JPH02220490A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02220490A
JPH02220490A JP4248189A JP4248189A JPH02220490A JP H02220490 A JPH02220490 A JP H02220490A JP 4248189 A JP4248189 A JP 4248189A JP 4248189 A JP4248189 A JP 4248189A JP H02220490 A JPH02220490 A JP H02220490A
Authority
JP
Japan
Prior art keywords
layer
quantum well
quantum
well layer
spike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4248189A
Other languages
Japanese (ja)
Inventor
Kenzo Fujiwara
藤原 賢三
Noriaki Tsukada
塚田 紀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4248189A priority Critical patent/JPH02220490A/en
Publication of JPH02220490A publication Critical patent/JPH02220490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To surely realize a short wavelength by a method wherein a barrier layer having a spike-shaped distribution is formed inside a quantum well layer. CONSTITUTION:A barrier layer 4 having a spike-shaped distribution is formed inside a quantum well layer 1. That is to say, when the one-layer spike-shaped barrier layer 4 is introduced into the center of the quantum well layer 1, a wavelength function in a ground state can obtain an envelope function having a node in the center of the quantum well layer 1. This corresponds to an envelope function of an excitation quantum level of n=1 at the quantum well layer 1; when the spike-shaped barrier layer 4 is introduced, the envelope function having the node in the center of the quantum well layer 1 is stabilized as the ground state. Thereby, it is possible to increase a confining energy by a quantum size effect and to make a laser oscillation wavelength short.

Description

【発明の詳細な説明】 〔産業上の利用分野1 この発明は、半導体レーザに関し、特にその発振波長の
短波長化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a semiconductor laser, and particularly to shortening its oscillation wavelength.

〔従来の技術1 第2図は、例えば雑誌(I]IE Journalor
Quantum glectronics、VOl、Q
I−20,N0IO,10月、1984年、第1119
頁)に掲載された半導体レーザのポテンシャシダイアグ
ラム及び基底量子状態の包絡関数を示す説明図である。
[Prior art 1 Figure 2 shows, for example, a magazine (I] IE Journalor
Quantum glectronics, VOl, Q
I-20, N0IO, October, 1984, No. 1119
FIG. 2 is an explanatory diagram showing a potential diagram of a semiconductor laser and an envelope function of a fundamental quantum state published in 2003, page).

この半導体レーザは従来の量子井戸層を活性層に含むも
のであり、図に訃いて、(1)は量子井戸層、(2)は
障壁層、(3)はクラッド層、(5)は活性層を含む光
ガイド層である。この図は矢印X方向に伝導帯ポテンシ
ャルエネルギーを示している。
This semiconductor laser includes a conventional quantum well layer as an active layer, and as shown in the figure, (1) is a quantum well layer, (2) is a barrier layer, (3) is a cladding layer, and (5) is an active layer. A light guide layer comprising a layer. This figure shows the conduction band potential energy in the direction of the arrow X.

量子井戸層(1)は障壁層C)で閉じ込める構造となっ
ており、活性層を含む巾Wからなる光ガイド層(5)は
両側に形成されたクツラド層(3)Kより構成される。
The quantum well layer (1) has a structure in which it is confined by a barrier layer C), and the optical guide layer (5) having a width W including the active layer is composed of Kuturad layers (3) K formed on both sides.

このような構成の半導体V−ザのレーザ発振に関与する
エネルギー単位は、量子サイズ効果によって決まること
が雑誌(1Pestkorper problemeX
V、 Pergamon−Viewe(、R,Ding
le、 1975 )に報告されている。これによれば
、量子井戸層(1)を構成する半導体のエネルギーギヤ
ラグをKgとすると、EQw =  Eq+ jlcB
   + IEvc−(、”’(1)C■r。
A magazine (1Pestkorper problem
V, Pergamon-View (, R, Ding
Le, 1975). According to this, if the energy gear lag of the semiconductor constituting the quantum well layer (1) is Kg, then EQw = Eq+ jlcB
+ IEvc-(,"'(1)C■r.

