JPH02218979A - Measuring apparatus for magnetic field - Google Patents

Measuring apparatus for magnetic field

Info

Publication number
JPH02218979A
JPH02218979A JP4121789A JP4121789A JPH02218979A JP H02218979 A JPH02218979 A JP H02218979A JP 4121789 A JP4121789 A JP 4121789A JP 4121789 A JP4121789 A JP 4121789A JP H02218979 A JPH02218979 A JP H02218979A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
output
measuring device
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4121789A
Other languages
Japanese (ja)
Inventor
Osamu Hayashi
治 林
Hiroshi Igarashi
寛 五十嵐
Takehiko Hayashi
武彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4121789A priority Critical patent/JPH02218979A/en
Publication of JPH02218979A publication Critical patent/JPH02218979A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable removal of a noise component due to a uniform magnetic field by providing a first magnetic-field measurer, a mechanism for setting a correction coil and the inclination to the plane thereof, a second magnetic-field measurer, an output amplifier therefor and a comparing-subtracting means for first and second outputs. CONSTITUTION:A first magnetic-field measurer 10 using a differential-type coil LD as a pickup coil, measuring a magnetic field to be measured and outputting a signal proportional to a magnetic flux intersecting said magnetic field, a mechanism 30 for setting a correction coil Lc and the inclination of the plane thereof rotatably, a second magnetic-field measurer 20 using the coil Lc as the pickup coil and outputting a signal proportional to a magnetic flux intersecting this coil and an amplifier 1 setting an output of this measurer at a prescribed value, and also a means 2 for subtracting an output of the amplifier 1 from the output of the measurer 10, are provided. The direction of the normal line of the plane of the coil Lc is aligned with the direction of the normal line of the plane of an equivalent coil in respect to a uniform magnetic field of the coil LD by the mechanism 30, and thereafter the coil LD is disposed near a magnetic field source to be measured, while the coil Lc is disposed apart from the source. Then the magnetic field to be measured is hardly inputted to the coil Lc and only a component obtained by removing a noise component due to the uniform magnetic field from the output of the measurer 10 can be outputted.

Description

【発明の詳細な説明】 〔概要〕 本発明は磁界測定装置に関し、 微分型ピックアップ・コイルを用いた磁界測定装置にお
いて、一様磁界による雑音成分を除去することを目的と
し、 微分形コイルをピックアップ・コイルとする第1の磁界
測定器と、補正用コイルと、該補正用コイルの面の傾き
を自在に設定する設定機構と、該補正用コイルをピック
アップ・コイルとする第2の磁界測定器と、第2の磁界
測定器の出力を所定の値に設定する増幅器と、前記第1
の磁界測定器の出力から該増幅器の出力を減じる減算手
段とを備え、前記補正用コイルの面の傾きを該微分型コ
イルの一様磁界に対する等価コイル面の傾きに設定し、
一様磁界に対する前記第1および第2の磁界測定器の出
力が同一になるように該増幅器を設定して該微分型コイ
ルで得られた被測定磁界の測定値から一様磁界による雑
音成分を除去するように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a magnetic field measuring device, and the present invention relates to a magnetic field measuring device that uses a differential pickup coil, with the purpose of removing noise components due to a uniform magnetic field. - A first magnetic field measuring device that uses a coil, a correction coil, a setting mechanism that freely sets the inclination of the surface of the correction coil, and a second magnetic field measuring device that uses the correction coil as a pickup coil. and an amplifier for setting the output of the second magnetic field measuring device to a predetermined value;
subtracting means for subtracting the output of the amplifier from the output of the magnetic field measuring device, and setting the slope of the surface of the correction coil to the slope of the equivalent coil surface with respect to the uniform magnetic field of the differential coil,
The amplifier is set so that the outputs of the first and second magnetic field measuring devices for a uniform magnetic field are the same, and the noise component due to the uniform magnetic field is extracted from the measured value of the magnetic field to be measured obtained by the differential coil. Configure to remove.

〔産業上の利用分野〕[Industrial application field]

本発明は外来磁界雑音成分を除去する磁界測定装置の改
良に関する。
The present invention relates to an improvement in a magnetic field measuring device that removes external magnetic field noise components.

近年、生体などから発する微小磁界の測定にスクイド(
超伝導量子干渉計)を利用した高感度の磁界測定装置が
利用されているが、極く微小な磁界を測定するため、外
来磁界の影響が問題になっている。
In recent years, SQUID (
Highly sensitive magnetic field measuring devices using superconducting quantum interferometers (superconducting quantum interferometers) are in use, but because they measure extremely small magnetic fields, the influence of external magnetic fields has become a problem.

外来磁界雑音の主な発生源となっているものに地磁気や
電車、エレベータ、コンピュータその他の電気機器など
があるが、これらの発生源は被測定磁界源に較べ非常に
離れた位置にある。このため外来磁界雑音は被測定磁界
源の近くでは場所によってその大きさと方向が殆ど変わ
らない一様磁界と見做すことができる。
The main sources of external magnetic field noise include geomagnetism, trains, elevators, computers, and other electrical equipment, but these sources are located much further away than the source of the magnetic field to be measured. Therefore, the external magnetic field noise can be regarded as a uniform magnetic field whose magnitude and direction hardly change depending on the location near the magnetic field source to be measured.

