JPH02220400A - Manufacture of superconducting cavity - Google Patents

Manufacture of superconducting cavity

Info

Publication number
JPH02220400A
JPH02220400A JP4005589A JP4005589A JPH02220400A JP H02220400 A JPH02220400 A JP H02220400A JP 4005589 A JP4005589 A JP 4005589A JP 4005589 A JP4005589 A JP 4005589A JP H02220400 A JPH02220400 A JP H02220400A
Authority
JP
Japan
Prior art keywords
cavity
metal
superconducting
flame
plasma spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4005589A
Other languages
Japanese (ja)
Inventor
Shinichi Mukoyama
晋一 向山
Takashi Shimano
島野 隆
Misao Sakano
操 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4005589A priority Critical patent/JPH02220400A/en
Publication of JPH02220400A publication Critical patent/JPH02220400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Microwave Tubes (AREA)

Abstract

PURPOSE:To improve heat radiation effect to make it possible to increase a generating electric field and a magnetic field by making plasma spraying to the outside of the cavity of a thin wall-thickness superconductor in an anoxia atmosphere to laminate good heat conductive metal. CONSTITUTION:A cavity 1 is put in a vacuum chamber 7 and the inside of the chamber 7 and the inside of the cavity 8 are vacuum-formed at the same time. Next, the cavity 1 is translated and rotated so that flame coating can be uniformed, and while inert gas is flowed into a plasma spraying gun 5, a steady state current is made to cause ionization by electric arc for converting into plasma so that it is jetted out as a flame 6. A powder-like substrate material made up of good heat conductive metal is sent into that flame 6 through a capillary 12 to be molten and sprayed on the cavity 1. Thereby, it is possible to improve heat radiation effect and increase a generating electric field and a magnetic field. Moreover, a light element can be absorbed and the purity of Nb metal, improved by arranging a titanium bar 3 in the cavity inside 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は荷電粒子加速器に用いられる超伝導空洞共振器
を構成する超伝導空洞の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconducting cavity constituting a superconducting cavity resonator used in a charged particle accelerator.

〔従来の技術〕[Conventional technology]

超伝導空洞共振器は超伝導体からなる表面層の超伝導性
を利用し、常伝導空洞共振器に比較して、内部に発生す
る電界あるいは磁界を高くすることができるとともに、
消費電力を小さくすることができるという利点を有する
。超伝導材料としてはNbがよく使用されている。
A superconducting cavity resonator utilizes the superconductivity of the surface layer made of a superconductor, and can generate a higher electric or magnetic field internally than a normal cavity resonator.
This has the advantage that power consumption can be reduced. Nb is often used as a superconducting material.

超伝導空洞共振器を動作させると、超伝導表面層内には
、不純物の存在による常伝導抵抗及び超伝導体面をの高
周波抵抗により高周波損失が生じ、超伝導体表面層の温
度が上昇する。超伝導体の温度上昇は、その臨界磁界を
下げと、高周波抵抗を増大させ、クエンチと呼ばれる超
伝導性能の破壊を生ずる。従って、超伝導空洞共振器に
おいては、表面層での発熱を即時に取り除くために、熱
伝導性の良い材料を選択することが必要であり、例えば
、Nbを表面層とし、基体構造材としてCuを用いた複
合材は超伝導空洞共振器を電気的に安定化させる材料と
して適している。
When a superconducting cavity resonator is operated, high frequency loss occurs in the superconducting surface layer due to normal conduction resistance due to the presence of impurities and high frequency resistance of the superconductor surface, and the temperature of the superconducting surface layer increases. An increase in the temperature of a superconductor lowers its critical magnetic field and increases its high-frequency resistance, resulting in a destruction of superconducting performance called quenching. Therefore, in a superconducting cavity resonator, it is necessary to select a material with good thermal conductivity in order to immediately eliminate heat generation in the surface layer. For example, Nb is used as the surface layer and Cu is used as the base structure material. Composite materials using this material are suitable as materials for electrically stabilizing superconducting cavity resonators.

ところで、金属Nbは酸化性が強く、空気中にあるNb
表面には強固な酸化膜が形成されている。
By the way, metal Nb has strong oxidizing properties, and Nb in the air
A strong oxide film is formed on the surface.

