JPH0222172A - Production of ceramic moldings - Google Patents

Production of ceramic moldings

Info

Publication number
JPH0222172A
JPH0222172A JP63171730A JP17173088A JPH0222172A JP H0222172 A JPH0222172 A JP H0222172A JP 63171730 A JP63171730 A JP 63171730A JP 17173088 A JP17173088 A JP 17173088A JP H0222172 A JPH0222172 A JP H0222172A
Authority
JP
Japan
Prior art keywords
ceramic
sheet
titanium
organosilicon polymer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63171730A
Other languages
Japanese (ja)
Inventor
Keizo Shimada
島田 恵造
Shiro Yamamoto
山本 至郎
Isao Takakura
功 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63171730A priority Critical patent/JPH0222172A/en
Publication of JPH0222172A publication Critical patent/JPH0222172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain ceramic moldings capable of efficiently generating heat by sending an electric current and suitable as an heating element having electric resistance by blending an organosilicon polymer with titanium, molding the blend, calcining the obtained moldings under inert atmosphere and transforming the calcined moldings into ceramic. CONSTITUTION:An organosilicon polymer (e.g., polycarboxystyrene copolymer or polycarbosilane) is blended with a titanium powder and preferably further silicon carbide powder, sizing material (e.g., carboxymethylcellulose), liquid medium (e.g., water), etc. Then the blend is molded into a prescribed shape such as sheet. Then the obtained moldings are calcined under inert atmosphere (e.g., in nitrogen) and transformed into ceramic to provide the ceramic moldings.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気抵抗発熱体として有用なセラミック成形
体の製造法に関するものである。更に詳しくは、通電に
よって発熱し、電気抵抗発熱体として好適な薄手のシー
ト状(平板状)あるいはその他の形状のセラミック成形
体を工業的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a ceramic molded body useful as an electrical resistance heating element. More specifically, the present invention relates to a method for industrially manufacturing a ceramic molded body in the form of a thin sheet (flat plate) or other shape that generates heat when energized and is suitable as an electrical resistance heating element.

[従来の技術] 近年、電熱を利用した家庭用の調理器具、営業用の調理
器具が汎用されている。例えば電子レンジ、トースター
、オーブン、フライパン等がそれである。これらは、マ
グネトロン等を用いた被調理物の自己発熱性かニクロム
線等を用いた電熱器を備えるものである。これらは便利
な調理器具であるが、消費者がグルメ志向になった今日
、十全の調理器とは云えない。例えば、電子レンジで肉
[Background Art] In recent years, household cooking utensils and commercial cooking utensils that utilize electric heat have been widely used. Examples include microwave ovens, toasters, ovens, frying pans, etc. These devices either self-heat the food to be cooked using a magnetron or the like, or are equipped with an electric heater using a nichrome wire or the like. Although these are convenient cooking utensils, they cannot be called perfect cooking utensils as consumers have become more gourmet-oriented today. For example, meat in the microwave.

魚の加熱・調理は出来ても焦げ目が出来た芳香を放つも
のには出来ない。このためニクロム線ヒーター等で再加
熱するように考えられたものはあるが、十分な加熱が行
きわたらず、最近のグルメ志向の消費者を満足させるに
は至っていない。この理由としてこのような金属系のヒ
ーターの耐熱性の不足が上げられ、ヒーター温度の不足
を指摘することが出来る。また、ヒーター・は多くは棒
状で、被調理物を均一に加熱出来ないことも挙げられる
Although it is possible to heat and cook fish, it is not possible to make it burnt and give off an aromatic aroma. For this reason, there are some methods that have been designed to reheat food using a nichrome wire heater, etc., but the heating is not sufficient and it has not been possible to satisfy the recent gourmet-oriented consumers. The reason for this is the lack of heat resistance of such metal heaters, and it can be pointed out that the heater temperature is insufficient. Another problem is that most heaters are rod-shaped and cannot heat the food evenly.

従って、これら金属系ヒーターを、耐熱性セラミックス
のヒーターに置きかえることが一つの解決策になり、更
にこれを面状発熱体にすることは更に好ましいと考えら
れる。
Therefore, one solution would be to replace these metal heaters with heat-resistant ceramic heaters, and it would be even more preferable to use a planar heating element instead.

均一に加熱するために、熱源が面積を持っていることが
好ましいのはよく知られている。しかしながら、平板状
の金属の場合、その両端に端子を設け、これを家庭用の
100ボルトないしは200ボルト電源につなぐには電
気抵抗が低すぎるという問題がある。
It is well known that for uniform heating, it is preferable that the heat source has an area. However, in the case of a flat metal, there is a problem in that the electrical resistance is too low to connect terminals at both ends and connect it to a household 100 volt or 200 volt power source.

