JPH02219913A - Heating and cooking device - Google Patents

Heating and cooking device

Info

Publication number
JPH02219913A
JPH02219913A JP4128189A JP4128189A JPH02219913A JP H02219913 A JPH02219913 A JP H02219913A JP 4128189 A JP4128189 A JP 4128189A JP 4128189 A JP4128189 A JP 4128189A JP H02219913 A JPH02219913 A JP H02219913A
Authority
JP
Japan
Prior art keywords
heater
thawing
cooking
heating
high efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4128189A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Kawai
河井 延良
Hironari Hattori
服部 弘成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMANO DENKI SEIZO KK
Sanyo Electric Co Ltd
Original Assignee
YAMANO DENKI SEIZO KK
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMANO DENKI SEIZO KK, Sanyo Electric Co Ltd filed Critical YAMANO DENKI SEIZO KK
Priority to JP4128189A priority Critical patent/JPH02219913A/en
Publication of JPH02219913A publication Critical patent/JPH02219913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform thawing with high efficiency by a method wherein a planelike far infrared ray radiation heater the surface of which is formed of a material emitting electromagnetic waves of a specified wavelength or above is provided to a cooking chamber in which food is contained, and the drive of the heater is controlled so that, during thawing of frozen food, the temperature of a heater surface is adjusted to be in a specified temperature range. CONSTITUTION:Heater surfaces 7' and 8' radiating an electromagnetic wave of a wavelength of 2mum or more with a high efficiency is formed of radiation panels 7a and 8a, respectively. A controlling circuit to control energization to heaters 7 and 8 so that the temperatures of the heater surfaces 7' and 8' are detected by a thermistor and the detecting temperature is adjusted to 180-250 deg.C when thawing cooking is selected is incorporated in a space behind a panel 11. Electromagnetic waves are radiated with high efficiency, and even when a part of a frozen food is thawed and a moisture content is generated, the moisture content and unthawed parts are heated without the occurrence of nonuniformity, and thawing is progressed rapidly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、食品を加熱調理する加熱調理装置に関し、特
に冷凍食品の解凍機能を愉えたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooking device for cooking food, and particularly to one that can enjoy the function of defrosting frozen food.

〔従来の技術〕[Conventional technology]

近年、冷凍食品の急速な普及に伴なって調理作業に占め
る解凍調理の比率が高まっているが、従来より、この冷
凍食品の解凍機能を備えた加熱調理装置として、加熱源
にマイクロ波加熱手段を川いた電子レンジが用いられて
いる。
In recent years, with the rapid spread of frozen foods, the proportion of thawing cooking in cooking operations has increased. Conventionally, heating cooking devices equipped with the function of thawing frozen foods have been equipped with microwave heating means as a heating source. They used a microwave which was hot.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の加r!P:調理装置にあっては1.解凍時、マイ
クロ波による加熱によって冷凍食品の一部が解凍して水
分が生じると、これに加熱が集中してしまい、未解凍部
分が加熱されないといった問題を生じる。
Conventional addition! P: 1 for cooking equipment. During thawing, if a portion of the frozen food is thawed by microwave heating and moisture is generated, the heating is concentrated on this portion, causing a problem that the unthawed portion is not heated.

すなわち、一般にマイクロ波の吸収とそれに伴なう加熱
は次式で表わされる。
That is, in general, microwave absorption and accompanying heating are expressed by the following equation.

尚、Qは毎時単位体積当りに発生する熱i (cal)
In addition, Q is the heat generated per unit volume per hour i (cal)
.

fはマイクロ波の周波数()Iz、l(例えば2.45
 x 10 ’Hz)。
f is the microwave frequency () Iz, l (e.g. 2.45
x 10'Hz).

Vはマイクロ波電界の大きさ(V/m)、εは被加熱物
の比誘電率、−δは誘電体損失角である。
V is the magnitude of the microwave electric field (V/m), ε is the dielectric constant of the heated object, and -δ is the dielectric loss angle.

そして、この式で示されるように、マイクロ波吸収とそ
れに伴なう加熱は、被加熱物の損失係数ε・−δに比例
し、損失係数の大きいものと小さいものとが混在する場
合には、それぞれの加熱される割合が異なることになる
As shown in this equation, microwave absorption and the accompanying heating are proportional to the loss coefficients ε and -δ of the heated object, and when there are both large and small loss coefficients, , the heating rate of each will be different.