そのため、Cuの電気メツキあるいは真空蒸着をNb上
に直接行っても密着性が弱く、はく離しやすい、そこで
、従来、Nbと基体となるCuとを結合させて複合材を
作製する方法としては次のような方法が用いられている
。すなわち、イ)Nb空洞外面を電解研磨あるいは化学
研磨して酸化膜を取り除き、即座にメツキ槽に浸漬させ
て、電気メツキで数■厚のCu厚メツキを施す。
Therefore, even if Cu is electroplated or vacuum-deposited directly on Nb, the adhesion is weak and it is easy to peel off.Therefore, the conventional method for producing a composite material by bonding Nb and Cu as a base is as follows. Methods such as this are used. That is, (a) the outer surface of the Nb cavity is electrolytically polished or chemically polished to remove the oxide film, immediately immersed in a plating tank, and plated with Cu several inches thick by electroplating.

この後に、非酸化雰囲気中で400 ’C以上に保持す
ると、CuとNbの拡散効果により密着性を向上させる
ことができる。
After this, if the temperature is maintained at 400'C or higher in a non-oxidizing atmosphere, the adhesion can be improved due to the diffusion effect of Cu and Nb.

口)Nb空洞を真空チャンバー内に置き、低圧Arガス
中でイオンボンバード処理を行い、Nb上の酸化層を取
り除き、次いで、Cuのスパッタリングあるいはイオン
ブレーティングにより10層程度のCu膜を形成する。
(1) Place the Nb cavity in a vacuum chamber, perform ion bombardment in low-pressure Ar gas to remove the oxide layer on Nb, and then form about 10 layers of Cu film by Cu sputtering or ion blating.

次いで、Cu膜上にCu厚メツキを施して数■厚のCu
層を形成して基体とする。
Next, Cu thick plating is applied to the Cu film to form a several-inch thick Cu film.
A layer is formed to form a base.

(発明が解決しようとする課題〕 しかしながら、従来のNbとCuの複合体からなる空洞
の製造方法には次のような問題点がある。
(Problems to be Solved by the Invention) However, the conventional method for manufacturing a cavity made of a composite of Nb and Cu has the following problems.

すなわち、 イ)上記第1の方法においては、電解研磨あるいは化学
研磨を行っても完全に酸化膜を取り除くことができず、
また、研磨槽からメツキ槽への移行中に外気に触れて酸
化が進行する。その結果、電気メツキを行うと、その表
面にふくれが発生するなど密着不良が生しる。また、こ
の方法では、Nbの研磨、Cuメツキおよび熱処理と工
程が複雑になる問題がある。さらに、電解研磨および化
学研磨ともに大量のフン化水素酸を使用し、No。
That is, a) In the first method above, the oxide film cannot be completely removed even if electrolytic polishing or chemical polishing is performed;
In addition, during the transition from the polishing tank to the plating tank, oxidation progresses due to exposure to outside air. As a result, when electroplating is performed, poor adhesion occurs such as blistering on the surface. Furthermore, this method has a problem in that the steps of Nb polishing, Cu plating, and heat treatment are complicated. Furthermore, both electrolytic polishing and chemical polishing use a large amount of hydrofluoric acid, and No.

およびHFガスが発生するため、作業環境の悪化および
公害の問題を生じる。
and HF gas is generated, resulting in deterioration of the working environment and pollution problems.

口)上記第2の方法においては、スパッタリングおよび
イオンブレーティングによるCuの付着速度は1〜2μ
/Hrと遅く、10−厚のCu層を形成するためには、
5時間以上も装置を運転する必要がある。また、スパッ
タリングおよびイオンブレーティングでは、付着物の回
り込みが少ないため、パイプ回りなど複雑な形状をした
部分には00層が形成しがたく、さらに、パイプを固定
、保持するために十分な厚さを得るためには数週間にお
よぶ装置の運転が必要になる。
In the second method described above, the deposition rate of Cu by sputtering and ion blasting is 1 to 2μ.
/Hr to form a 10-thick Cu layer,
It is necessary to operate the equipment for more than 5 hours. In addition, with sputtering and ion blating, since there is little wraparound of deposits, it is difficult to form a 00 layer on parts with complex shapes such as around pipes, and it is also difficult to form a 00 layer on parts with complex shapes such as around pipes. Several weeks of equipment operation are required to obtain this.