一方、セラミックスの電気抵抗体は知られているが、本
目的に沿うようなものは実用化されていない。例えばシ
リコンカーバイド系の抵抗発熱体は知られているが、こ
れらは電気伝導性が低く、そのまま調理器等に用いるこ
とはできない。
On the other hand, although ceramic electrical resistors are known, none that meet this purpose have been put into practical use. For example, silicon carbide-based resistance heating elements are known, but these have low electrical conductivity and cannot be used as they are in cooking appliances and the like.

炭素を単独またはセラミックスの塞材とともに用いた抵
抗体も知られているが、これらは主に、通信用の器材の
部品であり、加熱用には到底用いられるものではない。
Resistors using carbon alone or with a ceramic filler are also known, but these are mainly components of communication equipment and cannot be used for heating purposes.

セラミックスを発熱体に用いるに際して、小型化、特に
薄いシート化するためには強度の問題もある。例えば、
シートを薄く、細くすればセラミックスの特性として極
めて壊れ易い。特に、焼成前の素材成形物、所謂グリー
ンシートでの取り扱いが容易ではない。グリーンシート
の取り扱い性を改善するためにグリーンシート中に添加
する糊料を増加させる方法があるが、この方法では次の
焼成において問題を引き起こすことが多い。すなわち、
焼成に際して破壊するか、破壊しないまでも壊れ易いシ
ートしか得られないのが普通である。
When ceramics are used for heating elements, there is also the problem of strength in order to make them smaller, particularly in the form of thinner sheets. for example,
If the sheet is made thin and thin, it will break easily due to the characteristics of ceramics. In particular, it is not easy to handle the molded material before firing, a so-called green sheet. There is a method of increasing the amount of glue added to the green sheet in order to improve the handling properties of the green sheet, but this method often causes problems in the subsequent firing. That is,
Usually, only sheets that break during firing or are easily brittle even if they do not break are obtained.

このような理由により、薄形の、従って放熱部が大きく
調理等に際して均一加熱を行い得るシート状発熱体等と
して有用なセラミック成形体を提供することは実際上極
めて難しい。従って、このようなシート状発熱体は未だ
工業的には製造されていないのが現状である。
For these reasons, it is actually extremely difficult to provide a ceramic molded body that is thin, has a large heat dissipation portion, and is useful as a sheet-like heating element that can uniformly heat the ceramic body during cooking or the like. Therefore, at present, such a sheet-like heating element has not yet been manufactured industrially.

本発明者等は、この解決方法として、さきにポリカルボ
シラスチレン共重合体と炭素との混合物のシート化焼成
による方法を提案した(特願昭63−38740号)。
As a solution to this problem, the present inventors previously proposed a method in which a mixture of a polycarbosilastyrene copolymer and carbon is fired to form a sheet (Japanese Patent Application No. 38740/1982).

また、ポリカルボシランを用いたシート状セラミック成
形物としては、特開昭60−235765号に特開昭5
9−174575号記載の素材を用いて、この素材と熱
可塑性樹脂を同時に押し出して2層として焼成する方法
も提案されている。しかしながら、これらの方法で得ら
れるセラミックスは遊離炭素を含み易く、且つ、焼成に
際しては有機物の焼却減量による焼き縮みが大きく収率
が悪いばかりでなく、得られるセラミックス製シート状
発熱体は通電に際して変化し易い等の欠点をも有してい
る。さらに、通電(発熱)をくり返すと次第に電気抵抗
が増大するという問題もあり、発熱体用として使用する
に当り、改善すべき問題が多く残されている。
In addition, sheet-like ceramic molded products using polycarbosilane are disclosed in JP-A-60-235765 and JP-A-5.
A method has also been proposed in which the material described in No. 9-174575 is used, and this material and a thermoplastic resin are simultaneously extruded and fired as two layers. However, the ceramics obtained by these methods tend to contain free carbon, and when fired, the yield is poor due to large shrinkage due to the loss of organic matter, and the sheet-shaped ceramic heating elements obtained do not change when energized. It also has disadvantages such as being easy to use. Furthermore, there is a problem in that the electrical resistance gradually increases when energization (heat generation) is repeated, and many problems remain to be improved when used as a heat generating element.

[発明が解決しようとする課題] 本発明は、前述の如き従来のシート状セラミック成形体
を電気抵抗発熱体として用いるときに認められる諸問題
を解決し、発熱体として有用な薄手のシート状(平板状
)を含む任意の形状のセラミック成形体を工業的に有利
に製造する方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention solves the various problems observed when using the conventional sheet-shaped ceramic molded body as an electrical resistance heating element, and provides a thin sheet-shaped ( The purpose of the present invention is to provide an industrially advantageous method for manufacturing ceramic molded bodies of any shape, including flat plate shapes.

[課題を解決するための手段] このような課題は、ポリカルボシラスチレン共重合体、
ポリカルボシラン等の有機ケイ素ポリマー類とチタン金
属微粉末とを含む混合物をシート状又はその他の任意の
形状に成形し、得られた成形体を不活性雰囲気下で焼成
してセラミック化させる方法によって達成される。
[Means for solving the problem] These problems can be solved by using polycarbosilastyrene copolymer,
A method in which a mixture containing organosilicon polymers such as polycarbosilane and fine titanium metal powder is molded into a sheet or any other arbitrary shape, and the resulting molded body is fired in an inert atmosphere to form a ceramic. achieved.

