JPH02220465A - Device for cooling semiconductor device - Google Patents

Device for cooling semiconductor device

Info

Publication number
JPH02220465A
JPH02220465A JP1040247A JP4024789A JPH02220465A JP H02220465 A JPH02220465 A JP H02220465A JP 1040247 A JP1040247 A JP 1040247A JP 4024789 A JP4024789 A JP 4024789A JP H02220465 A JPH02220465 A JP H02220465A
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor
thermal conductor
contact
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040247A
Other languages
Japanese (ja)
Inventor
Keizo Kawamura
圭三 川村
Takahiro Oguro
崇弘 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1040247A priority Critical patent/JPH02220465A/en
Publication of JPH02220465A publication Critical patent/JPH02220465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To realize an effective cooling operation by a method wherein a semiconductor chip or a semiconductor package is brought into contact with a thermal conductor on a straight line or at a point. CONSTITUTION:A contact face of one of a semiconductor chip 2 or a semiconductor package and a thermal conductor 41 is formed in a square pillar shape, a conical shape or a pyramidal shape; the semiconductor chip 2 or the semiconductor package is brought into contact with the thermal conductor 41 on a straight line or at a point; one or both of contact faces are coated with a heat- conductive fluid 10. Accordingly, it is possible to reduce a change in a temperature distribution at the inside of the semiconductor chip 2 or the semiconductor package. Thereby, the semiconductor chip 2 or the semiconductor package can be cooled effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体チップあるいは半導体パッケージが発
生する熱を除去するのに好適な半導体デバイスの冷却装
置、とくに、半導体デバイスと冷却装置との接触面の形
状に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling device for a semiconductor device suitable for removing heat generated by a semiconductor chip or a semiconductor package, and in particular, a cooling device for a semiconductor device suitable for removing heat generated by a semiconductor chip or a semiconductor package. Concerning the shape of the surface.

〔従来の技術〕[Conventional technology]

従来の半導体の冷却装置としては、たとえば特開昭60
−126853号に記載された構成のものがある。
As a conventional semiconductor cooling device, for example,
There is a configuration described in No.-126853.

この冷却装置は、第13図に示すように基板1上に実装
された半導体チップ2に、ばね3による押圧力により熱
伝導体4を接触させる一方、熱伝導体4と半導体チップ
2との接触面間および熱伝導体4のフィン5と水冷ジャ
ケット8に接触するキャップ6のフィン7との隙間にヘ
リウム(Ha)等の熱伝導性ガスを介在させ、半導体チ
ップ2がら発生した熱を前記熱伝導性ガスを介してキャ
ップ6へ伝導させることにより、半導体チップ2の冷却
を行っていた。
As shown in FIG. 13, in this cooling device, a thermal conductor 4 is brought into contact with a semiconductor chip 2 mounted on a substrate 1 by a pressing force of a spring 3; A thermally conductive gas such as helium (Ha) is interposed between the surfaces and between the fins 5 of the thermal conductor 4 and the fins 7 of the cap 6 that are in contact with the water cooling jacket 8, and the heat generated from the semiconductor chip 2 is transferred to the The semiconductor chip 2 was cooled by conducting the gas to the cap 6 via the conductive gas.

(発明が解決しようとする1111!題〕上記従来技術
は、熱伝導体4と半導体チップ2との接触面に介在させ
る熱伝導性流体として、Ha等の気体を用いているので
、接触熱抵抗が大きいという着点がある。この接触熱抵
抗を小さくする方法の一つとして接触面に熱伝導率の大
きい熱伝導グリースを塗布することが一般的に行われて
いる。そして、こ、の熱伝導グリースを用いる場合、接
触面に介在するグリース層の厚さを所定の厚み以下にコ
ントロールしなければならない、しかし、熱伝導体4と
半導体チップ2の接触面が共に平面である場合、グリー
ス層の厚さは熱伝導体4の押し付荷型によって変化する
ため、所定の厚さにコントロールすることが困難である
。また、上記従来技術には、半導体チップ2の傾きに熱
伝導体4と追従させるため、熱伝導体4のフィン5とキ
ャップ6のフィン7との間に所定の隙間9が必要となり
、フィン5とフィン7の間の熱抵抗が大きくなるという
欠点が伴った。この熱抵抗を小さくするためにこの隙間
9を狭くするとフィン5の傾く範囲が狭くなり、半導体
チップ2の傾きに対し熱伝導体4が追従できなくなると
いう問題があった。
(1111! Problems to be Solved by the Invention) The above prior art uses a gas such as Ha as the thermally conductive fluid interposed at the contact surface between the thermal conductor 4 and the semiconductor chip 2, so the contact thermal resistance One of the ways to reduce this contact thermal resistance is to apply thermally conductive grease with high thermal conductivity to the contact surface. When using conductive grease, the thickness of the grease layer interposed on the contact surface must be controlled to a predetermined thickness or less. However, if the contact surfaces of the thermal conductor 4 and the semiconductor chip 2 are both flat, the grease layer The thickness of the thermal conductor 4 changes depending on the type of pressure applied to the thermal conductor 4, so it is difficult to control it to a predetermined thickness. In order to follow this, a predetermined gap 9 is required between the fins 5 of the heat conductor 4 and the fins 7 of the cap 6, which has the disadvantage that the thermal resistance between the fins 5 and 7 increases. If this gap 9 is narrowed in order to reduce the resistance, the range in which the fins 5 are tilted becomes narrower, causing the problem that the thermal conductor 4 cannot follow the tilt of the semiconductor chip 2.