このことを利用して、外来磁界雑音成分を除去するため
に、ピックアップ・コイルとして1次微分形コイルや2
次微分形コイルなどの微分形コイルが用いられているが
、ピックアップ・コイルの製作誤差の点から一様磁界に
よる雑音成分を充分には除去しきれないという問題を残
している。
Taking advantage of this, in order to remove external magnetic field noise components, a first-order differential coil or a second-order differential coil or a second
Differential type coils such as second-order differential type coils are used, but there remains the problem that noise components caused by a uniform magnetic field cannot be sufficiently removed due to manufacturing errors in the pickup coil.

〔従来の技術〕[Conventional technology]

第8図は従来の磁界測定装置ブロック図、第9図は従来
の雑音除去方式説明図である。
FIG. 8 is a block diagram of a conventional magnetic field measuring device, and FIG. 9 is an explanatory diagram of a conventional noise removal method.

従来磁界測定装置では、外来一様磁界による雑音を除去
するために、ピックアンプ・コイルL1として、第8図
に示すような1次微分形コイルが用いられている。
In the conventional magnetic field measurement apparatus, a first-order differential coil as shown in FIG. 8 is used as the pick amplifier coil L1 in order to remove noise caused by an external uniform magnetic field.

また図示しないが、一様勾配磁界による雑音を除去する
2次微分形コイル、さらには3次微分形コイルなど種々
の微分形コイルが用いられている。
Although not shown, various types of differential coils, such as a second-order differential coil and a third-order differential coil, are used to remove noise caused by a uniform gradient magnetic field.

これらのピックアップ・コイルし、と高感度磁気センサ
であるスクイドS1に磁気結合するインップト・コイル
L2とは超伝導材でできており超伝導ループを構成して
いる。
These pickup coils and the input coil L2, which is magnetically coupled to the SQUID S1, which is a highly sensitive magnetic sensor, are made of superconducting material and constitute a superconducting loop.

第8図において、磁界Hが一次微分型のピックアップ・
コイルL1に入力すると、ピックアップ・コイルL1に
文楽する磁束Φいを打ち消す方向にΦ、に比例した電流
■がピックアップ・コイルL1とインプットコイルL2
に流れ、インプット・コイルL2から磁束Φ、に比例し
た磁束Φ正がスクイドS、に文楽する。
In Fig. 8, the magnetic field H is a first-order differential type pickup.
When input to coil L1, a current proportional to Φ cancels out the magnetic flux Φ flowing through pickup coil L1 and input coil L2.
A positive magnetic flux Φ proportional to the magnetic flux Φ flows from the input coil L2 to the Squid S.

スクイドS1に文楽した磁束Φ□はスクイドS、で検出
され、その出力は磁界測定回路llで処理されて文楽磁
束Φ、に応じた信号v0が出力される。この信号■。は
電流変換回路12で■。に比例した電流に変換され、ス
クイドS1に磁気結合したフィードバック・コイルし3
に流入され、インプット・コイルL2からスクイドS1
に入力する磁束Φ1を打ち消す方向に磁束がフィードバ
ックされ、ヌルメソッドで磁束Φi1従って磁界Hが計
測されて磁界測定回路11の出力端には磁界Hに比例し
た信号が出力されるようになっている。
The magnetic flux Φ□ applied to the SQUID S1 is detected by the SQUID S, and its output is processed by the magnetic field measuring circuit 11 to output a signal v0 corresponding to the SQUID magnetic flux Φ. This signal ■. ■ in the current conversion circuit 12. The feedback coil 3 is converted into a current proportional to and is magnetically coupled to the SQUID S1.
from input coil L2 to SQUID S1.
The magnetic flux is fed back in the direction of canceling the magnetic flux Φ1 input to the magnetic flux Φ1, and the magnetic flux Φi1 and therefore the magnetic field H are measured using the null method, and a signal proportional to the magnetic field H is output to the output terminal of the magnetic field measuring circuit 11. .

ここで、−次微分形ピックアップ・コイルを例にして、
微分形ピックアップ・コイル(以下微分型コイル)の一
様磁界に対する等価コイルについて説明する。
Here, using a −th order differential pickup coil as an example,
An equivalent coil for a uniform magnetic field of a differential type pickup coil (hereinafter referred to as a differential type coil) will be explained.

一次微分形コイルを構成する2個のコイルの面積および
それらの面の法線方向の単位ベクトルをそれぞれA H
、n 1およびAz、nz&すると、−次微分形コイル
に一様磁界■が叉交する磁束Φは、Φ−(A+n+・H
)+ (A2石:>>     (1)となる。ここで
括弧内はスカラ積を表す。
A H
, n 1 and Az, nz&, the magnetic flux Φ that the uniform magnetic field ■ intersects with the -th differential type coil is Φ-(A+n+・H
) + (A2 stone: >> (1). Here, the value in parentheses represents the scalar product.

このΦがゼロになるためには、 At jl、=−Az nz            
(2)であればよい。即ち2個のコイルの面積が等しく
面の法線方向が丁度逆向きであればよい。
In order for this Φ to become zero, At jl, =-Az nz
(2) is sufficient. That is, it is sufficient if the two coils have the same area and the normal directions of the surfaces are exactly opposite.