ここで、氷(−13℃)の損失係数は28X10−’、
水の損失係数は25℃で123000 X 10” 、
 55℃で40200XIF’であり、氷と水の損失係
数が大幅に異なっていることから、マイクロ波加熱によ
り冷凍食品の一部が解凍して水分を生じると、この水分
に加熱が集中し、未解凍部分が加熱されないことになる
Here, the loss coefficient of ice (-13℃) is 28X10-',
Water loss factor is 123000 x 10” at 25°C,
40200XIF' at 55℃, and the loss coefficients of ice and water are significantly different. Therefore, when a portion of frozen food is thawed by microwave heating and generates moisture, the heating concentrates on this moisture, causing the The thawing part will not be heated.

このため、従来の加熱調理装置では、解凍時のこのよう
な不均一加熱を緩和するために、マイクロ波発振器を断
続運転してマイクロ波の発振と休止とを交互に繰返し、
解凍されて水になった部分への過度の加熱集中を抑える
と共に、加熱された水との熱交換によって氷を徐々に水
の状態に変えていくといった方法が採られている。
For this reason, in conventional heating cooking devices, in order to alleviate such uneven heating during thawing, the microwave oscillator is operated intermittently to alternately repeat microwave oscillations and pauses.
In addition to suppressing the excessive concentration of heating on the parts that have thawed into water, the method used is to gradually change the state of ice into water through heat exchange with the heated water.

しかしながら、この方法では、解凍に長時間を要し、完
全解凍も非常に困難な欠点がある。
However, this method has the disadvantage that it takes a long time to decompress and it is very difficult to decompress completely.

更に、この種加熱調理装置にあっては、マイクロ波発振
器としてマグネトロン等の高周波電源が必要であり、設
備費がかかる上、扉等における電波シー/L/構造や扉
開時の安全装置等が必要で、構造的に複雑になるといっ
た欠点がある。
Furthermore, this type of heating cooking device requires a high frequency power source such as a magnetron as a microwave oscillator, which increases equipment costs and requires a radio wave/L/structure in the door etc. and a safety device when opening the door. The drawback is that it is necessary and structurally complex.

本発明は、従来の技術の有するこのような問題点に留意
してなされたものであり、その目的とするところは、冷
凍食品の解凍調理が高効率に行える簡便で安価な加熱調
理装置を提供しようとするものである。
The present invention has been made in consideration of the above-mentioned problems of the conventional technology, and its purpose is to provide a simple and inexpensive cooking device that can thaw and cook frozen foods with high efficiency. This is what I am trying to do.

〔課題を解決するだめの手段〕[Failure to solve the problem]

前記目的を達成するために5本発明の加熱調理装置にお
いては、貧品が収納される調理室に2ヒ一タ表面が2μ
m以上の波長の電磁波を高効率で放射する素材で形成さ
れた面状の遠赤外線放射ヒータを設け、かつ、冷凍食品
の解凍時に前記ヒータ表面が180〜250℃になるよ
うn′す記ヒータの駆動を制御する制御手段を備えたこ
とを特徴とするものである。
In order to achieve the above object, in the heating cooking apparatus of the present invention, the surface of the two heaters is 2μ in the cooking chamber where the poor items are stored.
A planar far-infrared radiation heater made of a material that emits electromagnetic waves with a wavelength of m or more with high efficiency is provided, and the heater surface is heated to 180 to 250° C. when frozen food is thawed. The invention is characterized in that it includes a control means for controlling the driving of the motor.

〔作 用〕[For production]

第3図及び第4図はそれぞれ水及び氷(−10℃)の吸
収スペクトルを示しており、水の透過率(吸収係数の逆
数)と氷の吸収係数とにそれぞれ、波長3μm、6μm
、15μm付近の電磁波に対する同一のビークを有して
いることが明らかである。
Figures 3 and 4 show the absorption spectra of water and ice (-10°C), respectively.
, it is clear that they have the same peak for electromagnetic waves around 15 μm.

これは、解凍によって一部が水になっても水と氷とに対
する加熱に不均一性が少ないことを意味している。
This means that there is little non-uniformity in the heating of water and ice even if some of it becomes water due to thawing.

一部2第5図はつ゛イーン(Wien)の変位則に基密
度が最大となるような波長を6μm付近に有する電磁波
を放射できることがわかる。
Part 2 of FIG. 5 shows that it is possible to radiate an electromagnetic wave having a wavelength around 6 μm at which the base density is maximum according to Wien's displacement law.