で表わされる。ここで、ΔE=ゎ2.及びΔ<’mff
、は量子サイズ効果によって決まる。
It is expressed as Here, ΔE=ゎ2. and Δ<'mff
, is determined by quantum size effects.

伝導帯(C,B、)及び価電子帯(V、B、)のエネル
ギーギャップ増加分である。この’ ”’coo f、
、又はΔ%ot+tは例えば有効質量近似では と近似的にあられされる。ここで、mlは伝導帯又は価
電子帯の有効質量、Lzは量子井戸の厚さ、hはデイフ
ック定数(プフンク定数h /2πに等しい)、nは整
数である。
This is an increase in the energy gap of the conduction band (C, B,) and the valence band (V, B,). This'”'coo f,
, or Δ%ot+t can be approximately expressed as, for example, in the effective mass approximation. Here, ml is the effective mass of the conduction band or valence band, Lz is the thickness of the quantum well, h is Dehook's constant (equal to Pfunk's constant h 2 /2π), and n is an integer.

次に動作について説明する。クラッド層(3)より注入
される電子又は正孔は急速にフォノンの放出等によりエ
ネルギー緩和し、活性層内の基底量子単位(n=1に相
当する)を占有するので、口=1量子単位を占有する電
子と正孔間での発光再結合が主とな抄、注入キャリアー
密度がレーザ発振しきい値を越えるとレーザ発振に至る
。この時の発振波長λ七(am)は λ洲:1.24/fN′(ev)・・・(3)で決まり
、ΔEc益に相当するエネルギー分だけ発振波長は短波
長化される。
Next, the operation will be explained. Electrons or holes injected from the cladding layer (3) rapidly relax their energy due to phonon emission, etc., and occupy the base quantum unit (corresponding to n = 1) in the active layer, so that the number of holes is 1 quantum unit. When the injected carrier density exceeds the laser oscillation threshold, laser oscillation occurs. The oscillation wavelength λ7 (am) at this time is determined by λ:1.24/fN'(ev) (3), and the oscillation wavelength is shortened by the energy corresponding to the ΔEc gain.

〔発明が解決しようとする課題l 従来の半導体レーザは以上のように構成されているので
、n=1の最底次の量子単位が基底状態となるために、
レーザ発振は口=1で安定に起こり易く、短波長化を実
現するためにΔEi を太きCo口C くすることが一般には困難であるという問題点があった
[Problem to be solved by the invention l Since the conventional semiconductor laser is configured as described above, since the lowest order quantum unit of n=1 becomes the ground state,
Laser oscillation tends to occur stably when the opening is 1, and there is a problem in that it is generally difficult to increase ΔEi to a thick Co opening C in order to shorten the wavelength.

この発明は上記のような問題点を解消するためになされ
たもので、疑似的にn=2と等価な量子単位を基底状態
としてつくり、従来の方法に比べ、少なくとも4倍以上
量子サイズ効果によるエネルギーギャップ増加分jE、
。。2.を大きくできる活性層を有し、短波長化が容易
に実現できる半導体V−ザを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it creates a quantum unit pseudo-equivalent to n=2 as a ground state, and the quantum size effect is at least 4 times greater than that of the conventional method. Energy gap increase jE,
. . 2. An object of the present invention is to obtain a semiconductor V-diode having an active layer capable of increasing the wavelength and easily realizing a short wavelength.

〔課題を解決するための手段j この発明に係る半導体レーザは、量子井戸層の内部にス
パイク状の分布をもつ障壁層を設けたものである。
[Means for Solving the Problems j] A semiconductor laser according to the present invention is provided with a barrier layer having a spike-like distribution inside a quantum well layer.

[fir用1 この発F14における半導体レーザは、スパイク障壁を
設けることにより量子サイズ効果によるエネルギーギャ
ップ上外分が大きくなり、レーザ発振波長の短波長化が
得られる。
[For fir 1 In this F14 semiconductor laser, by providing a spike barrier, the upper and outer parts of the energy gap are increased due to the quantum size effect, and the laser oscillation wavelength can be shortened.

