ミリスチン酸、安息香酸、アジピ
ン酸により同様にカルボン酸修飾白金担持アルミナ触媒
を調製した。
After that, insoluble solids were separated by filtration and dimethylformamide (10ml) was added.
Washed with 1. The filtered solid was sufficiently dried to obtain 1.04 g of a decanoic acid-modified platinum-supported alumina catalyst. Carboxylic acid-modified platinum-supported alumina catalysts were similarly prepared using hexanoic acid, myristic acid, benzoic acid, and adipic acid instead of decanoic acid.

[実施例2] 触媒10 m g、各挿ヘキセノール0.2g及びトリ
デカン0.1gをヘキサン20m+1中で混ぜ、大過剰
の水素雰囲気下零度でかくはんし、反応の経時変化をガ
スクロマトグラフで分析する。デカン酸修飾触媒とコン
トロール触媒の結果は図1及び図2に示した。
[Example 2] 10 mg of catalyst, 0.2 g of each intercalated hexenol, and 0.1 g of tridecane are mixed in 20 m+1 hexane, stirred at zero temperature in a large excess hydrogen atmosphere, and the time course of the reaction is analyzed by gas chromatography. The results of the decanoic acid modified catalyst and the control catalyst are shown in FIGS. 1 and 2.

本触媒には、コントロール触媒に比ベニ重結合の位置の
違いによる選択的水素添加の機能が有ることがわかる。
It can be seen that this catalyst has a selective hydrogenation function due to the difference in the position of the double bond relative to the control catalyst.

[実施例3] 触媒10mg、  )ランス 2−ヘキセノール01g1 トランス 4−へ半々ノール0.1g及びトリデカン0.1gをヘ
キサン20m1中で混ぜ、大過剰の水素雰囲気下零度で
かくはんし、反応の経時変化をガスクロマトグラフで分
析する。デカン酸修飾触媒とフントロール触媒の結果は
図3及び図4に示した。
[Example 3] 10 mg of catalyst, 0.1 g of trans 2-hexenol, 0.1 g of half-trans 4-hexenol, and 0.1 g of tridecane were mixed in 20 ml of hexane, stirred at zero temperature under a large excess hydrogen atmosphere, and the time course of the reaction was measured. is analyzed using a gas chromatograph. The results of the decanoic acid modified catalyst and Funtrol catalyst are shown in FIGS. 3 and 4.

本触媒には、親水性官能基より近い位置にある炭素−炭
素二重結合を選択的に水素添加する機能が有ることがわ
かる。
It can be seen that this catalyst has a function of selectively hydrogenating carbon-carbon double bonds located closer to the hydrophilic functional group.

[実施例4] ミリスチン アルミナ  によるト 触媒1hg、)ランス 2−へ牛セノールO,Ig。[Example 4] myristicin Made of alumina Catalyst 1hg,) Lance 2-to bovine senol O, Ig.

トランス 4−へキ七ノールO,Ig及びトリデカン0
、1gをヘキサンZhl中で混ぜ、大過剰の水素雰囲気
下零度でか(はんし、反応の経時変化をガスクロマトグ
ラフで分析する。ミリスチン酸修飾触媒の結果は図6に
示した。
Trans 4-hequinanol O, Ig and tridecane 0
, 1 g was mixed in hexane (Zhl) at zero temperature in a large excess of hydrogen atmosphere.The time course of the reaction was analyzed by gas chromatography.The results for the myristic acid-modified catalyst are shown in Figure 6.

[実施例6] 触媒10mg、  )ランス 2−へ牛セノールo、1
g。
[Example 6] Catalyst 10 mg, ) lance 2- to bovine senol o, 1
g.

トランス 4−へキセノール0.1g及びトリデカン0
、1gをヘキサン20m1中で混ぜ、大過剰の水素雰囲
気下零度でかくはんし、反応の経時変化をガスクロマト
グラフで分析する。ヘキサン酸修飾触媒の結果は図5に
示した。
Trans 4-hexenol 0.1g and tridecane 0
, 1 g in 20 ml of hexane, stirred at zero temperature in a large excess hydrogen atmosphere, and the time course of the reaction was analyzed by gas chromatography. The results of the hexanoic acid modified catalyst are shown in FIG.

[実施例5コ 触媒10B、  )ランス 2−ヘキセノール0.1g
[Example 5 Cocatalyst 10B, ) Lance 2-hexenol 0.1 g
.

トランス 4−ヘキセノールO,Ig及びトリデカン0
.1gをヘキサン20a+1中で混ぜ、大過剰の水素雰
囲気下零度でかくはんし、反応の経時変化をガスクロマ
トグラフで分析する。アジピン酸修飾触媒の結果は図7
に示した。
trans 4-hexenol O, Ig and tridecane 0
.. 1 g was mixed in 20a+1 hexane, stirred at zero temperature in a large excess of hydrogen atmosphere, and the time course of the reaction was analyzed by gas chromatography. The results of the adipic acid modified catalyst are shown in Figure 7.
It was shown to.