しかし、実際に製作されたものには製作誤差が含まれる
ため、(2)式が満たされず一様磁界に対しても一次微
分形コイルから出力がでることになる。いま A z = A + +ΔAX nz=  (n++A
n )とするとき、文楽磁束Φは Φ=(At  n+・T) −((AI  +ΔA)[n、+τn] ・■)=(A
  τn+ΔA  n +An    ・T)  (3
)となる。(3)式で下線の部分は一つのベクトル量を
示すものであるから、このベクトルの大きさをA、、そ
の方向の単位ベクトルをWoとすると(3)式は次の如
く書ける。
However, since the actually manufactured one includes manufacturing errors, the equation (2) is not satisfied and an output is output from the first-order differential coil even in response to a uniform magnetic field. Now A z = A + +ΔAX nz= (n++A
n), Bunraku magnetic flux Φ is Φ=(At n+・T) −((AI +ΔA)[n,+τn]・■)=(A
τn+ΔA n +An ・T) (3
). Since the underlined part in equation (3) indicates one vector quantity, if the magnitude of this vector is A and the unit vector in that direction is Wo, equation (3) can be written as follows.

Φ=(A、丁。・H)            (4)
これは面積がA、で、その面の法線方向が−b−0の方
向を向いたコイルに一様磁界が文楽する磁束に等しい。
Φ=(A, Ding.・H) (4)
This is equal to the magnetic flux produced by a uniform magnetic field in a coil whose area is A and whose normal direction is oriented in the -b-0 direction.

従って一様磁界に対して、−次微分形コイルはそれを構
成する2個のコイルが(2)式を満たさない場合には面
積が八〇で、その面の法線が方向が−n、の方向を向い
たコイルと等価となり、一様磁界に対して感度を有する
ことになる。
Therefore, for a uniform magnetic field, if the two coils that make up the −th differential type coil do not satisfy equation (2), the area will be 80, and the normal to that surface will be in the direction −n, It is equivalent to a coil oriented in the direction of , and is sensitive to a uniform magnetic field.

他の形の微分形コイルについても、製作誤差があると前
記と同様にある面積を有し、ある面の向きを有する1個
のコイルと等価となる。
For other types of differential coils, if there is a manufacturing error, they will be equivalent to one coil having a certain area and a certain plane orientation, as described above.

実際に製作されたコイルの面積Aには通常0.1%程度
或いはそれ以上の誤差ををし、また各コイル面間の平行
度にも誤差を含んでいるため、これらの外部磁界による
雑音は高々1000分の1程度までにしか低減すること
ができない。
The area A of the actually manufactured coil usually has an error of about 0.1% or more, and there is also an error in the parallelism between each coil surface, so noise due to these external magnetic fields is It can be reduced only to about 1/1000 at most.

そこで、第9図(1)に示すように、3個の超伝導タブ
7 (面積の小さい薄い板)をそれぞれ互いに直交する
3軸方向の磁界の内の1方向の磁界に対してのみ感度変
化を与えるように配置し、これらの超伝導タブ7の位置
を調整して磁界分布を変えるか、または第9図(II)
に示すように、互いに面が直交する補正用のループ9を
3個設け、超伝導タブ8の位置をずらせてその面が超伝
導タブ8で磁気的に遮蔽される量を調整することにより
、この製作誤差によるコイルのアンバランスの補正を行
っている。
Therefore, as shown in Figure 9 (1), the sensitivity of each of the three superconducting tabs 7 (thin plates with small area) changes only in one of the three axial directions perpendicular to each other. The position of these superconducting tabs 7 can be adjusted to change the magnetic field distribution, or the magnetic field distribution can be changed as shown in FIG. 9 (II).
As shown in FIG. 2, by providing three correction loops 9 whose surfaces are perpendicular to each other and shifting the position of the superconducting tab 8 to adjust the amount of magnetic shielding of that surface by the superconducting tab 8, The unbalance of the coil due to this manufacturing error is corrected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第9図N)(n)で示した従来の方法では3個の超伝導
タブや3個の補正用のループの各面の法線方向に合わせ
て、■軸ずつ外部から一様交流磁界を加えて磁界測定器
の出方が最小になるよう順次調整を行うので、かなり調
整が面倒であるという課題があった。
In the conventional method shown in Figure 9N)(n), a uniform alternating current magnetic field is applied from the outside in each axis along the normal direction of each surface of the three superconducting tabs and the three correction loops. In addition, since adjustments are made sequentially to minimize the magnetic field measuring device, there is a problem in that the adjustment is quite troublesome.

また、前記3個の超伝導タブや3個の補正用のループの
各面の法線方向は互いに正確に直交している必要が有る
が、やはり製作誤差を含んでいるために、ある軸方向の
一様磁界に対して出力がないように調整すると、他の軸
方向の一様磁界に対し出力が増加することなどがあり、
同様な調整を繰り返して雑音出力が最小になるよう調整
を行っているが、それでも一様磁界に起因する雑音成分
の除去が十分には行えない欠点があった。
In addition, the normal directions of the surfaces of the three superconducting tabs and the three correction loops must be exactly perpendicular to each other, but since manufacturing errors still exist, it is necessary to If you adjust so that there is no output in response to a uniform magnetic field, the output may increase in response to uniform magnetic fields in other axial directions.
Although the same adjustment is repeated to minimize the noise output, there is still a drawback that the noise component caused by the uniform magnetic field cannot be sufficiently removed.