[l!施例1 以下、この発明の一実施例を図について説明する。第2
図は、例えばGaAs/Al(Ga)As半導体レーザ
のポテンシャルダイアダラム及び基底量子状態の包絡関
数を示す説明図である5図において(1)は厚さLzの
Ga As量子井戸層、■)は厚さLBのAlx1Ga
I−xIAIl障壁層、(3)はALx2Ga l −
x2 クラッド層であや、0〈xl < X2の関係に
ある。(4)は量子井戸層(1)の中央に設けられた厚
さL贋のALAsスパイク障壁層である。
[l! Example 1 An example of the present invention will be described below with reference to the drawings. Second
The figure is an explanatory diagram showing, for example, the potential diagram and the envelope function of the fundamental quantum state of a GaAs/Al(Ga)As semiconductor laser. In Figure 5, (1) is a GaAs quantum well layer with a thickness of Lz, and Alx1Ga with thickness LB
I-xIAIl barrier layer, (3) is ALx2Gal-
x2 In the cladding layer, there is a relationship of 0<xl<X2. (4) is an ALA spike barrier layer with a thickness L provided in the center of the quantum well layer (1).

L8がゼロのときは、第1図と同じLz厚さの量子井戸
層(1)が形成され、基底状態はn=1量子単位となる
。この口=1量子単位に相当する固有状顔の波長関数は
、R,Dina;leによると障壁層(2)との境界で
確率密度がゼロに近く、中央部で最大となる包絡関数(
envelopef’unction )となっている
。この時の包絡関数を第2図曲線Aに示している。この
量子井戸層(1)の中央に第1図に示したように1層の
スパイク状の障壁層(4)を導入すると、基底状態の波
長関数は量子井戸層(1)の中央で節を持つ包絡関数が
得られる。この時の包絡関数を曲線Bに示すうこれは、
第1図に示す量子井戸層(1)でのn=2の励起量子単
位の包絡関数に相当し、スパイク状の障壁層(4)の導
入により量子井戸層(1)の中央に節をもつ包絡関数が
基底状態として安定化されたことになる。
When L8 is zero, a quantum well layer (1) with the same thickness Lz as in FIG. 1 is formed, and the ground state is n=1 quantum unit. According to R, Dina; le, the wavelength function of the eigenface corresponding to this mouth = 1 quantum unit is the envelope function (
envelope function). The envelope function at this time is shown in curve A in Figure 2. When a spike-shaped barrier layer (4) is introduced at the center of the quantum well layer (1) as shown in Figure 1, the wavelength function of the ground state becomes a node at the center of the quantum well layer (1). The enveloping function with is obtained. The envelope function at this time is shown in curve B, which is
It corresponds to the envelope function of n = 2 excited quantum units in the quantum well layer (1) shown in Figure 1, and has a node in the center of the quantum well layer (1) due to the introduction of a spike-shaped barrier layer (4). This means that the envelope function has been stabilized as a ground state.

次に動作について説明する。Next, the operation will be explained.

クラッド層(3)よシ注入された電子又は正孔は活性層
内の基底量子単位を占有し、従来と同様の方法によりレ
ーザ発振する。この時、発振波長は基底量子単位となっ
ている。ところで、この実施例では量子井戸層(1)の
中央に節をもつ包絡関数を基底状態とし、量子単位がス
パイク状の障壁層(4)全導入している。このため、式
(2)でn=2に相当するdm 1(n=2)とiw 
c山C(n= 1 )の違いにより、約αm巳 4倍だけ量子サイズ効果による量子単位エネルギーm′
の増大が式(1)より得られる。従って、式(3)によ
りEQWの増大した分だけλ の短波長化が得LJ) られる。
Electrons or holes injected through the cladding layer (3) occupy fundamental quantum units in the active layer, and laser oscillation occurs in a conventional manner. At this time, the oscillation wavelength is a fundamental quantum unit. Incidentally, in this embodiment, the ground state is an envelope function having a node at the center of the quantum well layer (1), and the barrier layer (4) in which the quantum units are spike-shaped is completely introduced. Therefore, in equation (2), dm 1 (n=2) and iw corresponding to n=2
Due to the difference in the c-mountain C (n = 1), the quantum unit energy m' due to the quantum size effect is increased by approximately αm4 times.
can be obtained from equation (1). Therefore, according to equation (3), the wavelength of λ can be shortened by the increase in EQW (LJ).