[実施例7] 触媒10n+g、  )ランス 2−ヘキセノール0.
1g。
[Example 7] Catalyst 10n+g, ) Lance 2-hexenol 0.
1g.

トランス 4−ヘキセノール0.1g及びトリデカン0
、1gをヘキサン20m1中で混ぜ、大過剰の水素雰囲
気下零度でかくはんし、反応の経時変化をガスクロマト
グラフで分析する。安息香酸修飾触媒の結果は図8に示
した。
Trans 4-hexenol 0.1g and tridecane 0
, 1 g in 20 ml of hexane, stirred at zero temperature in a large excess hydrogen atmosphere, and the time course of the reaction was analyzed by gas chromatography. The results of the benzoic acid modified catalyst are shown in FIG.

[実施例8] 触媒10 rs gs ゲラニオール0.1g及びトリ
デカン0.1gをヘキサン20m1中で混ぜ、大過剰の
水素雰囲気下零度でかくはんし、反応の経時変化をガス
クロマトグラフで分析する。デカン酸修飾触媒における
結果は図9に示した。
[Example 8] Catalyst 10 rs gs 0.1 g of geraniol and 0.1 g of tridecane are mixed in 20 ml of hexane, stirred at zero temperature in a large excess hydrogen atmosphere, and the time course of the reaction is analyzed by gas chromatography. The results for the decanoic acid modified catalyst are shown in FIG.

[効果〕 本触媒により、不均一触媒反応系では比較的困難とされ
ていた炭素−炭素二重結合と親水性官能基を有する脂肪
族化合物の二重結合の位置選択的接触水素添加反応が達
成でき、反応生成物と触媒との分離も容易である。
[Effect] This catalyst achieves the regioselective catalytic hydrogenation reaction of carbon-carbon double bonds and double bonds of aliphatic compounds with hydrophilic functional groups, which was relatively difficult in heterogeneous catalytic reaction systems. It is also easy to separate the reaction product and catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

図1はデカン酸修飾白金担持アルミナ触媒ニよる各種ヘ
キセノールの接触水素添加反応図2は白金担持アルミナ
(コントロール触媒)による各種ヘキセノールの接触水
素添加反応図3はデカン酸修飾白金担持アルミナ触媒に
よるトランス 2−ヘキセノールとトランス 4−ヘキ
セノールの共存下の接触水素添加反応図4は白金担持ア
ルミナ(コントロール触媒)によるトランス 2−ヘキ
セノールとトランス4−ヘキセノールの共存下の接触水
素添加反応図5はヘキサン酸修飾白金担持アルミナ触媒
によるトランス 2−ヘキセノールとトランス 4−ヘ
キセノールの共存下の接触水素添加反応図6はミリスチ
ン酸修飾白金担持アルミナ触媒によるトランス 2−ヘ
キセノールとトランス4−ヘキセノールの共存下の接触
水素添加反応図7はアジピン酸修飾白金担持アルミナ触
媒によるトランス 2−ヘキセノールとトランス 4−
ヘキセノールの共存下の接触水素添加反応図8は安息香
酸修飾白金担持アルミナ触媒によるトランス 2−ヘキ
セノールとトランス 4−ヘキセノールの共存下の接触
水素添加反応図9はデカン酸修飾白金担持アルミナ触媒
によるゲラニオールの接触水素添加反応 時 間 /  hr 図 時間/hr ヘキセ 9!  Ivl /  hr 0 トランス 2−ヘキセノール 0 トランス 4−−Sキセノール 時 間 /hr 図 トランス 2−へキセノ−9 トランス 4−へキセノ−1し 時間/hr 図 トランス 2−へキゼノール トランス 4−へ午ゼノール 時間 / r 図 0 トランス 2−へキゼノール 0 トランス 4−へキゼノール 時間 /hr 図 トランス 2−へキゼノール トランス 4−へ千七ノール 時間 図 /hr 時 閏 図 / トランス トランス 2〜へ午セ/−ノ1 4−へキセノ−2 大 H 手 続 補 正 書 (自発) 平成元年1λ月11日
Figure 1 shows the catalytic hydrogenation reaction of various types of hexenol using a decanoic acid-modified platinum-supported alumina catalyst. Figure 2 shows the catalytic hydrogenation reaction of various types of hexenol using a platinum-supported alumina (control catalyst). - Catalytic hydrogenation reaction in the coexistence of hexenol and trans 4-hexenol Figure 4 shows the catalytic hydrogenation reaction in the coexistence of trans 2-hexenol and trans 4-hexenol using platinum-supported alumina (control catalyst) Figure 5 shows hexanoic acid modified platinum Catalytic hydrogenation reaction in the coexistence of trans 2-hexenol and trans 4-hexenol using a supported alumina catalyst Figure 6 is a diagram of the catalytic hydrogenation reaction in the coexistence of trans 2-hexenol and trans 4-hexenol using a myristic acid modified platinum supported alumina catalyst. 7 is trans 2-hexenol and trans 4- by adipic acid modified platinum-supported alumina catalyst.
Catalytic hydrogenation reaction in the coexistence of hexenol Figure 8 shows the catalytic hydrogenation reaction in the coexistence of trans-2-hexenol and trans-4-hexenol using a benzoic acid-modified platinum-supported alumina catalyst. Catalytic hydrogenation reaction time / hr Figure time / hr Hexe9! Ivl / hr 0 trans 2-hexenol 0 trans 4-S xenol time/hr Fig. trans 2-hexenol-9 trans 4-hexeno-1 time/hr Fig. trans 2-hexenol trans 4-Hexenol Time/r Figure 0 Trans 2-Hexenol 0 Trans 4-Hexenol Time/hr Figure Transformer 2-Hexenol Trans 4-Hexenol Time Chart/hr Time Leap Chart/Trans Trans 2~Hexenol Time/hr No.1 4-Hexeno-2 Large H Procedural Amendment (Voluntary) 1989/1/11