このように、本製作方法は製作効率が悪いとともに、イ
オンボンバード装置を備えたスパッタ装置およびイオン
ブレーティング装置は非常に高価であるため、経済性に
も問題がある。
As described above, this manufacturing method has poor manufacturing efficiency, and also has problems in terms of economic efficiency because sputtering equipment and ion blating equipment equipped with ion bombardment equipment are very expensive.

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、薄肉の超伝導体で成形した空
洞の外面に熱伝導性の良い材料を密着性よく、短時間で
安価に積層する方法を提供することにある。
The present invention has been made in view of the above points.
The objective is to provide a method for laminating a material with good thermal conductivity on the outer surface of a cavity formed from a thin superconductor with good adhesion, in a short time, and at low cost.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

上記目的を達成するために本発明は、薄肉超伝導体より
形成された空洞の外側に良熱伝導性の金属を積層させる
超伝導空洞の製造方法において、無酸素雰囲気中でプラ
ズマ溶射により前記金属を積層させることを第1発明と
し、前記空洞内を超高真空にして気密に封じた状態でプ
ラズマ溶射を行うことを第2発明とし、前記超高真空に
した空洞内部にチタン金属を配設してプラズマ溶射を行
うことを第3発明とし、前記空洞の外側に、その表面に
接して金属管を巻きつけ、その上にプラズマ溶射を行う
ことを第4発明とするものである。
In order to achieve the above object, the present invention provides a method for manufacturing a superconducting cavity in which a metal with good thermal conductivity is laminated on the outside of a cavity formed from a thin-walled superconductor. The first invention is to laminate the above, and the second invention is to perform plasma spraying in a state where the inside of the cavity is made into an ultra-high vacuum and hermetically sealed, and titanium metal is disposed inside the cavity which is made into an ultra-high vacuum. A third aspect of the invention is to perform plasma spraying, and a fourth aspect of the invention is to wrap a metal tube around the outside of the cavity in contact with the surface and perform plasma spraying thereon.

プラズマ溶射はプラズマ・ガンから高温、高速の火炎(
プラズマ・ジエント)を噴出させ、このプラズマ・ジエ
ント中に粉末金属を供給して溶融し、溶融した粉末金属
を標的材料に当てることにより、材料表面に被覆層を形
成する技術である。
Plasma spraying uses a high-temperature, high-velocity flame (
This is a technique in which a coating layer is formed on the surface of a target material by ejecting a plasma jet, supplying powder metal into the plasma jet, melting it, and applying the molten powder metal to a target material.

本発明により、熔融した粉末金属を超伝導体よりなる空
洞表面に衝突させると、超伝導体の表面酸化層は破壊し
て除去され、溶融した粉末金属はそこに凝固して、超伝
導体と強固に結合する。溶融した粉末金属を次々に吹き
つけると、凝集し、堆積して強固に結合した厚い被覆層
を形成することができる。このプラズマ溶射処理を低圧
、無酸素雰囲気中で行うと、被覆層内に酸素を捕捉する
ことがなく、均一な純度の高い被覆層を高速に得ること
ができる。また、空洞内部を超高速真空にして、または
不活性ガスを充填して密封した状態でプラズマ溶射を行
うと、空洞内面はプラズマ溶射装置内に残存するガスや
プラズマ・ガスと反応することがなく、また、溶融した
粉末金属が空洞内面に付着することもないため、超伝導
空洞共振器として、超伝導高周波特性を損なうことなく
、空洞外面に溶射を行うことができる。
According to the present invention, when molten powder metal collides with the surface of a cavity made of a superconductor, the surface oxide layer of the superconductor is destroyed and removed, and the molten powder metal solidifies there, forming a superconductor. Tightly bond. Sequential spraying of molten powder metal allows it to agglomerate and deposit to form a thick, tightly bonded coating. When this plasma spraying treatment is performed in a low pressure, oxygen-free atmosphere, oxygen is not trapped within the coating layer, and a uniform coating layer with high purity can be obtained at high speed. In addition, if plasma spraying is performed with the inside of the cavity made into an ultra-high-speed vacuum or filled with inert gas and sealed, the inside of the cavity will not react with the gas remaining in the plasma spraying equipment or the plasma gas. Moreover, since the molten powder metal does not adhere to the inner surface of the cavity, thermal spraying can be performed on the outer surface of the cavity without impairing the superconducting high frequency characteristics as a superconducting cavity resonator.