また3個の補正コイルをその面の法線がそれぞれX、Y
、Z方向を向くように配置して一様磁界に起因する雑音
を除去する方法が考案(特開昭63−32384 )さ
れているが、本方式で正確に短時間で調整を行うには、
3個の補正コイルの面の法線が互いに正確に直交してい
て、且つ調整の際に外部から加える一様磁界の方向が、
いずれかの法線方向に正確に一致していることが必要と
されるが、コイル面の方向にも、一様磁界の方向にも誤
差が含まれ易く、何度も同じ調整を繰り返してもなかな
か一様磁界に起因する雑音の除去が十分には行えない欠
点を有している。
In addition, the normals of the three correction coils are X and Y, respectively.
A method has been devised (Japanese Unexamined Patent Publication No. 63-32384) to eliminate noise caused by a uniform magnetic field by arranging the magnetic field so as to face the Z direction.
The normal lines of the surfaces of the three correction coils are exactly orthogonal to each other, and the direction of the uniform magnetic field applied from the outside during adjustment is
Although it is necessary to accurately match one of the normal directions, errors are likely to occur in the direction of the coil surface and the direction of the uniform magnetic field, and even if the same adjustment is repeated many times, It has the disadvantage that noise caused by a uniform magnetic field cannot be sufficiently removed.

本発明は、上記課題に鑑み、微分形ピックアップ・コイ
ルのアンバランスにより生ずる一様磁界による雑音をよ
り節単に、より確実に除去できる方式を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a method that can more easily and reliably remove noise caused by a uniform magnetic field caused by unbalance of a differential pickup coil.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図である。図中、10は微分
形コイルL、をピックアップ・コイルとして被測定磁界
を測定する第1の磁界測定器で、LI、に文楽する磁束
に比例した信号を出力するもの、 L、は補正用コイル、 30は補正用コイルし、の面の傾きを回転自在に設定す
る設定機構、 20は補正用コイルLcをピンクアンプコイルとする第
2の磁界測定器で、Lcに文楽する磁束に比例した信号
を出力するもの、 1は増幅器で、第2の磁界測定器20の出力を所定の値
に設定するもの、 2は減算手段で、第1の磁界測定器10の出力から増幅
器1の出力を減するものである。
FIG. 1 is a diagram explaining the principle of the present invention. In the figure, 10 is a first magnetic field measuring device that measures the magnetic field to be measured using a differential coil L as a pickup coil, which outputs a signal proportional to the magnetic flux applied to LI, and L is a correction coil. , 30 is a correction coil, and a setting mechanism for rotatably setting the inclination of the surface of the magnetic field, 20 is a second magnetic field measuring device in which the correction coil Lc is a pink amplifier coil, and a signal proportional to the magnetic flux to be sent to Lc is 1 is an amplifier that sets the output of the second magnetic field measuring device 20 to a predetermined value; 2 is a subtracting means that subtracts the output of the amplifier 1 from the output of the first magnetic field measuring device 10. It is something to do.

重み→〔作用] 補正用コイルし、の面の法線方向を、設定機構30によ
り、微分形コイルL、の一様磁界に対する等価コイル(
LD)の面の法線方向に一致するように設定する。
Weight→[Effect] The setting mechanism 30 sets the normal direction of the plane of the correction coil L to the equivalent coil (
LD) to match the normal direction of the surface.

この法線方向は次のように求められる。(第3図参照) 即ち、X、Y、Zの直交3軸方向に順次一様交流磁界H
,H,Hヨを加えたとき、微分形コイルLDをピックア
ップ・コイルとする第1の磁界測定器10の出力をそれ
ぞれV、、Vア、■2とする。
This normal direction is determined as follows. (See Figure 3) In other words, a uniform alternating current magnetic field H is applied sequentially in the three orthogonal directions of X, Y, and Z.
, H, and H yo are added, the outputs of the first magnetic field measuring device 10 using the differential coil LD as a pickup coil are V, , Va, and ■2, respectively.

等価コイルL0の面の法線方向の単位ベクトルを一石−
とすると a  (n−・iHx ) =VX a (n・丁Hy)=Vy a  (n−kH,) =V、           
 (5)となる。ここで、aは微分型コイルLoの製作
誤差の度合いと磁界測定器10の回路特性とで定まる定
数、下2丁、Vはそれぞれx、y、z軸方向の単位ベク
トルを表す。また括弧内はスカラ積を表す。故に下のX
、Y、Z軸方向の各成分nX。
The unit vector in the normal direction of the surface of the equivalent coil L0 is -
Then, a (n-iHx) = VX a (n-Hy) = Vy a (n-kH,) = V,
(5) becomes. Here, a is a constant determined by the degree of manufacturing error of the differential coil Lo and the circuit characteristics of the magnetic field measuring device 10, and V and V represent unit vectors in the x, y, and z axis directions, respectively. Also, the number in parentheses represents a scalar product. Therefore, the X below
, each component nX in the Y and Z axis directions.

n、、n、は、 ・ ・ ・   (6) となる。(6)式で示されるTの方向に補正用コイルL
cO法線方向を設定すると、一様磁界に対して、補正用
コイルLcをピックアップ・コイルとする第2の磁界測
定器20の出力は、微分形コイルL。の製作誤差により
生ずる第1の磁界測定器10の出力の成る係数倍となる
n,, n, becomes ・ ・ ・ (6). Correction coil L in the direction of T shown by equation (6)
When the cO normal direction is set, the output of the second magnetic field measuring device 20, which uses the correction coil Lc as a pickup coil, is the differential coil L for a uniform magnetic field. is multiplied by a coefficient of the output of the first magnetic field measuring device 10 caused by manufacturing errors.