本発明方法において用いる有機ケイ素ポリマーとしては
、ポリカルボシラン、ポリ力ルボボOシラン、ポリシラ
スチレン、ポリカルボシラスチレン共重合体等が用いら
れる。
The organosilicon polymer used in the method of the present invention includes polycarbosilane, polysilane, polysilastyrene, polycarbosilastyrene copolymer, and the like.

なかでも、ポリカルボシラスチレン共重合体が焼成時の
収率が良好でありかつ焼成後のセラミック成形物の物性
及び電気的特性もすぐれているため、最も好ましい。
Among these, polycarbosilastyrene copolymer is the most preferred because it has a good yield during firing and the ceramic molded product after firing has excellent physical properties and electrical properties.

ここでいうポリカルボシラスチレン共重合体とは、本発
明者らが提案した、分子の主鎖中にカルボシラン結合 −FSi   CHz刊− と、シラスチレン結合 とが70/ 30〜30/ 70の割合で共存する分子
量1000〜50000の高分子有機ケイ素ポリマーで
あって、その製法及び性質については、ヨーロッパ特許
公開第0212485号に詳しく記載されている。
The polycarbosilastyrene copolymer here refers to the polycarbosilastyrene copolymer proposed by the present inventors, in which the main chain of the molecule contains carbosilane bonds (published by FSi CHZ) and silastyrene bonds in a ratio of 70/30 to 30/70. The coexisting high-molecular organosilicon polymer having a molecular weight of 1,000 to 50,000 is described in detail in European Patent Publication No. 0212485 regarding its production method and properties.

しかしながら、本発明方法においては例えばジメチルジ
クロルシランを原料とするポリカルボシランも有効に用
いることができる。
However, in the method of the present invention, for example, polycarbosilane made from dimethyldichlorosilane can also be effectively used.

一方、前記有機ケイ素ポリマーと併用するチタン(Ti
 )は、通常、チタン粉末が用いられる。
On the other hand, titanium (Ti) used in combination with the organosilicon polymer
), titanium powder is usually used.

厚さ3s以下、特に厚さ2jw以下の薄手のシートを製
造する場合にはチタン粉末は微細な方が好ましく、平均
粒径10μm以下、特に薄手のシートの場合には0.5
μm以下が好ましい。
When manufacturing a thin sheet with a thickness of 3s or less, especially a thickness of 2jw or less, the titanium powder is preferably finer, and the average particle size is 10μm or less, particularly 0.5 in the case of a thin sheet.
It is preferably less than μm.

本発明方法は、シート化する原料として有nケイ素ポリ
マーに対しチタンを添加混合したものを使用することを
最大の特徴とするが、有機ケイ素ポリマーに対するチタ
ンの添加量は、使用する有機ケイ素ポリマー量により左
右され、所要の物性と必要に応じて加えられる糊料、焼
結助剤等の種類や母により補正される。有機ケイ素ポリ
マーとチタンのみの場合には該ポリマー1に対してチタ
ン0.1ないし1.0(重量比)程度が好ましい場合が
多い。糊料、焼結助剤を加えるとポリマーに対するチタ
ンの比率は更に高い方が好ましい。
The main feature of the method of the present invention is that it uses a mixture of n-silicon polymer and titanium as a raw material to be formed into a sheet, and the amount of titanium added to the organosilicon polymer is It is influenced by the required physical properties and the type and base of the paste, sintering aid, etc. added as necessary. In the case of using only an organosilicon polymer and titanium, it is often preferable that titanium is about 0.1 to 1.0 (weight ratio) to the polymer. When a sizing agent and a sintering aid are added, it is preferable that the ratio of titanium to the polymer is even higher.

上記有機ケイ素ポリマーには、ポリシラン又は低融点の
有機ケイ素ポリマーを加えることが好ましい場合がある
。すなわち、これらは焼結に際して、溶融接着の役目を
果すと考えられる。
It may be preferable to add polysilane or a low melting point organosilicon polymer to the organosilicon polymer. That is, these are thought to play the role of melt adhesion during sintering.

本発明方法では、有機ケイ素ポリマーとチタンのほかに
、さらに炭化ケイ素(St C)やケイ素<Sr >を
添加してもより、得られるセラミック成形体に要求され
る性質によっては積極的に添加することが好ましい場合
がある。これらのSiCや3iも、通常、粉末で用いら
れ、これらの粉末は呼び径10μm以下が好ましく、特
に薄手のシート化を目指す場合には0.5μm以下が好
ましい。
In the method of the present invention, in addition to the organosilicon polymer and titanium, silicon carbide (St C) and silicon <Sr> may also be added depending on the properties required of the ceramic molded body obtained. In some cases, it is preferable. These SiC and 3i are also usually used in the form of powder, and the nominal diameter of these powders is preferably 10 μm or less, and particularly preferably 0.5 μm or less when forming a thin sheet.