また、第14図に示すような冷却装置が特開昭52−5
3547号公報に記載されている。キャップ6内には、
シリンダ15が開けられ、半導体チップ2から熱を導く
ピストン16とピストン16に押圧力を加えるはね3が
シリンダ15中に挿入されている。基板1とキャップ6
とで囲まれた空間には高熱伝導性のヘリウムガスが濶だ
されている。
In addition, a cooling device as shown in Fig. 14 was developed in JP-A-52-5.
It is described in Publication No. 3547. Inside the cap 6,
The cylinder 15 is opened, and a piston 16 that conducts heat from the semiconductor chip 2 and a spring 3 that applies a pressing force to the piston 16 are inserted into the cylinder 15. Board 1 and cap 6
Highly thermally conductive helium gas is gushing out into the space surrounded by.

半導体チップ2からの発生熱は、ピストン16と半導体
チップ2の接触部に介在するヘリウムガス層を介してピ
ストン16に伝えられる。更に、ピストン16からピス
トン16とシリンダ15との隙間9に介在するヘリウム
ガス層に伝わり、キャップ6に導かれる。基板1とキャ
ップ6の熱変形により生じる変位及び半導体チップ2に
よる高さのばらつきは、ばね3により吸収される。*た
基板1の面のうねりによって生じる半導体チップ2にお
ける面のわずかな傾きに対しては、ピストン16の先端
を球面として追随させている。この場合1次のような問
題があった。
The heat generated from the semiconductor chip 2 is transmitted to the piston 16 via a helium gas layer interposed at the contact portion between the piston 16 and the semiconductor chip 2. Furthermore, the gas is transmitted from the piston 16 to the helium gas layer interposed in the gap 9 between the piston 16 and the cylinder 15, and is guided to the cap 6. Displacements caused by thermal deformation of the substrate 1 and cap 6 and variations in height due to the semiconductor chip 2 are absorbed by the spring 3. *The tip of the piston 16 is made to follow the slight inclination of the surface of the semiconductor chip 2 as a spherical surface, which is caused by the undulation of the surface of the substrate 1. In this case, there was the following problem.

ピストン16の先端における球面接触部の熱抵抗が大き
く、半導体チップ2の背面から水冷ジャケット8に至る
全熱抵抗の40%近くを占めている。この球面接触部の
熱抵抗を小さくする方法の一つとして接触面に熱伝導率
の大きい熱伝導グリースを塗布する方法がある。この熱
伝導性グリースを用いる場合、接触面に介在するグリー
ス層の厚さをコントロールしなければならない、しかし
、接触面が球面形状をしているため、半導体チップ2が
傾くと半導体チップ2の背面とピストン16先端におけ
る球面の接点は、半導体チップ2の中心より外周方向へ
と回転しながら移動する。これによって接触面は、グリ
ースを巻き込みながら浮き上がり、接触面のグリース厚
さがだんだん厚くなるため、グリース厚さのコントロー
ルが困難となる。また、半導体チップ2の面の傾きが大
きくなると半導体チップ2とピストン16の接点は、中
心より外周方向へと移動していくため、半導体チップ2
内の温度分布が一般的に大きくなり、半導体チップ2の
動作に悪影響を与える可能性が生じてくる等の問題があ
った。
The thermal resistance of the spherical contact portion at the tip of the piston 16 is large, accounting for nearly 40% of the total thermal resistance from the back surface of the semiconductor chip 2 to the water cooling jacket 8. One method for reducing the thermal resistance of this spherical contact portion is to apply thermally conductive grease with high thermal conductivity to the contact surface. When using this thermally conductive grease, the thickness of the grease layer on the contact surface must be controlled. However, since the contact surface has a spherical shape, if the semiconductor chip 2 is tilted, the back surface of the semiconductor chip 2 The spherical contact point at the tip of the piston 16 rotates and moves from the center of the semiconductor chip 2 toward the outer circumference. As a result, the contact surface floats up while drawing in the grease, and the thickness of the grease on the contact surface gradually increases, making it difficult to control the grease thickness. Furthermore, as the inclination of the surface of the semiconductor chip 2 increases, the contact point between the semiconductor chip 2 and the piston 16 moves from the center toward the outer circumference.
There is a problem in that the temperature distribution within the semiconductor chip 2 generally becomes large, and the operation of the semiconductor chip 2 may be adversely affected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記問題点を解決し、熱伝導体と半導
体チップあるいは半導体パッケージの間に介在する熱伝
導性流体の厚さのコントロールを容易にし、かつ、半導
体チップあるいは半導体パッケージの傾きに熱伝導体が
追従し易くし、また半導体チップ内の温度分布の変化を
小さくして半導体チップの誤動作を少なくすると共に、
半導体チップを効果的に冷却する半導体デバイスの冷却
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems, to easily control the thickness of a thermally conductive fluid interposed between a thermal conductor and a semiconductor chip or a semiconductor package, and to easily control the thickness of a thermally conductive fluid interposed between a thermal conductor and a semiconductor chip or a semiconductor package. This makes it easier for the thermal conductor to follow, and reduces changes in temperature distribution within the semiconductor chip, reducing malfunctions of the semiconductor chip.
An object of the present invention is to provide a semiconductor device cooling device that effectively cools a semiconductor chip.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、半導体チップあるいは半導体パッケージに
熱伝導性流体を介して熱伝導体を接触させ、冷却する半
纏体デバイスの冷却装置において、前記、半導体チップ
あるいは半導体パッケージと、熱伝導体のどちらか一方
の接触面の形状を角柱形または円錐形、あるいは角錐形
として、上記半導体チップあるいは半導体パッケージと
上記熱伝導体の間を直線または点で接触するようになし
、さらに必要に応じて上記一方の接触面、あるいは双方
の接触面に放射状の溝を設けることにより達成される。
The above object is to provide a cooling device for a semi-integrated device that cools a semiconductor chip or a semiconductor package by bringing a thermal conductor into contact with the semiconductor package via a thermally conductive fluid. The shape of the contact surface is prismatic, conical, or pyramidal so that the semiconductor chip or semiconductor package and the thermal conductor are in contact with each other in a straight line or at a point, and if necessary, one of the contact surfaces is made in the shape of a prism, a cone, or a pyramid. This is achieved by providing radial grooves on the surface or on the contact surfaces of both.