このため、補正用コイルし、ならびに微分型コイルLD
に一様磁界を加え、増幅器1で増幅後の第2の磁界測定
器20の出力が第1の磁界測定器10の出力と等しくな
るように増幅器1の利得を調整する。
For this reason, a correction coil and a differential coil LD are used.
A uniform magnetic field is applied to the magnetic field, and the gain of the amplifier 1 is adjusted so that the output of the second magnetic field measuring device 20 after amplification by the amplifier 1 is equal to the output of the first magnetic field measuring device 10.

以上のごとく設定した後、微分形コイルし、は被測定磁
界源の近くに、補正用コイルし、は微分形コイルLDに
比較して被測定磁界源から光分離れた位置に配置すると
、被測定磁界(Hs)は補正用コイルLcには殆ど入力
せず、減算手段2から、第1の磁界測定器10の出力よ
り一様磁界による雑音成分が除去された被測定磁界成分
のみ出力される。
After making the settings as described above, place the differential coil near the magnetic field source to be measured, the correction coil and place it at a position optically separated from the magnetic field source to be measured compared to the differential coil LD. Almost no measured magnetic field (Hs) is input to the correction coil Lc, and only the measured magnetic field component from which the noise component due to the uniform magnetic field has been removed from the output of the first magnetic field measuring device 10 is outputted from the subtraction means 2. .

〔実施例〕〔Example〕

第2図は第1の実施例の磁界測定装置ブロック図、第4
図は設定機構例を表す図、第5図は第2の実施例を表す
図、第6図は第3の実施例を表す図、第7図は第4の実
施例を表す図である。
Figure 2 is a block diagram of the magnetic field measuring device of the first embodiment;
5 is a diagram showing an example of a setting mechanism, FIG. 5 is a diagram showing a second embodiment, FIG. 6 is a diagram showing a third embodiment, and FIG. 7 is a diagram showing a fourth embodiment.

(第1の実施例) 第2図において、 Lcは補正用コイル、 20は第2の磁界測定器(以下磁界測定器20と称する
)で、磁界測定回路21.電流変換回路22ならびにス
クイドS2を備え、従来例と同様の動作で補正用コイル
Lcに叉交する磁束に比例した信号を出力するもの、 Loは微分形コイル、 10は第1の磁界測定器(以下磁界測定器10)で、磁
界測定回路11.電流変換回路12ならびにスクイドS
lを備え、磁界測定器20と同様の動作で微分型コイル
Loに叉交する磁束に比例した信号を出力するもの、 1は利得が可変の増幅器、 4は差分増幅器(減算手段2に対応)で、磁界測定器1
0の出力から増幅器1の出力を減じた信号を出力するも
の、 30は設定機構で、補正用コイルL、の傾きを設定する
ものである。
(First Embodiment) In FIG. 2, Lc is a correction coil, 20 is a second magnetic field measuring device (hereinafter referred to as magnetic field measuring device 20), and magnetic field measuring circuit 21. It is equipped with a current conversion circuit 22 and a SQUID S2, and outputs a signal proportional to the magnetic flux crossing the correction coil Lc in the same manner as the conventional example, Lo is a differential type coil, and 10 is a first magnetic field measuring device ( Hereinafter, the magnetic field measuring device 10) will be referred to as the magnetic field measuring circuit 11. Current conversion circuit 12 and SQUID S
1 is an amplifier with variable gain, and 4 is a differential amplifier (corresponding to the subtracting means 2). So, magnetic field measuring device 1
30 is a setting mechanism that sets the slope of the correction coil L.

設定機構30は、第4図に示すように、座標軸の原点に
中心を有し、Z軸を中心軸として回転する円形リング3
1と、座標軸の原点に中心を有し、xY平面が円形リン
グ31と交叉する2点A、Bを通る直線を軸としてその
周りに回転し、その径が円形リング31の径より小さい
円形リング32と、円形リング31ならびに円形リング
32の径より少し大きい径を有し、それぞれxY平而面
らびにXz平面に固定された円形状目盛板33ならびに
34とから構成され、補正用コイルし、は円形リング3
1の面と平行な面状に固定される。
As shown in FIG. 4, the setting mechanism 30 includes a circular ring 3 having its center at the origin of the coordinate axes and rotating around the Z axis.
1, and a circular ring whose center is at the origin of the coordinate axes, rotates around a straight line passing through two points A and B where the xY plane intersects the circular ring 31, and whose diameter is smaller than the diameter of the circular ring 31. 32, circular scale plates 33 and 34 having a diameter slightly larger than the diameter of the circular ring 31 and the circular ring 32 and fixed on the xY plane and the Xz plane, respectively, and a correction coil, is circular ring 3
It is fixed in a plane parallel to the plane of 1.