チタンと炭化ケイ素の粒子の大きさは、特にシート状に
成形しグリーンシート化する際の成形性等において問題
になる。
The particle size of titanium and silicon carbide poses a problem, particularly in terms of formability when forming into a sheet to form a green sheet.

本発明方法を実施するに当り、必要ならば前記混合物に
さらに糊料と焼結助剤を加えることができる。例えば、
混合物をペースト状とし、これを成形して焼成する場合
には糊料を加えることが好ましい。この場合の糊料はセ
ラミックスの原料成形に際して常套的に用いられるCM
C(カルボキシメチルセルロース)、PVA(ポリビニ
ルアルコール)、PEG(ポリエチレングリコール、ポ
リビニルブチラール)等を用いる。また、高級脂肪酸く
例えばステアリン酸、バルミチン酸、オレイン酸等)、
高級脂肪酸エステル(例えばブチルステアレート)、動
植物油脂ワックス等を用いても良い。
When carrying out the method of the invention, if necessary, further sizing agents and sintering aids can be added to the mixture. for example,
When the mixture is made into a paste, which is molded and fired, it is preferable to add a paste. The glue used in this case is CM, which is commonly used when forming raw materials for ceramics.
C (carboxymethyl cellulose), PVA (polyvinyl alcohol), PEG (polyethylene glycol, polyvinyl butyral), etc. are used. In addition, higher fatty acids (such as stearic acid, valmitic acid, oleic acid, etc.),
Higher fatty acid esters (for example, butyl stearate), animal and vegetable oil waxes, etc. may also be used.

さらに、ペースト化するに当り、水等の分散媒や有機溶
媒等の液状媒体を用いてもよい。分散媒としては水が最
も経済的であるが、有機ケイ素ポリマーを溶解し得る有
機溶媒を用いると緻密な成形物とすることができる。
Furthermore, in making a paste, a dispersion medium such as water or a liquid medium such as an organic solvent may be used. Water is the most economical dispersion medium, but dense molded products can be obtained by using an organic solvent that can dissolve the organosilicon polymer.

また、電気的5機械的特性を調整する目的で、アルミナ
、その他の金属の粉末を混合してもよい。
Further, powder of alumina or other metal may be mixed for the purpose of adjusting electrical and mechanical properties.

本発明方法では、これらの原料を粉砕混合してシート状
又はその他の形状の成形物(シート状の場合はグリーン
シートと称される)を作成する。
In the method of the present invention, these raw materials are pulverized and mixed to create a sheet-like or other shaped molded product (in the case of a sheet-like product, it is called a green sheet).

以下、シート化する場合を例に説明すると、ペースト状
にして湿式でシート化する場合には有機ケイ素ポリマー
、チタン粉末、必要あれば糊料、炭化ケイ素、焼成助剤
等を混合し、水等の分散媒を加えて練り、ペースト化す
る。次いで、このペーストを押出し成形、プレス成形等
でシート化する。押出し成形の場合等にはカレンダーで
再処理することが好ましい。
Below, we will explain the case of making a sheet as an example. When making a paste into a sheet using a wet method, organic silicon polymer, titanium powder, if necessary, a paste, silicon carbide, a baking aid, etc. are mixed, water etc. Add a dispersion medium and knead to make a paste. Next, this paste is formed into a sheet by extrusion molding, press molding, or the like. In the case of extrusion molding, etc., it is preferable to reprocess with a calendar.

一方、溶融成形によりシート化する場合には、有機ケイ
素ポリマーとチタン粉末とを混合し、スリットダイから
溶融押し出し成形を行う。この際、さらに炭化ケイ素、
糊料、焼結助剤等を加えて実施してもよいことは勿論で
ある。
On the other hand, when forming a sheet by melt molding, an organosilicon polymer and titanium powder are mixed and melt extrusion molded through a slit die. At this time, silicon carbide,
Of course, the process may be carried out by adding a sizing agent, a sintering aid, etc.

粉体成形する場合には混合物をプレスに均一に流し込む
か、基材の上に粉体を均一に散布し、加熱、プレスする
ことにより、シート化することができる。
In the case of powder molding, the mixture can be formed into a sheet by uniformly pouring the mixture into a press, or by uniformly scattering the powder onto a base material, heating and pressing.