〔作用〕[Effect]

半導体チップあるいは半導体パッケージと熱伝導体のど
ちらか一方の接触面を角柱形または1円錐や角錐形にし
、接触面のどちらか一方または両面に熱伝導性流体を塗
布する0次に、半導体チップあるいは半導体パッケージ
と熱伝導体を互いに押し付けていくと接触面の断面形状
が楔形をしているため、接触面に介在している熱伝導性
流体は、僕の先端から徐々に外周方向へと押し出されて
いく、そして、該楔形の先端がもう一方の接触面に接し
て止まる。これによって半導体チップあるいは半導体パ
ッケージと熱伝導体との間の熱伝導性流体が一定、1工
に保たれるので、楔形状の角度を変えることにより熱伝
導性流体の厚さをコントロールすることが容易となる。
The contact surface of either the semiconductor chip or the semiconductor package and the heat conductor is made into a prismatic shape, a circular cone, or a pyramid shape, and a thermally conductive fluid is applied to either or both of the contact surfaces. When the semiconductor package and the thermal conductor are pressed against each other, the cross-sectional shape of the contact surface is wedge-shaped, so the thermally conductive fluid present at the contact surface is gradually pushed out from the tip toward the outer circumference. Then, the wedge-shaped tip comes into contact with the other contact surface and stops. As a result, the thermally conductive fluid between the semiconductor chip or semiconductor package and the thermal conductor is kept constant, so the thickness of the thermally conductive fluid can be controlled by changing the angle of the wedge shape. It becomes easier.

また、前記接触面の断面形状が楔形をしているため、半
4体チップあるいは半導体パッケージが傾いても模の先
端を支点として楔形状の角度範囲で熱伝導体が、半導体
チップあるいは半導体パッケージに追従する。このとき
、楔先端の支点は、接触面中心に位置し移動しないので
熱伝導性流体の巻き込みがなく、接点が浮き上がらない
ため、熱伝導性流体Jヴさのコントロールが容易である
。また、楔先端の支点が中心より移動しないため、半4
体チップあるいは半導体パッケージ内の温度分布の変動
を少なくできるので、半導体チップあるいは半導体パッ
ケージを効果的に冷却することが可能となる。
In addition, since the cross-sectional shape of the contact surface is wedge-shaped, even if the half-quad chip or semiconductor package is tilted, the thermal conductor will move toward the semiconductor chip or semiconductor package within the wedge-shaped angle range using the tip of the pattern as a fulcrum. Follow. At this time, the fulcrum of the wedge tip is located at the center of the contact surface and does not move, so there is no entrainment of the thermally conductive fluid and the contact point does not rise, making it easy to control the height of the thermally conductive fluid. Also, since the fulcrum at the tip of the wedge does not move from the center, half-4
Since fluctuations in temperature distribution within the semiconductor chip or semiconductor package can be reduced, it is possible to effectively cool the semiconductor chip or semiconductor package.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図〜第3図は本発明の第1の実施例に係る。1 to 3 relate to a first embodiment of the present invention.