なお、円形リング32は、AB点で円形リング31に回
転可能に固定され、さらに回転設定後は摩擦または固定
機構により、円形リング31.32の相対位置が保たれ
るように構成される。
The circular ring 32 is rotatably fixed to the circular ring 31 at point AB, and after the rotation is set, the relative positions of the circular rings 31 and 32 are maintained by friction or a fixing mechanism.

また、補正用コイルLcが設けられた設定機構30と微
分型コイルL、とは、補正用コイルし、に被測定磁界が
殆ど作用しない間隔で且つ相対位置が変わらないように
固定しておく。
Further, the setting mechanism 30 provided with the correction coil Lc and the differential type coil L are fixed at intervals such that the magnetic field to be measured hardly acts on the correction coil, and so that their relative positions do not change.

以上構成の磁界測定装置において、まず、微分形コイル
LDの一様磁界に対する等価コイルL0の面の法線方向
の単位ベクトルTを以下の方法で求める。
In the magnetic field measuring device having the above configuration, first, the unit vector T in the normal direction to the surface of the equivalent coil L0 with respect to the uniform magnetic field of the differential coil LD is determined by the following method.

設定機構30の座標軸を基準にして、x、y、zの直交
3軸方向に夫々一様磁界Hつ、H,、H,を順次に加え
て、各方向に於ける磁界測定器10の出力VX、V、、
V、を測定する。
With the coordinate axes of the setting mechanism 30 as a reference, uniform magnetic fields H, H, , H, are sequentially applied in the orthogonal three axes directions of x, y, and z, and the output of the magnetic field measuring device 10 in each direction is measured. VX, V,,
Measure V.

これらの値を前記(6)式に代入して単位ベクトルTの
x、y、z軸成分nx +  ”V +  n*を求め
る。
By substituting these values into the above equation (6), the x, y, and z axis components nx + "V + n* of the unit vector T are determined.

次に、第3図に示すように7およびZ軸を含む面とX軸
およびZ軸を含む面とがなす角をφ、n−とZ軸とがな
す角をθとすると、iの方向はn8nV +  n t
の代わりにφ、θにより表すことができる。
Next, as shown in Figure 3, if the angle formed by the plane containing the 7 and Z axes and the plane containing the X and Z axes is φ, and the angle between n- and the Z axis is θ, then the direction of i is is n8nV + nt
can be represented by φ and θ instead.

φ、θは(7)式によりn、、n、:n、の値から求め
ることができる。
φ and θ can be determined from the values of n, , n, :n, using equation (7).

補正用コイルし、の法線方向を(7)式で示される方向
に設定するには、先ず円形リング31をYZ平面に、円
形リング32をXY平面にそれぞれ設定し、次に円形リ
ング32を円形状目盛板34を見ながらAB軸(このと
きAB軸はY軸と重なっている)の周りに角度θだけ回
転する。次に円形リング31と円形リング32との相対
位置を保ちながら、Z軸の周りを円形状目盛板33を見
ながら角度Φだけ回転することにより完了する。
To set the normal direction of the correction coil to the direction shown by equation (7), first set the circular ring 31 on the YZ plane and the circular ring 32 on the XY plane, and then set the circular ring 32 on the YZ plane. While looking at the circular scale plate 34, it is rotated by an angle θ around the AB axis (at this time, the AB axis overlaps with the Y axis). Next, while maintaining the relative positions of the circular rings 31 and 32, the rotation is completed by rotating around the Z-axis by an angle Φ while looking at the circular scale plate 33.

Lcの設定が終了した後、再びなるべく等価コイルし、
の面の法線方向に近い方向の交流一様磁界を加えた状態
で、差分増幅器4の出力がゼロになるよう増幅器1の利
得を設定することにより調整を完了する。
After setting Lc, make the equivalent coil again as much as possible,
The adjustment is completed by setting the gain of the amplifier 1 so that the output of the differential amplifier 4 becomes zero while applying an alternating current uniform magnetic field in a direction close to the normal direction of the plane.

以上により、微分型コイルし。と補正用コイルLcとの
相対位置が保たれている限り、微分型コイルL0で得ら
れた測定値より一様磁界の雑音成分が除去された値が差
分増幅器4の出力から得られることになる。
As a result of the above, the differential type coil is created. As long as the relative position between and the correction coil Lc is maintained, a value obtained by removing the noise component of the uniform magnetic field from the measurement value obtained by the differential coil L0 will be obtained from the output of the differential amplifier 4. .

(第2の実施例) 第5図は本発明の第2の実施例である。(Second example) FIG. 5 shows a second embodiment of the invention.