このようにこの実施例では、量子井戸活性層(5)の中
央にスパイク状のポテンシャル障壁層(4)を設けたの
で、疑似的にn=2と等価な量子状態を基底量子状態と
して強制的に作ることになり、量子サイズ効果による閉
じ込めエネルギーを著しく増大させることができる。こ
のため、レーザ発振波長を短波長化することができる。
In this example, since the spike-like potential barrier layer (4) is provided in the center of the quantum well active layer (5), a pseudo quantum state equivalent to n=2 is forced as the base quantum state. This makes it possible to significantly increase the confinement energy due to the quantum size effect. Therefore, the laser oscillation wavelength can be shortened.

なお、上記5i!施例では量子井戸層(1)中にスパイ
ク状のポテンシャル障壁層(4)を1層だけ設けた場合
を示したが、2層以上のスパイク状ポテンシャル障壁層
を設けるてもよい。2層以上設けることにより、疑似的
に、スパイク障壁層を設けない時のロー3.v=4・・
・と等価な量子状態を大意的に基底量子状態として作る
ことができ、上記実施例と同様の効果を奏することがで
きる。また、上記実施例では、量子井戸層(1)がGa
As、スパイク障壁層(4)がAlAsの場合の例を示
したが、これに限るものではない。例えば活性層、量子
井戸層(1)がAlX0Gal−xnAs(0<xo<
0.4 ’またはGs Asと格子整合するシyl (
AlxGa+−x)+−y、Pからなり、GaAsと格
子整合しなIny2(AlxGa+ −X) 1−72
 P (y r > y 21またはAlxzGal−
xzAa (0〈X2≦1)を障壁層(4)とした場合
も、上記実施例と同様の効果を奏する。
In addition, the above 5i! Although the example shows the case where only one spike-like potential barrier layer (4) is provided in the quantum well layer (1), two or more spike-like potential barrier layers may be provided. By providing two or more layers, it is possible to simulate low 3.0 when no spike barrier layer is provided. v=4...
A quantum state equivalent to . . Further, in the above embodiment, the quantum well layer (1) is made of Ga.
Although an example is shown in which the spike barrier layer (4) is made of AlAs, the invention is not limited to this. For example, the active layer and quantum well layer (1) are made of AlX0Gal-xnAs (0<xo<
0.4' or lattice-matched to Gs As (
Iny2(AlxGa+ -X) 1-72, which consists of AlxGa+-x)+-y, P and is not lattice-matched to GaAs.
P (y r > y 21 or AlxzGal-
Even when xzAa (0<X2≦1) is used as the barrier layer (4), the same effects as in the above embodiment can be obtained.

〔発明の効果1 以上のように、この発明によれば、量子井戸層を活性層
に含む半導体レーザにおいて、量子井戸層の内部にスパ
イク状の分布をもつ障壁層を設けたので、基底量子準位
エネルギーの量子閉じ込め効果による増大が起こり、レ
ーザ発振波長の短波長化を実現できる半導体レーザを得
ることができる効果がある。
[Effect of the invention 1 As described above, according to the present invention, in a semiconductor laser including a quantum well layer in the active layer, a barrier layer having a spike-like distribution is provided inside the quantum well layer, so that the fundamental quantum standard is This has the effect of making it possible to obtain a semiconductor laser that can achieve a shortened laser oscillation wavelength by increasing the potential energy due to the quantum confinement effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による量子井戸層4体レー
ザのポテンシャルダイアグラム及び基底量子状類の包絡
関数を示す説明図、第2図は従来の量子井戸半導体レー
ザのポテンシャルダイアグラム及び基底量子状態の包絡
関数を示す説明図である。 図において、(1)は量子井戸層、(2)は障壁層、(
3)はクラッド層、(4)はスパイク状の分布を有する
障壁層である。 なお、図中、同一符号は同一、又は相当部分を示す。 第1図 第2図
FIG. 1 is an explanatory diagram showing a potential diagram and an envelope function of the basis quantum state of a four-layer quantum well laser according to an embodiment of the present invention, and FIG. 2 is a potential diagram and a basis quantum state of a conventional quantum well semiconductor laser. It is an explanatory diagram showing an envelope function of. In the figure, (1) is a quantum well layer, (2) is a barrier layer, (
3) is a cladding layer, and (4) is a barrier layer having a spike-like distribution. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 量子井戸層を活性層に含む半導体レーザにおいて、上記
量子井戸層の内部にスパイク状の分布を持つ障壁層を有
することを特徴とする半導体レーザ。
1. A semiconductor laser including a quantum well layer in an active layer, the semiconductor laser having a barrier layer having a spike-like distribution inside the quantum well layer.
JP4248189A 1989-02-21 1989-02-21 Semiconductor laser Pending JPH02220490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4248189A JPH02220490A (en) 1989-02-21 1989-02-21 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4248189A JPH02220490A (en) 1989-02-21 1989-02-21 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02220490A true JPH02220490A (en) 1990-09-03