なお、チタン金属は超高真空中で軽元素を吸収しやすい
性質を有し、特にニオブ金属の焼鈍を行うとき、チタン
金属を配置することにより、ニオブ金属の純度が向上す
ることが知られている。そこで、密封した空洞内部にチ
タン金属を配置することにより、チタンがプラズマ溶射
中のNb空洞の温度上昇による放出ガスを吸収し、空洞
表面層の純度が上がり、よりよい超伝導高周波特性が得
られる。
Furthermore, titanium metal has the property of easily absorbing light elements in ultra-high vacuum, and it is known that the purity of niobium metal can be improved by placing titanium metal, especially when annealing niobium metal. There is. Therefore, by placing titanium metal inside the sealed cavity, titanium absorbs the gas released due to the temperature rise of the Nb cavity during plasma spraying, increasing the purity of the cavity surface layer and obtaining better superconducting high frequency characteristics. .

〔実施例] 以下、図面に示した実施例に基づいて本発明を説明する
[Example] The present invention will be described below based on the example shown in the drawings.

第1図は本発明にかかる超伝導空洞の製造方法に用いた
装置の一実施例の断面図である。(1)は薄肉の超伝導
体からなる空洞であり、この空洞(1)は、空気圧、油
圧、モーターなどによる直線駆動機構OJにより直線的
に移動する架台(2)上に設置され、また、回転機構(
4)により中心軸のまわりに回転することができる。(
5)はプラズマ)容射ガンであり、この中で不活性ガス
は電気アークによりイオン化され、プラズマに変換され
て、火炎(6)(プラズマ・ジェット流)として噴出さ
れる。この火炎(6)中に細管0りを通して、粉末状の
基体材料を送り込んで溶かし、空洞(1)上に吹きつけ
る。不活性ガスとしては、アルゴンガス、水素を混合し
たアルゴンガス、窒素ガス、ヘリウムガスなどを用いる
。粉末状の基体材料としては、本発明の目的から、熱伝
導性の良い材料である銅、銅合金、アルミニウム、及び
アルミニウム合金が好ましい。上述の溶射ガン(5)と
空洞(1)は真空チャンバー(7)で取り囲まれ、低圧
の無酸素雰囲気中に保持される。なお、本実施例では、
空洞(1)が並進及び回転したが、溶射ガン(5)が移
動して空洞(1)の全面に溶射できるようにしてもよい
FIG. 1 is a cross-sectional view of an embodiment of an apparatus used in the method of manufacturing a superconducting cavity according to the present invention. (1) is a cavity made of a thin superconductor, and this cavity (1) is installed on a pedestal (2) that moves linearly by a linear drive mechanism OJ using air pressure, oil pressure, a motor, etc. Rotation mechanism (
4) allows rotation around the central axis. (
5) is a plasma injection gun in which an inert gas is ionized by an electric arc, converted into plasma, and ejected as a flame (6) (plasma jet stream). Powdered base material is fed through a thin tube into this flame (6), melted, and sprayed onto the cavity (1). As the inert gas, argon gas, argon gas mixed with hydrogen, nitrogen gas, helium gas, etc. are used. For the purpose of the present invention, as the powdered base material, copper, copper alloy, aluminum, and aluminum alloy, which are materials with good thermal conductivity, are preferable. The above-mentioned thermal spray gun (5) and cavity (1) are surrounded by a vacuum chamber (7) and maintained in a low pressure, oxygen-free atmosphere. In addition, in this example,
Although the cavity (1) has been translated and rotated, the spray gun (5) may be moved to allow spraying over the entire surface of the cavity (1).