このようにして、得られたグリーンシートは、窒素若し
くはアルゴン等の不活性雰囲気中で焼成する。必要があ
ればこの焼成に先立ち、不融化処理を行う。有機ケイ素
ポリマー類の不融化処理については既に各種の報告があ
り(例えば特開昭58−215426号)、熱処理、放
射線処理、紫外線処理その他が知られている。本発明方
法で不融化を要するときは、これらの何れの方法でも採
用できる。ただし、チタンや炭化ケイ素等の粉体量が多
ければ、これらの粉体層が溶融有機ケイ素ポリマーを吸
収するので不融化処理は不要で、寧ろ行わないほうが好
ましいことがある。不融化処理を実施する場合は、シー
ト化成形以前に行うことが望ましい場合もある。
The green sheet thus obtained is fired in an inert atmosphere such as nitrogen or argon. If necessary, infusibility treatment is performed prior to this firing. Various reports have already been made regarding the infusibility treatment of organosilicon polymers (for example, JP-A-58-215426), and heat treatment, radiation treatment, ultraviolet treatment, and others are known. When infusibility is required in the method of the present invention, any of these methods can be employed. However, if the amount of powder such as titanium or silicon carbide is large, the powder layer absorbs the molten organosilicon polymer, so the infusibility treatment is not necessary, and it may be preferable not to perform it. When performing infusibility treatment, it may be desirable to perform it before forming into a sheet.

何れの場合も、これらのシートは不活性雰囲気下で焼成
しセラミック化せしめるが、焼成温度は1000℃〜2
000℃、特に好ましくは1200℃〜1800℃であ
る。工業的には、これ以下の温度では有機ケイ素ポリマ
ーの分解とそのときの生成物のチタンとの反応が十分で
なく本発明の効果が思わしくない。これより高い温度で
は他の反応、例えば窒素やアルゴン中に含まれる酸素と
の反応による二酸化チタンの発生や窒素との反応による
窒化チタンの発生が無視出来なくなる。これらの生成物
は何れも電気絶縁性であるため、得られるセラミックシ
ートの導電性を低下させる。
In either case, these sheets are fired in an inert atmosphere to form a ceramic, and the firing temperature is between 1000°C and 2.0°C.
000°C, particularly preferably 1200°C to 1800°C. Industrially, at temperatures below this range, the decomposition of the organosilicon polymer and the reaction between the resulting product and titanium are insufficient, and the effects of the present invention are not as desired. At temperatures higher than this, other reactions such as the generation of titanium dioxide due to the reaction with oxygen contained in nitrogen or argon and the generation of titanium nitride due to the reaction with nitrogen cannot be ignored. Since all of these products are electrically insulating, they reduce the electrical conductivity of the resulting ceramic sheet.

本発明者等の研究によると、ポリカルボシラスチレン共
重合体を焼成してセラミックスとする場合、1300℃
程度で焼成した場合、焼成時の焼き縮みは20%に近い
。特開昭60−235765号、同59−17457号
記載のものでも寸法上の焼き縮みは2.〜4%、重量減
で10%にも及ぶ。しかるに本発明方法によれば原料組
成の選択にもよるが重量減で1%まで下げ得る。
According to the research conducted by the present inventors, when polycarbosilastyrene copolymer is fired to make ceramics, 1300℃
When fired at a certain temperature, the shrinkage during firing is close to 20%. Even with the products described in JP-A-60-235765 and JP-A-59-17457, the dimensional shrinkage was 2. ~4%, and the weight reduction reaches as much as 10%. However, according to the method of the present invention, the weight reduction can be reduced to 1%, depending on the selection of raw material composition.

得られるセラミックシートは導電性であり、例えば有機
ケイ素ポリマーにチタンを加えずに焼成した場合より、
焼成減量が低く、電気伝導性を高め発熱体用シートとし
ての特性を向上させることができる。このことはチタン
を加えない場合とは反応が異なり、焼成時に有機ケイ素
ポリマーが分解してセラミック化(SiC化)する際に
発生する物質とチタンとが反応して、セラミックス構成
成分(Ti C)になるためと推定される。そして、こ
のTiCは導電性が良好なため本発明方法によるシート
の導電性も向上するものと考えられる。
The resulting ceramic sheet is electrically conductive, for example, more conductive than if the organosilicon polymer was fired without the addition of titanium.
The loss on firing is low, the electrical conductivity is increased, and the properties as a heating element sheet can be improved. This reaction is different from when titanium is not added, and titanium reacts with the substance generated when the organosilicon polymer decomposes during firing to form a ceramic (SiC), forming a ceramic component (TiC). It is presumed that this is because the Since this TiC has good electrical conductivity, it is thought that the electrical conductivity of the sheet produced by the method of the present invention is also improved.

以上セラミックシートを製造する場合を主として説明し
たが、本発明方法は、他の形状の成形体を製造する場合
にも有効である。
Although the method of the present invention has mainly been described above for producing ceramic sheets, the method of the present invention is also effective in producing molded bodies of other shapes.

[発明の効果] 上述のように、本発明方法により、薄手(厚さ3am以
下)のシート状(平板状)、その他任意の形状の電気廃
熱体用として好適なセラミック成形体が収率良く得られ
、しかも、この成形体は繰り返し通電したときの変化も
少なく、電気発熱体として用いるときの安定性はすこぶ
る良好である。
[Effects of the Invention] As described above, by the method of the present invention, a ceramic molded body suitable for use as a thin (thickness 3 am or less) sheet-like (flat plate) or other arbitrary shape electric waste heat body can be produced in good yield. Furthermore, this molded product shows little change when repeatedly energized, and has very good stability when used as an electric heating element.