従って、調理室に設けた遠赤外線放射ヒータのヒータ表
面を180〜250℃K温度制御することにより、この
ヒータ表面より6μm付近の波長の電磁波が非常に高効
率に放射されることになり、これが水と氷とに効率良く
吸収される結果、冷凍食品の解凍によって水分が生じて
も、この水と未解凍部分とが不均一性を生じることなく
加熱され、短時間にしかも確実に解凍が完了することに
なる。
Therefore, by controlling the temperature of the far-infrared radiation heater surface of the far-infrared radiation heater installed in the cooking room at 180 to 250°C, electromagnetic waves with a wavelength of around 6 μm can be radiated from the heater surface with extremely high efficiency. As a result of being efficiently absorbed by water and ice, even if water is generated by thawing the frozen food, this water and the unthawed portion are heated without any unevenness, and thawing is completed in a short time and reliably. I will do it.

ここで、ヒータ表面温度を700℃に制御すれば波長が
8μm付近の電磁波を放射でき、水と氷とを選択性を有
することなく加熱できるが、この場合6第4図より明ら
かなように、3μm未満の波長の電磁波(赤外線)に対
しては氷の吸収スペクトルが存在しないため、熱エネル
ギーに無駄が多くなる不都合がある。但し、この場合、
熱エネルギーの絶対量が大きいだめ、急速解凍が必要な
時に使用することは可能である。
Here, if the heater surface temperature is controlled to 700°C, electromagnetic waves with a wavelength of around 8 μm can be emitted, and water and ice can be heated without being selective, but in this case, as is clear from Figure 4, Since ice does not have an absorption spectrum for electromagnetic waves (infrared rays) with a wavelength of less than 3 μm, there is a disadvantage that a lot of thermal energy is wasted. However, in this case,
Since the absolute amount of thermal energy is large, it can be used when rapid thawing is required.

又、水と氷とに同一の高い吸収性を有する15μm付近
の波長の電磁波を放射しようとした場合、ヒータ表面を
常l晶よりかな°り昨くしなければならず、実規不可能
である。
Furthermore, if an attempt is made to radiate electromagnetic waves with a wavelength of around 15 μm, which has the same high absorption in water and ice, the heater surface must be made much taller than normal crystal, which is impractical.

尚、解凍以外の加熱調理において、遠赤外線の照射効果
は経験的に多く知られている。
In addition, in heating cooking other than thawing, the effect of irradiation with far infrared rays is widely known from experience.

〔実施例〕〔Example〕

実施例につき、第1図及び第2図を用いて説明する。 An example will be explained using FIG. 1 and FIG. 2.

(1)は加熱調理装置の外筺をなす装置本体、(2)は
本体(1)内に形成された調理室であり、その前面開口
が扉(3)により開閉自在に閉塞される。(4)は調理
室(2)内の中央部に抜差自任に収納された1・1/イ
であシ、この上に焼網(5)が支持され、これに被加熱
食品(6)が載置される。
(1) is the main body of the heating cooking device, and (2) is a cooking chamber formed within the main body (1), the front opening of which is openable and closable by a door (3). (4) is a 1.1/A tray that is stored in the central part of the cooking chamber (2) in a vertically adjustable manner, on which the grill (5) is supported, on which the food to be heated (6) is placed. is placed.

(7)&び(8)は調理室(2)の天井部及び底部にそ
れぞれ配設された面状の遠赤外線放射上部ヒータ友び下
部ヒータであり、それぞれ断熱材(9J 、 Q(#を
介して調理室(2)の天板及び底板に取付けられると共
に5ジルコニア、マグネシア、アルミナ等を主体とした
セラミックスよりなる放射板(7a)、 (8a)が密
着され、この放射板(7a)、(8a)によりそれぞれ
2μm以上の波長のiii:(d波を高効率で放射する
ヒータ表面(d 、 (8)’が形成されている。
(7) & (8) are planar far-infrared radiation upper and lower heaters installed on the ceiling and bottom of the cooking chamber (2), respectively. The radiating plates (7a) and (8a) made of ceramics mainly made of zirconia, magnesia, alumina, etc. are attached to the top and bottom plates of the cooking chamber (2) through the radiating plates (7a) and (8a), respectively. (8a) forms a heater surface (d, (8)' that emits iii:(d waves with high efficiency) each having a wavelength of 2 μm or more.

ここで、下部ヒータ(8)は5解凍調理時に庫内温度を
所定温度に維持するように機能する。
Here, the lower heater (8) functions to maintain the internal temperature at a predetermined temperature during the 5-thaw cooking process.