空洞内部(8)は、内面の超伝導体表面層(9)が酸化
、雰囲気ガスとの反応、或いは蒸発金属の付着により汚
染されないように、真空チャンバー(7)による真空と
は別に、気密構造となっており、不活性ガス雰囲気或い
は超高真空に保たれる。超高真空にするために、空洞(
11は真空配管Oωに接続され、イオンポンプ00によ
り排気される。なお、あらかしめ超高真空ポンプで空洞
内部を十分に排気しておき、バルブなどを用いて封じ切
り、超高真空状態を保持してもよい。
The inside of the cavity (8) has an airtight structure in addition to the vacuum provided by the vacuum chamber (7) so that the superconductor surface layer (9) on the inner surface is not contaminated by oxidation, reaction with atmospheric gas, or adhesion of evaporated metal. It is maintained in an inert gas atmosphere or ultra-high vacuum. In order to create an ultra-high vacuum, the cavity (
11 is connected to a vacuum pipe Oω and is evacuated by an ion pump 00. Incidentally, the inside of the cavity may be sufficiently evacuated using an ultra-high vacuum pump, and the ultra-high vacuum state may be maintained by sealing off using a valve or the like.

上述の装置を用いて、0.5 m厚さのNbからなる大
径100mmφ、細径20m+φ、長さ1.5mの空洞
に約3rm厚さの銅基体を形成した例について説明する
。空洞(1)は真空チャンバー(7)内に置かれ、真空
チャンバー(7)内部と空洞内部(8)を、大きな差圧
が生じないように同時に真空引きを行い、空洞内部(8
)を10−7Torr、外部を10−’Torrまで排
気した。空洞内部(8)にはNb表面に触れぬようにチ
タン捧(3)を配置した。次いで、溶射被膜が均一化す
るように、空洞(1)を並進、回転させ、プラズマ?8
14ガン(5)にアルゴンガスを流しこみながら、定常
電流を流して火炎(6)を作り、その中に平均粒径50
−の銅粉末を送り込んで空洞(1)上に銅基体を形成し
たところ、20分間の溶射て約3m圧の密着性の良好な
銅基体を形成することができた。このようにして形成さ
れた超伝導空洞では、放熱性が向上し、従来の空洞に比
し3倍の30?IV/mの電界が得られた。
An example will be described in which a copper substrate with a thickness of about 3 rm is formed in a cavity made of Nb with a thickness of 0.5 m and has a large diameter of 100 mm, a small diameter of 20 m+φ, and a length of 1.5 m using the above-mentioned apparatus. The cavity (1) is placed in a vacuum chamber (7), and the interior of the vacuum chamber (7) and the interior of the cavity (8) are simultaneously evacuated so as not to create a large pressure difference.
) was evacuated to 10-7 Torr, and the outside was evacuated to 10-' Torr. A titanium plate (3) was placed inside the cavity (8) so as not to touch the Nb surface. Next, the cavity (1) is translated and rotated so that the sprayed coating becomes uniform, and the plasma? 8
While flowing argon gas into the No. 14 gun (5), a steady current is applied to create a flame (6), and particles with an average diameter of 50
- When a copper substrate was formed on the cavity (1) by feeding copper powder, it was possible to form a copper substrate with good adhesion at a pressure of about 3 m after thermal spraying for 20 minutes. The superconducting cavity formed in this way has improved heat dissipation, which is 3 times higher than that of conventional cavities. An electric field of IV/m was obtained.