第1図の41は本発明により半導体チップ2との接触面
を楔状とした熱伝導体である。
Reference numeral 41 in FIG. 1 is a thermal conductor whose contact surface with the semiconductor chip 2 is wedge-shaped according to the present invention.

第2図はこの熱伝導体41の形状番示す斜視図で、該楔
状の面42が熱伝導性グリース10を介在して半導体チ
ップ2の面と対向して押しつけられる。第1図において
半導体チップ2で発生した熱は、熱伝導グリース10を
介して熱伝導体41に伝わり、熱伝導体41のフィン5
からHeガス層を介してキャップ6のフィン7に伝えら
れ、最終的にキャップ6に接する水冷ジャケット8によ
り外部へ伝達される。
FIG. 2 is a perspective view showing the shape of this thermal conductor 41, in which the wedge-shaped surface 42 is pressed against the surface of the semiconductor chip 2 with the thermally conductive grease 10 interposed therebetween. In FIG. 1, the heat generated in the semiconductor chip 2 is transferred to the thermal conductor 41 via the thermal conductive grease 10, and the fins 5 of the thermal conductor 41
It is transmitted to the fins 7 of the cap 6 via the He gas layer, and finally transmitted to the outside by the water cooling jacket 8 in contact with the cap 6.

半導体チップ2と熱伝導体41のl!flに介在する熱
伝導性グリース10は、ばね3の押圧力により熱伝導体
41によって押しつぶされ、熱伝導体41の稜線43の
両側に押し出され、稜線43は半導体チップ2に接触す
る。
l of the semiconductor chip 2 and the thermal conductor 41! The thermally conductive grease 10 interposed in fl is crushed by the thermal conductor 41 by the pressing force of the spring 3 and pushed out to both sides of the ridge line 43 of the thermal conductor 41, and the ridge line 43 contacts the semiconductor chip 2.

従来技術による熱伝導体は例えば第13図の4および第
14図の16に示すような形状を示し。
Heat conductors according to the prior art have shapes as shown, for example, at 4 in FIG. 13 and at 16 in FIG. 14.

半導体チップ2の面とは平面あるいは円筒面で接してい
た。このため、ばね3の押圧力によって。
The surface of the semiconductor chip 2 was in contact with a plane or a cylindrical surface. Therefore, due to the pressing force of the spring 3.

介在する熱伝導性グリースを押しつぶして所定の厚みと
し、該伝導性グリースの熱抵抗を所定の値に制御するこ
とが困難であった。
It was difficult to crush the intervening thermally conductive grease to a predetermined thickness and to control the thermal resistance of the conductive grease to a predetermined value.

このような従来技術に較べ上述した本発明ではばね3の
押圧力によって稜線43を容易に半導体チップ2に接触
せしめることができるので、熱伝導性グリース10の平
均的な厚みを常に一定に保つことができ、したがって、
熱伝導グリース10の熱抵抗値をばらつき少なく設定で
きる。さらに熱伝導体41の楔状面42のなす角度を平
坦方向に広げれば稜線43の両側に挾まれる熱伝導グリ
ース10の分量を低減できるので上記の熱抵抗値を低く
保つことも可能になる。
Compared to such conventional technology, in the present invention described above, the ridge line 43 can be easily brought into contact with the semiconductor chip 2 by the pressing force of the spring 3, so that the average thickness of the thermally conductive grease 10 can be kept constant at all times. can, therefore,
The thermal resistance value of the thermally conductive grease 10 can be set with less variation. Furthermore, if the angle formed by the wedge-shaped surface 42 of the thermal conductor 41 is widened in the flat direction, the amount of thermally conductive grease 10 sandwiched on both sides of the ridge line 43 can be reduced, so that the above-mentioned thermal resistance value can be kept low.

さらに半導体チップ2が傾いても、半導体チップ2と熱
伝導体41は実質的に直線状に接触するので、その傾き
ま上舵熱伝導体41の楔面42のなす角度によって吸収
され、熱伝導体41のフィン5とキャップ6のフィン7
の隙間を小さくすることが可能となり、これに伴ってフ
ィン5とフィン7の間の熱抵抗を小さくすることができ
る。
Furthermore, even if the semiconductor chip 2 is tilted, since the semiconductor chip 2 and the heat conductor 41 are in substantially straight contact, the tilt is absorbed by the angle formed by the wedge surface 42 of the upper rudder heat conductor 41, and the heat conduction is carried out. Fin 5 of body 41 and fin 7 of cap 6
It is possible to reduce the gap between the fins 5 and 7, and accordingly, the thermal resistance between the fins 5 and 7 can be reduced.