αυは本体(1)の右側部前面に投けられた操作パネル
であり1.調理食品に応じて抑圧操作される数個の調理
選択スイッチ(6)及び調理時間設定用の機械式タイマ
スイッチQ3等が備えられており、冷凍食品の解凍調理
に対応した調理選択スイッチ(6)を抑圧操作してタイ
マスイッチQ4で時間設定することにより解凍、1il
I埋が実行される。
αυ is an operation panel placed on the front right side of the main body (1); 1. The cooking selection switch (6) is equipped with several cooking selection switches (6) that are suppressed depending on the food to be prepared, a mechanical timer switch Q3 for setting cooking time, etc., and is compatible with thawing and cooking of frozen foods. Defrost by suppressing and setting the time with timer switch Q4, 1il
I-filling is executed.

このパネル0pの後方空間には、解凍調理が選択された
時に、ヒータ表面(7/ 、 <sfの温度をサーミス
タ等で検知してこの検知温度が180〜250℃になる
ようヒータ(7) 、 (8)への通電を制御する制御
回路が内蔵されている。
In the space behind this panel 0p, when thawing cooking is selected, a heater (7), which detects the temperature of the heater surface (7/, A control circuit for controlling energization to (8) is built-in.

そして、解凍調理に際し、冷凍食品を焼網(5)上に載
置して扉(3)ヲ閉じ、選択スイッチαaで解凍調理を
選択した後2食品谷念によって予め定められた調理時間
をタイマスイッチα罎で設定すると、解凍調理が開始さ
れる。
When defrosting and cooking, the frozen food is placed on the grill (5), the door (3) is closed, and after selecting defrost cooking with the selection switch αa, the timer is set for the predetermined cooking time. When set with switch α, thawing cooking starts.

従って、両ヒータ(7) 、 (8)が制御回路により
駆動制御されることにより、それぞれのヒータ表面(7
)’。
Therefore, by driving and controlling both heaters (7) and (8) by the control circuit, each heater surface (7)
)'.

(8トが180〜250℃に温度制御されるため、この
ヒータ表面(7)/、<8)/よシロμm付近の波長の
電磁波が高効率に放射され、冷凍食品の一部が解凍して
水分を生じても、この水分と未解凍部分とが不均一性を
生じることなく加熱され、解凍が迅速に進行することに
なる。
(Since the temperature of the heater is controlled at 180 to 250 degrees Celsius, electromagnetic waves with a wavelength around 180 μm are radiated from the surface of this heater (7) /, <8) / with high efficiency, causing some of the frozen food to thaw. Even if moisture is produced during the process, this moisture and the unfrozen portion are heated without causing non-uniformity, and thawing proceeds rapidly.

尚、解凍により生じた水分はトレイ(4)に回収される
In addition, the moisture generated by thawing is collected in the tray (4).

又、自室食品の加熱調理は、これに応じた調理選択スイ
ッチ@を選択操作することにより実現し。
In addition, cooking of food in one's own room can be achieved by selectively operating the corresponding cooking selection switch @.

調理内容に応じた1品度になるようヒータ(7) 、 
(8)が駆動制御される。
Heater (7) so that the quality of cooking can be adjusted according to the content of cooking.
(8) is driven and controlled.

尚、ヒータ(7) 、 (8)の駆動を制御する制御手
段としてマイコンを使用することもでき2又、操作パネ
ルQυの各種スイッチをタッチ式スイッチに代えること
もできる。
Note that a microcomputer may be used as a control means for controlling the drive of the heaters (7) and (8), and various switches on the operation panel Qυ may be replaced with touch type switches.

〔発明の効果〕〔Effect of the invention〕

本発明は5以上説明したように構成されているため7次
に記載する効果を奏する。
Since the present invention is configured as described above in Section 5, it produces the effects described in Section 7 below.

調理室に設けられた遠赤外線放射ヒータのヒータ表面を
、解凍時に180〜250℃に温度制御するようにした
ので、ヒータ表面より水と氷とを不均一性を生じること
なく加熱できる電磁波を高効率に放射でき、冷凍食品を
効率良く解凍できるものであり、選択加熱性を有するマ
イクロ波加熱の場合のような断続運転の必要がなく、連
続的な加熱が可能になり、解凍時間を大幅に短縮でき、
しかも、マイクロ波加熱の場合のような高周波電源や電
波シール等の複離な栴造も要さず、解凍調理機能を備え
た安価かつ簡便な加熱調理装置を提供できるものである
The temperature of the far-infrared radiant heater surface installed in the cooking room is controlled at 180 to 250 degrees Celsius during thawing, which increases the electromagnetic waves that can heat water and ice from the heater surface without causing unevenness. It can radiate energy efficiently and thaw frozen foods efficiently.It eliminates the need for intermittent operation unlike microwave heating that has selective heating properties, and enables continuous heating, significantly reducing thawing time. Can be shortened,
In addition, it is possible to provide an inexpensive and simple heating cooking device with a thawing cooking function without requiring a high frequency power source or a radio wave seal or other complicated materials as in the case of microwave heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による加熱調理装置のl実施
例を示し、第1図は切断正面図、第2図は斜視図2第3
図及び第4図はそれぞれ水及び氷の吸収スペクトルを示
す特性図、第5図は黒体の崇 分光放射エネルギ曲線を示す特性図である。 (2)・・・調理室、 (7) 、 (8)・・・遠赤
外線放射上部、下部ヒータ2(7)/ 、 (8)/・
ヒータ表面。
1 and 2 show an embodiment of the heating cooking apparatus according to the present invention, in which FIG. 1 is a cutaway front view, and FIG. 2 is a perspective view.
4 and 4 are characteristic diagrams showing the absorption spectra of water and ice, respectively, and FIG. 5 is a characteristic diagram showing the subspectral radiant energy curve of a black body. (2)...Cooking chamber, (7), (8)...Far-infrared radiation upper and lower heaters 2 (7)/, (8)/.
heater surface.