補正用コイルし、をその面の法線方向を微分形コイルL
Dの一様磁界に対する等価コイルの面の法線方向とは逆
方向に設定し、一様磁界に対し磁界測定器10の出力と
磁界測定器20の出力との極性が反対になるようにし、
両出力を演算増幅器5、抵抗器R,,R2およびR8か
らなる加算器で加算を行うよう接続し、R,を変化させ
て、一様磁界による雑音成分を除去する。
A correction coil is used, and the normal direction of the surface is differentiated by a differential coil L.
Set in the direction opposite to the normal direction of the plane of the equivalent coil with respect to the uniform magnetic field D, so that the polarity of the output of the magnetic field measuring device 10 and the output of the magnetic field measuring device 20 is opposite to the uniform magnetic field,
Both outputs are connected to perform addition by an adder consisting of an operational amplifier 5 and resistors R, , R2, and R8, and R is varied to remove noise components due to the uniform magnetic field.

(第3の実施例) 第6図は本発明の第3の実施例である。(Third example) FIG. 6 shows a third embodiment of the present invention.

補正用コイルLcは第1の実施例と同様に設定し、微分
形コイルL0に磁界結合するコイルL4に増幅器1の出
力に比例した電流を抵抗R4を通して流入させ、L、に
文楽する一様磁界の磁束が打ち消されるよう増幅器1の
利得を調整することにより、一様磁界による雑音成分を
除去する。
The correction coil Lc is set in the same manner as in the first embodiment, and a current proportional to the output of the amplifier 1 flows into the coil L4, which is magnetically coupled to the differential coil L0, through a resistor R4, and a uniform magnetic field is applied to L. The noise component due to the uniform magnetic field is removed by adjusting the gain of the amplifier 1 so that the magnetic flux of .

(第4の実施例) 第7図は本発明の第4の実施例である。(Fourth example) FIG. 7 shows a fourth embodiment of the present invention.

磁界測定器10のフィードバック・コイルL3に増幅器
1の出力に比例した電流を電流変換器6から流入させ、
増幅器1の利得を調整することにより、一様磁界により
R3からスクイドS1に文楽する磁束を打ち消して、一
様磁界による雑音成分を除去する。
A current proportional to the output of the amplifier 1 is caused to flow from the current converter 6 into the feedback coil L3 of the magnetic field measuring device 10,
By adjusting the gain of the amplifier 1, the uniform magnetic field cancels out the magnetic flux flowing from R3 to SQUID S1, and removes the noise component due to the uniform magnetic field.

なお、設定機構30はZ軸とY軸の回りに円形リングが
回転するようにしているが、他の軸の周りに回転するよ
うにしてもよいことは言うまでもない。
Although the setting mechanism 30 has a circular ring that rotates around the Z-axis and the Y-axis, it goes without saying that the circular ring may rotate around other axes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、1個の補正用コ
イルの面の方向を設定することと増幅器の増幅度の設定
だけで調整が行われるので、従来方式で3個の補正用の
超伝導タブ、3個の補正用リング或いは3個の補正用コ
イルなどの製作誤差によって生ずる調整の不完全さが無
くなる。また調整の後戻りがなく、ただ1回だけの調整
手順に従った調整により一様磁界による雑音を除去する
ことが可能となる。
As explained above, according to the present invention, adjustment is performed only by setting the direction of the surface of one correction coil and setting the amplification degree of the amplifier. Adjustment imperfections caused by manufacturing errors such as superconducting tabs, three correction rings or three correction coils are eliminated. Further, there is no need to go back to the adjustment, and it is possible to eliminate noise caused by a uniform magnetic field by adjusting only once according to the adjustment procedure.

図、第4図は設定機構例を表す図、第5図は第2の実施
例を表す図、第6図は第3の実施例を表す図、第7図は
第4の実施例を表す図、第8図は従来の磁界測定装置ブ
ロック図、第9図は従来の雑音除去方式説明図である。
4 shows an example of a setting mechanism, FIG. 5 shows a second embodiment, FIG. 6 shows a third embodiment, and FIG. 7 shows a fourth embodiment. 8 is a block diagram of a conventional magnetic field measuring device, and FIG. 9 is an explanatory diagram of a conventional noise removal method.

図中、1は増幅器、2は減算手段、4は差分増幅器、5
は演算増幅器、6は電流変換回路、7,8は超電導タブ
、9は補正用のループ、10は第1の磁界測定器、20
は第2の磁界測定器、IL21は磁界測定回路、12.
22は電流変換回路、Sl、SZはスクイド、LDは微
分型コイル、L、は補正用コイル、L+はピックアップ
・コイル、30は設定機構、31.32は円形リング、
33.34は円形状目盛板、R2−R4は抵抗である。
In the figure, 1 is an amplifier, 2 is a subtraction means, 4 is a differential amplifier, and 5
is an operational amplifier, 6 is a current conversion circuit, 7 and 8 are superconducting tabs, 9 is a correction loop, 10 is a first magnetic field measuring device, 20
12. is a second magnetic field measuring device; IL21 is a magnetic field measuring circuit; 12.
22 is a current conversion circuit, SL and SZ are SQUIDs, LD is a differential type coil, L is a correction coil, L+ is a pickup coil, 30 is a setting mechanism, 31.32 is a circular ring,
33 and 34 are circular scale plates, and R2-R4 are resistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、第2図は実施例の磁界測定装
置ブロック図、第3図は等価コイル面説明第1図 等価コイル面説明図 第3図 ’−””10’imi 実施例の磁界測定装置ブロック図 第2図 第4図 第5図 W。 従来の磁界4防コ渇Wブロック図 第8図 (n) 従来の雑音除去方式説明図
Fig. 1 is a principle diagram of the present invention, Fig. 2 is a block diagram of a magnetic field measuring device according to an embodiment, Fig. 3 is an explanation of the equivalent coil surface. Fig. 1 is an illustration of the equivalent coil surface. Block diagram of an example magnetic field measuring device FIG. 2, FIG. 4, and FIG. 5 W. Conventional magnetic field 4 anti-corrosion W block diagram Figure 8 (n) Illustration of conventional noise removal method