さらに、熱伝導体の稜線42と半導体チップ2との接線
の位置が上記半導体チップ2の傾きによって移動するこ
とがないので、半導体チップ2と熱伝導体41間の熱抵
抗変動を少なくすることができる。
Furthermore, since the position of the tangent line between the ridge line 42 of the thermal conductor and the semiconductor chip 2 does not shift due to the inclination of the semiconductor chip 2, fluctuations in thermal resistance between the semiconductor chip 2 and the thermal conductor 41 can be reduced. can.

また、上記熱伝導体の稜線42と半導体チップ2との接
線を半導体チップの中央部に位置せしめれば、第1図に
示す本発明による冷却装置を多数用いた場合、半導体チ
ップ相互間の半導体表面の温度分布偏差を低くすること
ができる。
Furthermore, if the tangent line between the ridge line 42 of the heat conductor and the semiconductor chip 2 is located at the center of the semiconductor chip, when a large number of cooling devices according to the present invention shown in FIG. It is possible to reduce the temperature distribution deviation on the surface.

第411!Jは、本発明の他の実施例に係る半導体パッ
ケージの冷却装置の断面図である。
411th! J is a sectional view of a cooling device for a semiconductor package according to another embodiment of the present invention.

第4図において、22は、半導体チップ2を内蔵した半
導体パッケージ、21は、その封止キャップである。熱
伝導体4の底面と接触する封止キャップ21の上面は楔
形につくられ半導体パッケージ12の傾きに対して熱伝
導体4の底面が追従できる角度を有している。封止キャ
ップ21と熱伝導体4の間には、熱伝導体として熱伝導
グリース10が介在している。
In FIG. 4, 22 is a semiconductor package containing the semiconductor chip 2, and 21 is a sealing cap thereof. The upper surface of the sealing cap 21 that contacts the bottom surface of the heat conductor 4 is formed into a wedge shape and has an angle that allows the bottom surface of the heat conductor 4 to follow the inclination of the semiconductor package 12. Thermal conductive grease 10 is interposed between the sealing cap 21 and the thermal conductor 4 as a thermal conductor.

11に伝わり、熱伝導グリース10を介して熱伝導体4
に伝えられ、さらにフィン5からHeガス層を介してキ
ャップ6のフィン7に伝えられ、最終的にキャップ6に
接する水冷ジャケット8により外部へ除去される。
11 to the thermal conductor 4 via the thermal conductive grease 10.
It is further transmitted from the fins 5 to the fins 7 of the cap 6 via the He gas layer, and finally removed to the outside by the water cooling jacket 8 in contact with the cap 6.

封止キャップ21と熱伝導体4の間に介在する熱伝導性
グリース10は、ばね3の押圧力により熱伝導体4によ
って押しつぶされる。熱伝導グリース10は、相対して
押される封止キャンプ21の上面の断面形状が楔形をし
ているため、楔先端の中心部から外周方向へと押し出さ
れる。そして。
The thermally conductive grease 10 interposed between the sealing cap 21 and the thermal conductor 4 is crushed by the thermal conductor 4 due to the pressing force of the spring 3 . The thermally conductive grease 10 is pushed out from the center of the wedge tip toward the outer periphery because the cross-sectional shape of the upper surface of the sealing camp 21 that is pressed against the sealing camp 21 is wedge-shaped. and.

封止キャップ21の楔先端が熱伝導体4に接したところ
で熱伝導体4と熱伝導グリースの動きが止まり一定址の
グリース層が保たれる。これによって、半導体パッケー
ジ22と熱伝導体4との接触熱抵抗は小さくなり、所定
の値が得られる。また、封止キャップ21の上面は、三
角形をしているため、半導体パッケージ22の傾きに熱
伝導体4の底面が追従するので熱伝導体4のフィン5と
キャップ6のフィン7の隙間を小さくすることができる
。楔先端の支点は、接触面中心に位置し、移動しないの
で熱伝導グリース10を巻き込むことがなく、また、接
点が浮き上がることもないので、熱伝導グリース10の
厚さのコントロールが容易になるとともに、楔先端の支
点が中心より移動しないため、半導体パッケージ22内
の平均温度および温度分布幅を小さくでき、半導体チッ
プ2の誤動作を防止する効果を得ることができる。
When the wedge tip of the sealing cap 21 comes into contact with the thermal conductor 4, the movement of the thermal conductor 4 and the thermal conductive grease stops, and a constant grease layer is maintained. Thereby, the contact thermal resistance between the semiconductor package 22 and the thermal conductor 4 becomes small, and a predetermined value is obtained. Furthermore, since the top surface of the sealing cap 21 is triangular, the bottom surface of the thermal conductor 4 follows the inclination of the semiconductor package 22, thereby reducing the gap between the fins 5 of the thermal conductor 4 and the fins 7 of the cap 6. can do. The fulcrum of the wedge tip is located at the center of the contact surface and does not move, so it does not involve the thermally conductive grease 10, and the contact point does not rise, making it easy to control the thickness of the thermally conductive grease 10. Since the fulcrum of the wedge tip does not move from the center, the average temperature and temperature distribution width within the semiconductor package 22 can be reduced, and malfunctions of the semiconductor chip 2 can be prevented.