上記装置を用いた他の実施例として、第2図に示すよう
に、空!l1iI00に接して冷却剤の流路となる直径
5Iifflの銅管Oaを巻いて、前記実施例と同様に
銅粉末をプラズマ溶射したところ、溶けた銅粉末が空洞
0ωと銅管θ4の隙間に流れ込み、銅管04)を空洞0
0に固定し、所望の厚さの銅基体θつを有する空洞を得
ることができた。なお、冷却剤流路としては、銅管のか
わりにアルミ管、薄肉ステンレス管を用いてもよい。
As another example using the above device, as shown in FIG. When a copper tube Oa with a diameter of 5Iiffl, which is in contact with l1iI00 and serves as a flow path for the coolant, is wound, and copper powder is plasma sprayed in the same manner as in the previous example, the molten copper powder flows into the gap between the cavity 0ω and the copper tube θ4. , copper tube 04) with cavity 0
0, it was possible to obtain a cavity having a desired thickness of the copper substrate θ. Note that an aluminum tube or a thin-walled stainless steel tube may be used instead of a copper tube as the coolant flow path.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、無酸素雰囲気中で
プラズマ溶射により良熱伝導性の金属を空洞外面に積層
させるため、放熱効果がよく、発生電界および磁界を超
伝導体のみからなる場合の数倍に高めることができると
いう優れた効果がある。また、空洞外側に冷却チャンネ
ルを容易に配設することができ、空洞を低温に保持する
タライオスタットを簡単化することができる。
As explained above, according to the present invention, since a metal with good thermal conductivity is laminated on the outer surface of the cavity by plasma spraying in an oxygen-free atmosphere, the heat dissipation effect is good, and the generated electric and magnetic fields can be controlled only by superconductors. It has the excellent effect of being able to increase the amount of energy by several times. Furthermore, a cooling channel can be easily provided outside the cavity, and the taliostat that maintains the cavity at a low temperature can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる超伝導空洞の製造方法に用いら
れる装置の一実施例の断面図、第2図は本発明の製造方
法により製作された空洞の一実施例の要部断面図である
。 1.16・・・空洞、 2・・・架台、 3・・・チタ
ン棒、4・・・回転機構、 5・・・プラズマ溶射ガン
、 6・・・火炎(プラズマ・ジェット流)、 7・・
・真空チャンバー  8・・・空洞内部、 9・・・表
面層、 lO・・・真空配管、  11・・・イオンポ
ンプ、  12・・・細管、13・・・直線駆動機構、
  14・・・鋼管、  15・・・銅基体。
FIG. 1 is a sectional view of an embodiment of a device used in the method of manufacturing a superconducting cavity according to the present invention, and FIG. 2 is a sectional view of a main part of an embodiment of a cavity manufactured by the method of manufacturing the present invention. be. 1.16... Cavity, 2... Frame, 3... Titanium rod, 4... Rotating mechanism, 5... Plasma spray gun, 6... Flame (plasma jet stream), 7...・
- Vacuum chamber 8...Cavity interior, 9...Surface layer, 1O...Vacuum piping, 11...Ion pump, 12...Thin tube, 13...Linear drive mechanism,
14...Steel pipe, 15...Copper base.

Claims (4)

【特許請求の範囲】[Claims] (1)薄肉超伝導体より形成された空洞の外側に良熱伝
導性の金属を積層させる超伝導空洞の製造方法において
、無酸素雰囲気中でプラズマ溶射により前記金属を積層
させることを特徴とする超伝導空洞の製造方法。
(1) A method for manufacturing a superconducting cavity in which a metal with good thermal conductivity is laminated on the outside of a cavity formed from a thin-walled superconductor, characterized in that the metal is laminated by plasma spraying in an oxygen-free atmosphere. Method for manufacturing superconducting cavities.
(2)空洞内を超高真空にして気密に封じた状態でプラ
ズマ溶射を行うことを特徴とする請求項1記載の超伝導
空洞の製造方法。
(2) The method for manufacturing a superconducting cavity according to claim 1, characterized in that plasma spraying is performed in a state where the inside of the cavity is made into an ultra-high vacuum and hermetically sealed.
(3)空洞内部にチタン金属を配設することを特徴とす
る請求項2記載の超伝導空洞の製造方法。
(3) The method for manufacturing a superconducting cavity according to claim 2, characterized in that titanium metal is disposed inside the cavity.
(4)空洞の外側に、その表面に接して金属管を巻きつ
け、その上に前記金属を積層させることを特徴とする請
求項1,2又は3記載の超伝導空洞の製造方法。
(4) The method for manufacturing a superconducting cavity according to claim 1, 2 or 3, characterized in that a metal tube is wound around the outside of the cavity in contact with the surface thereof, and the metal is laminated thereon.
JP4005589A 1989-02-20 1989-02-20 Manufacture of superconducting cavity Pending JPH02220400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4005589A JPH02220400A (en) 1989-02-20 1989-02-20 Manufacture of superconducting cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4005589A JPH02220400A (en) 1989-02-20 1989-02-20 Manufacture of superconducting cavity