このようにして得られたセラミック成形体は原料混合物
の組成を調整することにより導電性を改良出来るととも
に、シート状等任意の形状の発熱体として家庭用電源に
そのまま接続出来る抵抗値に設計出来るため、セラミッ
クヒータ−の面発熱体としてきわめて有用である。
The conductivity of the ceramic molded body obtained in this way can be improved by adjusting the composition of the raw material mixture, and it can also be designed with a resistance value that allows it to be connected directly to a household power source as a heating element in any shape such as a sheet. It is extremely useful as a surface heating element for ceramic heaters.

[実施例] 次に、本発明の実施例及び比較例を挙げるが、本発明は
これにより限定されるものではない。なお、特に断りな
い限り各例中の「部」は重量部である。
[Example] Next, Examples and Comparative Examples of the present invention will be given, but the present invention is not limited thereto. Note that unless otherwise specified, "parts" in each example are parts by weight.

実施例1 ジクロルジメチルシランとジクロルメチルフェニルシラ
ンの等モルを用いてトルエン中、金属ナトリウムを加え
て重合してポリシラスチレンを得た。このポリシラスチ
レンを390℃で窒素雰囲気中で50分間処理し、減圧
にし、ポリカルボシラスチレン共重合体(PC3S)を
得た。この共重合体の軟化点は222℃である。
Example 1 Polysilastyrene was obtained by polymerizing equimolar amounts of dichlorodimethylsilane and dichloromethylphenylsilane in toluene with the addition of metallic sodium. This polysilastyrene was treated at 390° C. for 50 minutes in a nitrogen atmosphere and the pressure was reduced to obtain a polycarbosilastyrene copolymer (PC3S). The softening point of this copolymer is 222°C.

ポリカルボシラスチレン共重合体(PC3S)10部、
粉砕したチタンのうち320メツシユ以下のもの5部、
市販の呼び径0.27μmの炭化ケイ素80部、工業用
ステアリン!15部、パラフィン5部を混合し冷却粉砕
し、微細な粉末とした。
10 parts of polycarbosilastyrene copolymer (PC3S),
5 parts of crushed titanium of 320 mesh or less;
80 parts of commercially available silicon carbide with a nominal diameter of 0.27 μm, industrial stearin! 15 parts of paraffin and 5 parts of paraffin were mixed, cooled and pulverized to obtain a fine powder.

これを金型に入れ、均一にならして、1,5 t/dの
圧力でプレスし、220℃にてシート状に成形し、冷却
して取りだし、厚さ0.8#Iのシートを得た。
This was put into a mold, leveled uniformly, pressed at a pressure of 1.5 t/d, formed into a sheet at 220°C, cooled and taken out, and a sheet with a thickness of 0.8#I was made. Obtained.

このシートを高純度窒素気流中で焼成した。焼成では昇
温速度50℃/hrで炉の指示温度1300℃まで昇温
したくなお温度検出端と試料とは密着してはいない)。
This sheet was fired in a stream of high purity nitrogen. During firing, the temperature should be raised to the indicated temperature of the furnace, 1300°C, at a heating rate of 50°C/hr; however, the temperature detection end and the sample are not in close contact with each other).

1300℃で1時間保持後、冷却して取りだした。After being held at 1300°C for 1 hour, it was cooled and taken out.

得られたセラミックスシートは体積固有抵抗2.00傭
であり、原料から製品への重量減少率は7%であった。
The obtained ceramic sheet had a volume resistivity of 2.00 mm, and the weight reduction rate from raw material to product was 7%.

実施例2〜4及び比較例1 実施例1と同様の操作において、チタンの粉末の添加量
のみを数表に示す如く変更して実施し、セラミックシー
トを製造した。それぞれ実施結果は数表に示す通りであ
る(前述の実施例1のデータも併記する)。
Examples 2 to 4 and Comparative Example 1 Ceramic sheets were produced in the same manner as in Example 1, except for the amount of titanium powder added as shown in the table. The respective implementation results are as shown in the numerical table (the data of the above-mentioned Example 1 is also shown).

果を示すものである。It shows the results.

実施例1のチタンの代わりにAρ203を1部用いるほ
かは全く同様にして比較用の試料を作った(比較例2)
。この試料の固有抵抗値は4X100Ωαであった。
A comparative sample was prepared in exactly the same manner except that one part of Aρ203 was used in place of the titanium in Example 1 (Comparative Example 2).
. The specific resistance value of this sample was 4×100Ωα.

実施例1と同様な方法で作製した試料と比較例2の試料
の繰り返し通電試験を実施した。その結果を数表に示す
。なお通電時には試料の温度は1000℃まで昇温しで
いる。
A repeated energization test was conducted on a sample prepared in the same manner as in Example 1 and on a sample of Comparative Example 2. The results are shown in the numerical table. Note that the temperature of the sample rose to 1000° C. when electricity was applied.