Claims (1)

【特許請求の範囲】[Claims] 白金担持アルミナにカルボン酸を吸着させたことを特徴
とする親水性官能基と炭素−炭素二重結合を有する脂肪
族化合物の水素添加用触媒。
A catalyst for hydrogenation of aliphatic compounds having a hydrophilic functional group and a carbon-carbon double bond, characterized in that a carboxylic acid is adsorbed on platinum-supported alumina.
JP4020789A 1989-02-22 1989-02-22 Catalyst for positionally selective hydrogenation of carbon-carbon double bond Pending JPH02222728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4020789A JPH02222728A (en) 1989-02-22 1989-02-22 Catalyst for positionally selective hydrogenation of carbon-carbon double bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4020789A JPH02222728A (en) 1989-02-22 1989-02-22 Catalyst for positionally selective hydrogenation of carbon-carbon double bond

Publications (1)

Publication Number Publication Date
JPH02222728A true JPH02222728A (en) 1990-09-05

Family

ID=12574335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020789A Pending JPH02222728A (en) 1989-02-22 1989-02-22 Catalyst for positionally selective hydrogenation of carbon-carbon double bond

Country Status (1)

Country Link
JP (1) JPH02222728A (en)

Similar Documents

Publication Publication Date Title
JP4138025B2 (en) Production method of aliphatic alcohol
Sun et al. Complete hydrogenation of quinoline over hydroxyapatite supported ruthenium catalyst
JPS6156139A (en) Manufacture of alcohol from carboxylic acid ester by hydrogenolysis under presence of catalyst containing nickel and tin, germanium or lead
JP2008505155A (en) Catalyst molding and hydrogenation method of carbonyl compounds
CA2275458A1 (en) Novel supported catalysts
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
EP1300192A3 (en) Shaped hydrogenation catalysts and processes for their preparation and use
ES2171267T3 (en) FERROCENILDIFOSFINAS FUNCTIONALIZED, A PROCEDURE FOR PREPARATION AND USE.
CA2306788A1 (en) A process for preparing vinyl acetate utilizing a catalyst comprising palladium, gold, and any of certain third metals
JPH02222728A (en) Catalyst for positionally selective hydrogenation of carbon-carbon double bond
US4234455A (en) Catalyst preparation
Striegler Designing selective sites in templated polymers utilizing coordinative bonds
Gomez et al. Preparation of benzylamine by highly selective reductive amination of benzaldehyde over Ru on an acidic activated carbon support as the catalyst
KR930001314B1 (en) Process for transforming teicoplanin
JPS6425771A (en) Production of lactones
US7795166B2 (en) Functional group-selective hydrogenation catalyst and functional group-selective hydrogenation method
US4431836A (en) Hydrogenation using chitin and chitosan based immobilized metal catalysts
DE102016125516A1 (en) Whole Cell Based Biohybrid Catalyst Systems
JPH02241546A (en) Catalyst for position-selective hydrogenation of carbon-carbon double bonding
CA1313671C (en) Preparation of 4-pentenoates by isomerization
Leitmannová et al. Immobilization of [Cp* Ru (sorbic acid)] CF3SO3 catalyst: Application for sorbic acid hydrogenation and comparison with homogeneous and two-phase catalysis
JPH0585211B2 (en)
JPH08217707A (en) Method for hydrogenating carboxylic acids
Kuno et al. Regioselective hydrogenation of unsaturated alcohol using platinum-alumina modified with carboxylic acid.
Knapik et al. Hydrogenation of 2-butyn-1, 4-diol in the presence of functional crosslinked resin supported Pd catalyst. The role of polymer properties in activity/selectivity pattern