Claims (1)

【特許請求の範囲】[Claims] (1)食品が収納される調理室に、ヒータ表面が2μm
以上の波長の電磁波を高効率で放射する素材で形成され
た面状の遠赤外線放射ヒータを設け、かつ、冷凍食品の
解凍時に前記ヒータ表面が180〜250℃になるよう
前記ヒータの駆動を制御する制御手段を備えたことを特
徴とする加熱調理装置。
(1) The heater surface is 2 μm in the cooking chamber where food is stored.
A planar far-infrared radiating heater made of a material that emits electromagnetic waves of the above wavelengths with high efficiency is provided, and the drive of the heater is controlled so that the temperature of the heater surface is 180 to 250 degrees Celsius during thawing of frozen food. A heating cooking device characterized by comprising a control means for controlling.
JP4128189A 1989-02-20 1989-02-20 Heating and cooking device Pending JPH02219913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128189A JPH02219913A (en) 1989-02-20 1989-02-20 Heating and cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128189A JPH02219913A (en) 1989-02-20 1989-02-20 Heating and cooking device

Publications (1)

Publication Number Publication Date
JPH02219913A true JPH02219913A (en) 1990-09-03

Family

ID=12604065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128189A Pending JPH02219913A (en) 1989-02-20 1989-02-20 Heating and cooking device

Country Status (1)

Country Link
JP (1) JPH02219913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117305U (en) * 1991-01-23 1992-10-21 船井電機株式会社 microwave oven
JPH0718107U (en) * 1993-08-11 1995-03-31 株式会社オーケープリント microwave

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184375A (en) * 1984-03-01 1985-09-19 Sanyo Electric Co Ltd Method for thawing and cooking frozen food
JPS6414586A (en) * 1987-07-03 1989-01-18 Matsushita Refrigeration Refrigerator with thawing chamber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184375A (en) * 1984-03-01 1985-09-19 Sanyo Electric Co Ltd Method for thawing and cooking frozen food
JPS6414586A (en) * 1987-07-03 1989-01-18 Matsushita Refrigeration Refrigerator with thawing chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117305U (en) * 1991-01-23 1992-10-21 船井電機株式会社 microwave oven
JPH0718107U (en) * 1993-08-11 1995-03-31 株式会社オーケープリント microwave

Similar Documents

Publication Publication Date Title
JP5310741B2 (en) Microwave heating cooker
US20100282742A1 (en) Cooker
US20110198344A1 (en) Cooker
US20100276417A1 (en) Cooker
US20100288756A1 (en) Cooker
KR100367585B1 (en) Heating device for microwave oven
JP2005143353A (en) Thawing method
JPH02219913A (en) Heating and cooking device
US6441355B2 (en) Microwave heating using independently controllable internal and external antennae
US20100270292A1 (en) Cooker
JPH0779753B2 (en) Cooking device
JP2006308114A (en) High frequency heating device
JP2002280159A (en) High-frequency heating cooker
JP3063643B2 (en) Heating equipment
JP3019898B2 (en) Heating equipment
JPH08153578A (en) Microwave oven
JP2933794B2 (en) Heating equipment
JPH0727343A (en) High frequency heating device
KR100601427B1 (en) Method for thawing of microwave range
KR100671828B1 (en) Installation for controlling cooking of microwave oven and method thereof
KR20160105600A (en) a Thaw room of Thawer
KR20230169678A (en) Microwave oven
KR0154641B1 (en) Control device of reflector for microwave oven
JP2001052852A (en) High-frequency heating device
JPS6319794A (en) Heating cooker