この結果は、チタンを加えない場合(比較例1)には焼
成に際して飛散していた成分が、チタンの添加した場合
(実施例1〜4)はセラミック化していることを示して
いる。また、チタンの添加でセラミックの固有抵抗値を
変えられることも示している。
This result shows that the components that were scattered during firing when titanium was not added (Comparative Example 1) were turned into ceramic when titanium was added (Examples 1 to 4). They also show that the resistivity of ceramics can be changed by adding titanium.

実施例5及び比較例2 この実施例及び比較例は繰り返し通電試験の結実験終了
後、比較例2の試料には細かな“ひび割れ”が認められ
た。又、比較例2の試料は通電後ものは、試作直後に比
して変色しており黒色が灰色に変化していることが認め
られた。実施例5の試料も若干変色したがその程度は遥
かに少なかった。
Example 5 and Comparative Example 2 In this Example and Comparative Example, small "cracks" were observed in the sample of Comparative Example 2 after the repeated energization test was completed. Furthermore, it was observed that the sample of Comparative Example 2 had changed color after being energized compared to immediately after trial production, and the black color had changed to gray. The sample of Example 5 also had some discoloration, but the degree of discoloration was much less.

参考例1 融点が220℃であるポリカルボシランスチレン共重合
体を溶融押し出してフィルム状になし、得られたフィル
ムを空気中でゆっくり230℃まで昇温した。室温から
230℃まで昇温するのに10時間かけた。このように
してポリカルボシラスチレン共重合体のフィルムを不融
化した後、窒素中で50’C/hrの割合で1400℃
まで昇温して焼成しSiCを主体とするセラミックフィ
ルムとした。この際の焼成時の減量は13%、フィルム
の体積固有抵抗値は1.OX 100Ω0であった。
Reference Example 1 A polycarbosilane styrene copolymer having a melting point of 220°C was melt-extruded to form a film, and the resulting film was slowly heated to 230°C in air. It took 10 hours to raise the temperature from room temperature to 230°C. After making the polycarbosilastyrene copolymer film infusible in this way, it was heated to 1400°C at a rate of 50'C/hr in nitrogen.
The temperature was raised to 100.degree. C. and fired to obtain a ceramic film mainly composed of SiC. The weight loss during firing was 13%, and the volume resistivity of the film was 1. OX 100Ω was 0.

実施例6 参考例1と同じポリカルボシラスチレン共重合体100
部に対して、チタン粉末4部を混合し、参考例3と同様
に焼成しSiCを主体とするセラミックフィルムを得た
。この際の焼成時の減量は10%であった。また体積固
有抵抗は0.5X 100Ωαであり、いずれも参考例
1よりも改善されていることが確認された。
Example 6 Same polycarbosilastyrene copolymer 100 as Reference Example 1
4 parts of titanium powder was mixed with 4 parts of titanium powder and fired in the same manner as in Reference Example 3 to obtain a ceramic film mainly composed of SiC. The weight loss during firing was 10%. Further, the volume resistivity was 0.5×100Ωα, and it was confirmed that both were improved over Reference Example 1.

実施例7 ジメチルジクロルシランにナトリウムを加えて重合し、
ポリシランを得た。このポリシランを、加圧下430℃
まで昇温してポリカルボシランに転位させた。
Example 7 Adding sodium to dimethyldichlorosilane and polymerizing it,
Polysilane was obtained. This polysilane was heated at 430°C under pressure.
The temperature was raised to 90°C to rearrange into polycarbosilane.

このカルボシランを実施例1のポリカルボシランスチレ
ン共重合体の代わりに用いて同様な操作を行い、セラミ
ックシートを得た。得られたセラミシックシートの体積
固有抵抗は4X100ΩCIRであった。また、焼成に
際しての重量減少率は9%であった。
A similar operation was performed using this carbosilane instead of the polycarbosilane styrene copolymer of Example 1 to obtain a ceramic sheet. The volume resistivity of the obtained ceramic sheet was 4×100ΩCIR. Furthermore, the weight loss rate during firing was 9%.

実施例8 エチルセルローズをエタノールに溶かして溶液とし、ク
ロムメツキした真鍮板に塗布し、乾燥させた。
Example 8 Ethyl cellulose was dissolved in ethanol to form a solution, which was applied to a chrome-plated brass plate and dried.

ポリカルボシランスチレン共重合体の粉末50部、チタ
ン粉末50部、炭化ケイ素粉末50部を混合し、再粉砕
して上記のエチルセルローズを塗布したクロムメツキ板
の上に均一に薄く散布し、加圧・加熱(1100N/c
m、  230℃)したのち、得られたシート(グリー
ンシート)を根土から取りはずした。
50 parts of polycarbosilane styrene copolymer powder, 50 parts of titanium powder, and 50 parts of silicon carbide powder were mixed, re-pulverized, and uniformly and thinly spread on the chrome-plated plate coated with the above-mentioned ethyl cellulose.・Heating (1100N/c
m, 230°C), and then the obtained sheet (green sheet) was removed from the root soil.