第5図は、本発明の他の実施例に係る半導体チップの冷
却装置の断面図である。半導体チップ2の上面に楔形の
伝熱板23を設けているので、既に説明した第1図、第
4図に示した本発明の実施例と同様の効果が得られる。
FIG. 5 is a sectional view of a semiconductor chip cooling device according to another embodiment of the present invention. Since the wedge-shaped heat transfer plate 23 is provided on the upper surface of the semiconductor chip 2, the same effect as the embodiment of the present invention shown in FIGS. 1 and 4 described above can be obtained.

第6図は1本発明の他の実施例に係る半導体チップの冷
却装置の断面図である。第1図では半導体チップ2と接
する面に熱伝導体の楔形面を設けていたが第6図では、
この楔形面をフィン7の上部17がキャップ6と接する
面に設けている。*形部を用いる作用は同様であるので
第6図に示した本発明の実施例により第1図、第4図、
第5図に示した実施例と同様の効果を得ることができる
FIG. 6 is a sectional view of a semiconductor chip cooling device according to another embodiment of the present invention. In Fig. 1, a wedge-shaped surface of the thermal conductor was provided on the surface in contact with the semiconductor chip 2, but in Fig. 6,
This wedge-shaped surface is provided on the surface where the upper portion 17 of the fin 7 contacts the cap 6. *Since the effects of using the shaped parts are the same, the embodiment of the present invention shown in FIG.
The same effects as the embodiment shown in FIG. 5 can be obtained.

第7図は、第1図に示した本発明による熱伝導体の他の
形態を示す斜視図、第8図はその底面の平面図である。
FIG. 7 is a perspective view showing another form of the thermal conductor according to the present invention shown in FIG. 1, and FIG. 8 is a plan view of the bottom surface thereof.

第7吋、第8図によれば、熱伝導体45の底面に複数の
溝44を設けることにより熱伝導体45が半導体チップ
2に圧着される際に熱伝導グリース10は押しのけられ
、溝44に流れ込むので熱伝導グリース10が詰まりに
くくなり熱伝導体45と半導体チップ2との密着性を良
くし、熱伝導グリース10の動きを滑らかにする効果が
得られる。
According to FIG. 7 and FIG. 8, by providing a plurality of grooves 44 on the bottom surface of the thermal conductor 45, when the thermal conductor 45 is pressed onto the semiconductor chip 2, the thermal conductive grease 10 is pushed away, and the grooves 44 Since the thermally conductive grease 10 flows into the thermally conductive grease 10, the thermally conductive grease 10 is less likely to become clogged, and the adhesion between the thermal conductor 45 and the semiconductor chip 2 is improved, and the effect of smoothing the movement of the thermally conductive grease 10 can be obtained.

第9図は、第1図に示した本発明の熱伝導体の他の形層
を示す斜視図、第10図は、その底面の平面図である。
FIG. 9 is a perspective view showing another type of layer of the thermal conductor of the present invention shown in FIG. 1, and FIG. 10 is a plan view of the bottom surface thereof.

第9図において、熱伝導体46の底面を円錐形状または
角錐状にすることにより、熱伝導体46と半導体チップ
2が実質的に点で接触するので半導体チップ2のあらゆ
る傾きに対し、熱伝導体46が追従する効果が得られる
。また、さきに説明した他の効果も併せて得られること
はいうまでもない。
In FIG. 9, by making the bottom surface of the heat conductor 46 into a conical or pyramidal shape, the heat conductor 46 and the semiconductor chip 2 are substantially in contact with each other at a point. The effect that the body 46 follows can be obtained. It goes without saying that the other effects described above can also be obtained.

第11図は、第9図に示した本発明の熱伝導体の他の形
態を示す斜視図、第12図は、その底面の平面図である
。熱伝導体47の底面に複数の溝を設けているので熱伝
導体47が半導体チップ2に圧着される際に熱伝導グリ
ース10が押しのけられ、溝48に流れ込むので圧着面
に熱伝導グリース1oが詰まりにくくなり、熱伝導体4
7と半導体チップ2との密着性をよくし、熱伝導グリー
ス10の動きを滑らかにする効果が得られる。
FIG. 11 is a perspective view showing another form of the thermal conductor of the present invention shown in FIG. 9, and FIG. 12 is a plan view of the bottom surface thereof. Since a plurality of grooves are provided on the bottom surface of the thermal conductor 47, when the thermal conductor 47 is crimped onto the semiconductor chip 2, the thermal conductive grease 10 is pushed away and flows into the grooves 48, so that the thermal conductive grease 1o is applied to the crimped surface. Less likely to clog, heat conductor 4
This has the effect of improving the adhesion between the thermal conductive grease 7 and the semiconductor chip 2 and smoothing the movement of the thermally conductive grease 10.