Publications (1)

Publication Number Publication Date
JPH02220400A true JPH02220400A (en) 1990-09-03

Family

ID=12570234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4005589A Pending JPH02220400A (en) 1989-02-20 1989-02-20 Manufacture of superconducting cavity

Country Status (1)

Country Link
JP (1) JPH02220400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769167A1 (en) * 1997-09-29 1999-04-02 Centre Nat Rech Scient REINFORCED SUPERCONDUCTING MATERIAL, SUPERCONDUCTIVE CAVITY, AND METHODS OF MAKING
JP2012516024A (en) * 2009-01-22 2012-07-12 オメガ−ピー,インコーポレイテッド Multi-mode, multi-frequency, two-beam acceleration apparatus and method
US9674936B2 (en) 2013-12-05 2017-06-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd Superconducting accelerating cavity and electropolishing method for superconducting accelerating cavity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769167A1 (en) * 1997-09-29 1999-04-02 Centre Nat Rech Scient REINFORCED SUPERCONDUCTING MATERIAL, SUPERCONDUCTIVE CAVITY, AND METHODS OF MAKING
WO1999017592A1 (en) * 1997-09-29 1999-04-08 Centre National De La Recherche Scientifique Reinforced supraconductive material, supraconductive cavity, and methods for making same
JP2012516024A (en) * 2009-01-22 2012-07-12 オメガ−ピー,インコーポレイテッド Multi-mode, multi-frequency, two-beam acceleration apparatus and method
US9674936B2 (en) 2013-12-05 2017-06-06 Mitsubishi Heavy Industries Mechatronics Systems, Ltd Superconducting accelerating cavity and electropolishing method for superconducting accelerating cavity

Similar Documents

Publication Publication Date Title
US8036341B2 (en) Stationary x-ray target and methods for manufacturing same
CN101518851B (en) Structure and method for welding target material and backboard
US5428882A (en) Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
JP4637819B2 (en) Method and apparatus for manufacturing a sputtering target
KR20050053629A (en) Plasma processing container internal member and production method therefor
CN109930125B (en) Magnetron sputtering coating method for diamond-aluminum composite material
US3985281A (en) Method of producing an electrical conductor
CN112851406B (en) Method for coating nickel or nickel alloy on surface of aluminum nitride ceramic
CN112899607A (en) Method for coating nickel or nickel alloy on surface of alumina ceramic
CN112830814A (en) Method for coating copper or copper alloy on surface of aluminum nitride ceramic
CN113463054B (en) Full magnetron sputtering multilayer composite metallization method for dielectric filter
JPH02220400A (en) Manufacture of superconducting cavity
KR100616765B1 (en) Diffusion bonded sputter target assembly and method of making same
JPH03260054A (en) Cubic bn coated member having superior exfoliation resistance and its production
US20230234160A1 (en) Diffusion bonding of pure metal bodies
JPH02220399A (en) Manufacture of superconducting cavity
JPS63270455A (en) Manufacture of metal-coated plastic film
JPH03274805A (en) Superconducting high frequency cavity
CN114481067B (en) Preparation method of ultra-pure, ultra-thick and compact aluminum film
KR100537014B1 (en) Coating System for Preventable EMI and Color Metal of Poly Carbonate of Plain Acrylic Glass using Ion Plating Method
JPS6350473A (en) Continuous multistage ion plating device
Ockel et al. Atmospheric Plasma Spraying for Copper Coating of Ceramic Solid Electrolytes for Anode-Free Solid-State Batteries with Increased Interfacial Contact
JPH02118063A (en) Production of oxide superconductor
KR920001675B1 (en) Superconducting article
KR20210027164A (en) Apparatus, method and system for coating a substrate, in particular a superconducting tape conductor and coated superconducting tape conductor