得られたグリーンシートを窒素気流中で1500℃で焼
成し、厚さ1amのセラミックシートを得た。
The obtained green sheet was fired at 1500° C. in a nitrogen stream to obtain a ceramic sheet with a thickness of 1 am.

このセラミックシートの固有抵抗値は2.OX 100
Ωαであった。
The specific resistance value of this ceramic sheet is 2. OX100
It was Ωα.

一4′。14'.

Claims (5)

【特許請求の範囲】[Claims] (1)有機ケイ素ポリマーとチタンとを含む混合物を所
定の形状に成形し、得られた成形物を不活性雰囲気下で
焼成しセラミック化せしめることを特徴とするセラミッ
ク成形体の製造法。
(1) A method for producing a ceramic molded body, which comprises molding a mixture containing an organosilicon polymer and titanium into a predetermined shape, and firing the resulting molded product in an inert atmosphere to form a ceramic.
(2)セラミック成形体を厚さ3mm以下好ましくは2
mm以下のシートとする請求項(1)に記載の製造法。
(2) Ceramic molded body with a thickness of 3 mm or less, preferably 2
The manufacturing method according to claim (1), wherein the sheet is made into a sheet having a size of 1 mm or less.
(3)有機ケイ素ポリマーが、ポリカルボシラスチレン
共重合体又はポリカルボシランである請求項(1)又は
(2)に記載の製造法。
(3) The method according to claim 1 or 2, wherein the organosilicon polymer is a polycarbosilastyrene copolymer or a polycarbosilane.
(4)成形に供する混合物が、実質的に有機ケイ素ポリ
マー,チタン粉末,シリコンカーバイド粉末,糊料およ
び液状媒体からなるペースト状の混合物である請求項(
1),(2)又は(3)に記載の製造法。
(4) A claim in which the mixture to be molded is a paste-like mixture consisting essentially of organosilicon polymer, titanium powder, silicon carbide powder, glue, and liquid medium (
1), (2) or (3).
(5)実質的に有機ケイ素ポリマー,チタン粉末,炭化
ケイ素粉末からなる混合物を基体上に均一に散布し、加
熱加圧して形成したシート状物を不活性雰囲気下で焼成
する請求項(2)又は(3)に記載の製造法。
(5) Claim (2), wherein a mixture substantially consisting of organosilicon polymer, titanium powder, and silicon carbide powder is uniformly spread on a substrate, and the sheet-like product formed by heating and pressing is fired in an inert atmosphere. Or the manufacturing method described in (3).
JP63171730A 1988-07-12 1988-07-12 Production of ceramic moldings Pending JPH0222172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171730A JPH0222172A (en) 1988-07-12 1988-07-12 Production of ceramic moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171730A JPH0222172A (en) 1988-07-12 1988-07-12 Production of ceramic moldings

Publications (1)

Publication Number Publication Date
JPH0222172A true JPH0222172A (en) 1990-01-25

Family

ID=15928614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171730A Pending JPH0222172A (en) 1988-07-12 1988-07-12 Production of ceramic moldings

Country Status (1)

Country Link
JP (1) JPH0222172A (en)

Similar Documents

Publication Publication Date Title
US5702501A (en) Clayish composition for molding shaped article of noble metal and method for production of sintered article of noble metal
JP4554819B2 (en) Sintered pin heater
JPS6410468B2 (en)
CH431953A (en) Moldable substance
JP2949586B2 (en) Conductive material and manufacturing method thereof
CN101747078A (en) Making method for sintering high-purity silicon carbide honeycomb ceramics by using nanometer silicon carbide as auxiliary
JP2507151B2 (en) Conductive ceramics sintered body and method for producing the same
JPH0222172A (en) Production of ceramic moldings
JPH05194037A (en) Water extrusion of silicon nitride
JPH01298067A (en) Production of ceramic sheet
JP3262071B2 (en) Manufacturing method of carbon heating element
JPH01298068A (en) Production of ceramic formed body
JPH02145301A (en) Manufacture of ceramic sheet having notch section
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
JP2685370B2 (en) Ceramics heater
JP3210208B2 (en) Method for manufacturing silicon carbide ceramic heater
JP3151663B2 (en) Method for producing Mo (Al, Si) 2-based material at low temperature
WO2001014278A1 (en) Method for preparing far-infrared radiation ceramics
JP2002249369A (en) Ceramic product including tourmaline and method for manufacturing it
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPH0142910B2 (en)
RU2289552C1 (en) High-temperature permeable current-conducting material and the method of its production
JPH01215759A (en) Production of silicon carbide-carbon composite sheet
JPS6241754A (en) Manufacture of low temperature sinterable heat-resistant material