Claims (1)

【特許請求の範囲】 微分形コイル(L_D)をピックアップ・コイルとする
第1の磁界測定器(10)と、 補正用コイル(L_C)と、 該補正用コイルの面の傾きを自在に設定する設定機構(
30)と、 該補正用コイルをピックアップ・コイルとする第2の磁
界測定器(20)と、 第2の磁界測定器(20)の出力を所定の値に設定する
増幅器(1)と、 前記第1の磁界測定器(10)の出力から該増幅器(1
)の出力を減じる減算手段(2)と を備え、前記補正用コイル(L_C)の面の傾きを該微
分型コイル(L_D)の一様磁界に対する等価コイル面
の傾きに設定し、一様磁界に対する前記第1および第2
の磁界測定器の出力が同一になるように該増幅器(1)
を設定して該微分型コイルで得られた被測定磁界の測定
値から一様磁界による雑音成分を除去することを特徴と
する磁界測定装置。
[Claims] A first magnetic field measuring device (10) using a differential coil (L_D) as a pickup coil, a correction coil (L_C), and a surface inclination of the correction coil that is freely set. Setting mechanism (
30), a second magnetic field measuring device (20) that uses the correction coil as a pickup coil, and an amplifier (1) that sets the output of the second magnetic field measuring device (20) to a predetermined value; From the output of the first magnetic field measuring device (10) to the amplifier (1
), the inclination of the surface of the correction coil (L_C) is set to the inclination of the equivalent coil surface with respect to the uniform magnetic field of the differential coil (L_D), and the uniform magnetic field is said first and second
the amplifier (1) so that the outputs of the magnetic field measuring instruments are the same.
1. A magnetic field measuring device characterized in that a noise component due to a uniform magnetic field is removed from a measured value of a magnetic field to be measured obtained by the differential coil by setting the differential coil.
JP4121789A 1989-02-20 1989-02-20 Measuring apparatus for magnetic field Pending JPH02218979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121789A JPH02218979A (en) 1989-02-20 1989-02-20 Measuring apparatus for magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121789A JPH02218979A (en) 1989-02-20 1989-02-20 Measuring apparatus for magnetic field

Publications (1)

Publication Number Publication Date
JPH02218979A true JPH02218979A (en) 1990-08-31

Family

ID=12602232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121789A Pending JPH02218979A (en) 1989-02-20 1989-02-20 Measuring apparatus for magnetic field

Country Status (1)

Country Link
JP (1) JPH02218979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226598A (en) * 1994-02-09 1995-08-22 Rikagaku Kenkyusho Magnetic shielding container, magnetic detection coil and magnetic shielding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226598A (en) * 1994-02-09 1995-08-22 Rikagaku Kenkyusho Magnetic shielding container, magnetic detection coil and magnetic shielding device

Similar Documents

Publication Publication Date Title
EP0379374B1 (en) Measuring magnetic fields
EP3006896B1 (en) Three-axis digital compass
CN108267701B (en) Active environmental magnetic interference compensation system for magnetic field reproduction coil
US8669763B2 (en) Multi-axis fluxgate magnetic sensor
US20210161420A1 (en) Magnetic field measuring apparatus, magnetic field measuring method, and recording medium storing magnetic field measuring program
JP5535467B2 (en) Phase correction type active magnetic shield device
CN113325353B (en) Magnetometer spatial attitude calibration method and system
JPS632350B2 (en)
JPH08248106A (en) Very weak magnetic field measuring device
JP2019215322A (en) Magnetic field measurement device, magnetic field measurement method, and magnetic field measurement program
JPH07248366A (en) Magnetic noise compensating method
JPH02218979A (en) Measuring apparatus for magnetic field
JP3406273B2 (en) Disturbance magnetic field cancellation device
Petrucha et al. Cross-field effect in a triaxial AMR magnetometer with vector and individual compensation of a measured magnetic field
Petrucha et al. Calibration of a triaxial fluxgate magnetometer and accelerometer with an automated non-magnetic calibration system
JPH05232202A (en) Software gradiometer
JPS5925726A (en) Diagnostic observation apparatus
JPH07151842A (en) System and apparatus for detection of magnetism
JPS6058565A (en) Moving high sensitivity magnetic gradient measuring system
JPH045588A (en) Squid fluxmeter provided with coil for calibration
CN115755582A (en) Helmholtz coil magnetic field gradient control method and device based on PID algorithm
JPH02212788A (en) Magnetic field measuring device
JPH1183961A (en) Magnetic flux detector
JP2611642B2 (en) Coordinate position detector
JPS61108981A (en) Uniaxial differential type magnetism measuring instrument