JPH02218440A - Tubular catalyst and its manufacture method - Google Patents

Tubular catalyst and its manufacture method

Info

Publication number
JPH02218440A
JPH02218440A JP1040871A JP4087189A JPH02218440A JP H02218440 A JPH02218440 A JP H02218440A JP 1040871 A JP1040871 A JP 1040871A JP 4087189 A JP4087189 A JP 4087189A JP H02218440 A JPH02218440 A JP H02218440A
Authority
JP
Japan
Prior art keywords
catalyst
cylindrical
protrusion
catalyst body
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1040871A
Other languages
Japanese (ja)
Other versions
JP2523855B2 (en
Inventor
Jiro Suzuki
次郎 鈴木
Atsushi Nishino
敦 西野
Yoshitaka Kawasaki
良隆 川崎
Masato Hosaka
正人 保坂
Yukiyoshi Ono
之良 小野
Hironao Numamoto
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1040871A priority Critical patent/JP2523855B2/en
Publication of JPH02218440A publication Critical patent/JPH02218440A/en
Application granted granted Critical
Publication of JP2523855B2 publication Critical patent/JP2523855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent the corrosion of a heater by providing a tube around a resistance heating element, projecting parts on the outer peripheral surface of the tube and oxidation catalyst thereon. CONSTITUTION:A resistance heating element 1 is provided in the inside diameter part 3 of a tubular catalyst 2. A plurality of projecting parts 4 are formed on the outer peripheral surface of the catalyst 2 to increase its effective surface area in order to accelerate the catalyst reaction. A temp. detector 5 in the inside diameter part 3 senses the temp. of the catalyst 2 and, according to the signal thus generated, regulates the amount of current applied or the concn. and flow amount of untreated gas to maintain the catalyst 2 at optimum temp. This permits a uniform heating of the catalyst from the inside diameter part, resulting in the deodorization and cleaning.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は反応装置に用いられる筒状触媒体とその製造方
法に関し、燃焼装置、焼却装置、調理器具、乾燥炉、加
熱炉、灰皿、冷蔵庫、こたつ、暖房器等の産業用、家庭
用機器において脱臭や可燃成分の完全酸化の目的に利用
される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a cylindrical catalyst body used in a reaction device and a method for manufacturing the same, and relates to a combustion device, an incinerator, a cooking utensil, a drying furnace, a heating furnace, an ashtray, a refrigerator, a kotatsu. It is used for deodorization and complete oxidation of combustible components in industrial and household equipment such as space heaters.

従来の技術 種々の反応装置に用いられる触媒体には、さまざまな形
態が従来よりある。例えば、ハニカム状、ペレット状、
繊維マット状等があり、その用途に応じて適宜選択され
て用いられている。
BACKGROUND OF THE INVENTION Catalyst bodies used in various reactors have conventionally come in various forms. For example, honeycomb, pellet,
There are fiber mat forms, etc., and they are appropriately selected and used depending on the purpose.

これら触媒体は、所定の触媒活性化温度に達するまで触
媒として機能しないもので、反応装置の運転の初期、あ
るいは触媒の温度の低下時に触媒の、温度を加熱する補
助加熱手段が必要である。必要に応じ、触媒の加熱用補
助バーナ、電気ヒータ等が使用されている。
These catalyst bodies do not function as a catalyst until a predetermined catalyst activation temperature is reached, and an auxiliary heating means is required to heat the catalyst at the beginning of operation of the reactor or when the temperature of the catalyst decreases. If necessary, an auxiliary burner for heating the catalyst, an electric heater, etc. are used.

発明が解決しようとする課題 しかし、従来の触媒体では、特に未燃分が臭気として問
題視される場合、補助加熱手段を使用しても充分に臭気
浄化の問題が解決できないという問題があった。ガス、
石油等を燃料として用いた補助バーナを補助加熱手段と
して使用した場合は、その構造が複雑であるとともに、
この補助バーナ自身が未燃分を出し易く、またガス、石
油等の排気ガス中に含まれる水分が触媒を被毒してその
活性を低下させるため、臭気が充分なくならないもので
あった。
Problems to be Solved by the Invention However, with conventional catalyst bodies, there was a problem in that even if auxiliary heating means were used, the problem of odor purification could not be sufficiently solved, especially when unburned components were considered a problem as odor. . gas,
When an auxiliary burner using oil or other fuel as a fuel is used as an auxiliary heating means, its structure is complicated, and
This auxiliary burner itself tends to emit unburned substances, and the moisture contained in exhaust gases such as gas and oil poisons the catalyst and reduces its activity, so the odor cannot be sufficiently eliminated.