尚、第7図ないし第12図に示した本発明による熱伝導
体の底面形状は、第4図における封止キャップ21と、
第5図における伝熱板2;3及び第6図の実施例におけ
る熱伝導体17等の形状に適用して第1図ないし第12
図に示した本発明の実施例と同様の効果が得られること
はいうまでもなし1゜ また、第7図〜第12図に示した溝44および48等は
熱伝導体44.48等の他にこれらと対向する半導体の
封止キャップ21の面上、或は熱伝導体と封止キャップ
の双方に設けることも出来。
Note that the bottom shape of the thermal conductor according to the present invention shown in FIGS. 7 to 12 is the same as that of the sealing cap 21 in FIG.
1 to 12, applied to the shape of the heat exchanger plate 2; 3 in FIG. 5 and the heat conductor 17 in the embodiment of FIG. 6.
It goes without saying that the same effects as the embodiment of the present invention shown in the figures can be obtained1.Furthermore, the grooves 44, 48, etc. shown in Figs. Alternatively, it can be provided on the surface of the semiconductor sealing cap 21 facing these, or on both the heat conductor and the sealing cap.

これにより上記した本発明の実施例と同様の効果を得る
ことができる。
As a result, the same effects as those of the embodiments of the present invention described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本実施例によれば、熱伝導体と半導
体チップあるいは半導体パッケージの間に介在する熱伝
導グリースの厚さのコントロールを容易にし、かつ、半
導体チップあるylは半導体パッケージの傾きに熱伝導
体が追従し易くすることにより、半導体チップあるいは
半導体パッケージと水冷ジャケット間の熱抵抗を下げ、
また、半導体チップあるいは半導体パッケージ内の温度
分布のばらつきを小さくし、半導体チップあるいは半導
体パッケージの誤動作を少なくすると共に。
As described above, according to this embodiment, it is possible to easily control the thickness of the thermal conductive grease interposed between the thermal conductor and the semiconductor chip or the semiconductor package, and the slope of the semiconductor package is By making it easier for the thermal conductor to follow the flow, the thermal resistance between the semiconductor chip or semiconductor package and the water cooling jacket can be lowered.
Furthermore, variations in temperature distribution within a semiconductor chip or semiconductor package are reduced, and malfunctions of the semiconductor chip or semiconductor package are reduced.

半導体チップあるいは半導体パッケージを効果的に冷却
する半導体デバイスの冷却装置を提供することができる
A semiconductor device cooling device that effectively cools a semiconductor chip or a semiconductor package can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る半導体チップの冷却
装置の断面図、第2図は1本発明の熱伝導体の斜視図、
第3図は、その平面図、第4図。 第5図、第6図は1本発明の他の実施例に係る半導体チ
ップの冷却装置の断面図、第7図ないし第12図は1本
発明の他の実施例に係る熱伝導体の斜視図及び、その熱
伝導体底面の平面図、第13図、第14図は、従来の半
導体チップの冷却装置の断面図である。 1・・・基板、2・・・半導体チップ、3・・・ばね、
4゜41.45,46.47・・・熱伝導体、5,7・
・・フィン、6・・・キャップ、8・・・水冷ジャケッ
ト、9・・・隙間、10・・・熱伝導グリース、13・
・・伝熱板、14・・・溝、15・・・シリンダ、16
・・・ピストン、17・・・フィンの上部、21・・・
封止キャップ、22・・・半導体パッケージ、23・・
・楔形の伝熱板、42・・・楔状の面、43・・・熱伝
導の稜線、44.48・・・溝。 第 1  図
FIG. 1 is a sectional view of a semiconductor chip cooling device according to an embodiment of the present invention, and FIG. 2 is a perspective view of a thermal conductor of the present invention.
FIG. 3 is a plan view thereof, and FIG. 4 is a plan view thereof. 5 and 6 are cross-sectional views of a semiconductor chip cooling device according to another embodiment of the present invention, and FIGS. 7 to 12 are perspective views of a thermal conductor according to another embodiment of the present invention. The figure, the plan view of the bottom surface of the heat conductor, and FIGS. 13 and 14 are cross-sectional views of a conventional semiconductor chip cooling device. 1... Board, 2... Semiconductor chip, 3... Spring,
4゜41.45, 46.47... thermal conductor, 5,7.
...Fin, 6...Cap, 8...Water cooling jacket, 9...Gap, 10...Thermal conductive grease, 13.
... Heat exchanger plate, 14 ... Groove, 15 ... Cylinder, 16
...Piston, 17...Top of fin, 21...
Sealing cap, 22... Semiconductor package, 23...
- Wedge-shaped heat transfer plate, 42... Wedge-shaped surface, 43... Heat conduction ridge line, 44. 48... Groove. Figure 1