Family

ID=12637254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4248189A Pending JPH02220490A (en) 1989-02-21 1989-02-21 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02220490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064475A1 (en) * 2009-11-27 2011-06-03 Centre National De La Recherche Scientifique - Cnrs Laser emission system, heterostructure and active zone having coupled quantum sub-wells, and use for 1.55 μm laser emission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064475A1 (en) * 2009-11-27 2011-06-03 Centre National De La Recherche Scientifique - Cnrs Laser emission system, heterostructure and active zone having coupled quantum sub-wells, and use for 1.55 μm laser emission
FR2953335A1 (en) * 2009-11-27 2011-06-03 Centre Nat Rech Scient LASER EMISSION SYSTEM, HETEROSTRUCTURE AND ACTIVE ZONE WITH QUANTIC COUPLED SUB-WELLS, USE FOR 1.55 MICROMETER LASER EMISSION
US9099842B2 (en) 2009-11-27 2015-08-04 Centre National de la Recherche Scientifique—CNRS Laser emission systems, heterostructure and active zone having coupled quantum-wells, and use for 1.55 mm laser emission

Similar Documents

Publication Publication Date Title
US5425041A (en) Multiquantum barrier laser having high electron and hole reflectivity of layers
JPS6218082A (en) Semiconductor laser device
JPH09102653A (en) Semiconductor laser
US5175739A (en) Semiconductor optical device having a non-linear operational characteristic
JPH05283791A (en) Surface emission type semiconductor laser
US4760579A (en) Quantum well laser with charge carrier density enhancement
JPH02220490A (en) Semiconductor laser
US6055255A (en) Semiconductor laser device and method for producing the same
JPH0629621A (en) Semiconductor laser device
Kisin et al. Influence of complex phonon spectra on intersubband optical gain
JP3145718B2 (en) Semiconductor laser
JP3181063B2 (en) Superlattice structure, electron or hole confinement structure using the same, and semiconductor light emitting device
Hohenester et al. Role of coulomb correlations in the optical spectra of semiconductor quantum dots
JP2002158406A (en) Surface light-emitting semiconductor laser
JPH07147454A (en) Semiconductor element
JPH08236854A (en) Unipolar semiconductor laser
Tanaka et al. Uniform p‐type impurity‐doped multiquantum well AlGaInP semiconductor lasers with a lasing wavelength of 633 nm at 20° C
Garbuzov et al. Photoluminescence study of excess carrier spillover in 1.3 μm wavelength strained multi‐quantum‐well InGaAsP/InP laser structures
JPS6289383A (en) Semiconductor laser
JP3385710B2 (en) Semiconductor laser
JPS6332987A (en) Integrated semiconductor laser
JP2719189B2 (en) Optical semiconductor device
JPH1126879A (en) Compound semiconductor light emitting element
JPH0334488A (en) Semiconductor laser element
JPH05346600A (en) Optical semiconductor device and its production