Claims (1)

【特許請求の範囲】 1、半導体チップあるいは半導体パッケージに熱伝導体
を接触させ、前記半導体チップあるいは半導体パッケー
ジを冷却する半導体装置の冷却装置において、前記半導
体チップあるいは半導体パッケージと前記熱電導体を実
質的に直線または点で接触せしめたことを特徴とする半
導体装置の冷却装置。 2、半導体チップあるいは半導体パッケージに熱伝導体
を接触させ、前記半導体チップあるいは半導体パッケー
ジを冷却する半導体デバイスの冷却装置において、前記
半導体チップあるいは半導体パッケージと、前記熱伝導
体のどちらか一方の接触面の形状が角柱あるいは、円錐
形あるいは角錐であることを特徴とする半導体デバイス
の冷却装置。 3、特許請求の範囲第1項または第2項記載の半導体デ
バイスの冷却装置において、 前記半導体チップあるいは半導体パッケージと前記熱伝
導体の何れか一方、または双方の接触面に、一つあるい
は複数の溝を備えたことを特徴とする半導体デバイスの
冷却装置。
[Claims] 1. In a cooling device for a semiconductor device that cools the semiconductor chip or semiconductor package by bringing a thermal conductor into contact with the semiconductor chip or the semiconductor package, the semiconductor chip or the semiconductor package and the thermal conductor are substantially brought into contact with each other. A cooling device for a semiconductor device, characterized in that the cooling device is in contact with the semiconductor device in a straight line or at a point. 2. In a semiconductor device cooling device that cools the semiconductor chip or semiconductor package by bringing a thermal conductor into contact with the semiconductor chip or the semiconductor package, a contact surface between the semiconductor chip or the semiconductor package and either the thermal conductor. A cooling device for a semiconductor device, characterized in that the shape is a prism, a cone, or a pyramid. 3. In the cooling device for a semiconductor device according to claim 1 or 2, one or more contact surfaces of either the semiconductor chip or the semiconductor package and the thermal conductor or both A semiconductor device cooling device characterized by having grooves.
JP1040247A 1989-02-22 1989-02-22 Device for cooling semiconductor device Pending JPH02220465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040247A JPH02220465A (en) 1989-02-22 1989-02-22 Device for cooling semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040247A JPH02220465A (en) 1989-02-22 1989-02-22 Device for cooling semiconductor device

Publications (1)

Publication Number Publication Date
JPH02220465A true JPH02220465A (en) 1990-09-03

Family

ID=12575373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040247A Pending JPH02220465A (en) 1989-02-22 1989-02-22 Device for cooling semiconductor device

Country Status (1)

Country Link
JP (1) JPH02220465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064093A (en) * 2002-07-26 2004-02-26 Stmicroelectronics Inc Method and system for removing heat from active area of integrated circuit device
US7477519B2 (en) 2003-04-16 2009-01-13 Fujitsu Limited Electronic component package including heat spreading member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064093A (en) * 2002-07-26 2004-02-26 Stmicroelectronics Inc Method and system for removing heat from active area of integrated circuit device
US7477519B2 (en) 2003-04-16 2009-01-13 Fujitsu Limited Electronic component package including heat spreading member

Similar Documents

Publication Publication Date Title
US7044201B2 (en) Flat heat transferring device and method of fabricating the same
US6774482B2 (en) Chip cooling
US8564955B2 (en) Coupling heat sink to integrated circuit chip with thermal interface material
JP2569003B2 (en) Heat conduction device
US5126829A (en) Cooling apparatus for electronic device
US5005638A (en) Thermal conduction module with barrel shaped piston for improved heat transfer
US20070193029A1 (en) Heat dissipating apparatus having micro-structure layer and method of fabricating the same
US20060286712A1 (en) Thermal interface with a patterned structure
JPS5936827B2 (en) Integrated circuit device cooling equipment
US9831151B1 (en) Heat sink for semiconductor modules
US9713284B2 (en) Locally enhanced direct liquid cooling system for high power applications
TWI702372B (en) Vapor chamber and manufacturing method for the same
US20170080533A1 (en) Heat dissipation device manufacturing method
US20090016028A1 (en) Method of obtaining enhanced localized thermal interface regions by particle stacking
JPH02220465A (en) Device for cooling semiconductor device
JPS61231744A (en) Semiconductor cooling device
EP0002883B1 (en) A thermal interface between surfaces of a heat source and heat sink
JP3857189B2 (en) Heating element cooling device
JP3577192B2 (en) Cooling device for semiconductor device
JPS61168946A (en) Cooling device of semiconductor chip
JP2615909B2 (en) Cooling structure of LSI case
JPH0682768B2 (en) Heat dissipation control device
CN113875003B (en) Cryogenic packaging for thermalization of cryogenic devices
US4104677A (en) Arrangement for adjustably urging a semi-conductive element against a heat sink
CN209964509U (en) Heat radiation structure