この点、電気等のようなドライな補助加熱手段による加
熱の場合は、触媒が乾燥し、よく未燃成分を吸着反応さ
せるので、臭気等の浄化はし易い。
In this regard, in the case of heating using a dry auxiliary heating means such as electricity, the catalyst dries and adsorbs and reacts unburned components well, making it easy to purify odors and the like.

しかし、このような電気加熱は電気容量が大きくなって
非経済的であり、′あるいは触媒が活性化するまでの時
間がかかりすぎるという欠点が避けられなかった。
However, such electric heating is uneconomical due to the large electric capacity, and also has the disadvantage that it takes too much time for the catalyst to become activated.

この問題の原因は、ハニカム形状の触媒体が、最も幾何
学的表面積が広く望ましい形状である一方、この周囲に
ヒータを設けても触媒体の中央まで加熱するには時間が
かかり過ぎ、あるいは十分加熱できないからである。ま
た、ペレット形状を用いても、ペレット中にヒータを配
して、全体が均一に温度上昇させることは可能であるが
、高温の排気ガスでヒータがすぐに腐食し使用できなく
なるという欠点を持つものであった。
The reason for this problem is that while a honeycomb-shaped catalyst body is the most desirable shape with the largest geometric surface area, even if heaters are installed around this shape, it takes too long or not enough time to heat the center of the catalyst body. This is because it cannot be heated. Furthermore, even if a pellet shape is used, it is possible to uniformly raise the temperature of the entire pellet by placing a heater inside the pellet, but this has the disadvantage that the heater quickly corrodes due to high-temperature exhaust gas and becomes unusable. It was something.

課題を解決するための手段 本発明は、従来のこのような問題点を解消するために、
通電によって加熱される抵抗発熱体と、前記抵抗発熱体
の外周に設けた筒体と、前記筒体の外周に設けた突起部
と、前記突起部に担持した酸化反応触媒とを備えたこと
を特徴とする。
Means for Solving the Problems The present invention solves these conventional problems by:
A resistance heating element that is heated by energization, a cylinder provided on the outer periphery of the resistance heating element, a protrusion provided on the outer periphery of the cylinder, and an oxidation reaction catalyst supported on the protrusion. Features.

また、前記抵抗発熱体の代わりに、マイクロ波で加熱さ
れるマイクロ波吸収体を設けてもよい。
Furthermore, instead of the resistance heating element, a microwave absorber heated by microwaves may be provided.

また、高温流体経路に連通ずる内径部を有する筒体を用
いることもできる。
It is also possible to use a cylindrical body having an inner diameter that communicates with the hot fluid path.

さらに、可燃性ガスの予混合気経路に連通ずる内径部に
酸化触媒を有する筒体を用いることもできる。
Furthermore, it is also possible to use a cylindrical body that has an oxidation catalyst in its inner diameter portion that communicates with the premixture path of the combustible gas.

本発明の筒状触媒体の製造方法は、混練されたセラミッ
ク材料と流動材とを筒状に押し出し成形し、この筒状成
形体の内径部に抵抗発熱体を挿入した後、前記成形体の
外周面に突起部を成形加工することを特徴とする。
The method for manufacturing a cylindrical catalyst body of the present invention involves extruding a kneaded ceramic material and a fluid material into a cylindrical shape, inserting a resistance heating element into the inner diameter of the cylindrical molded body, and then It is characterized by molding protrusions on the outer peripheral surface.

作   用 上記構成によれば、通電によって加熱される抵抗発熱体
により筒状触媒体は内径部側から均一に加熱され素早く
触媒の活性化温度に達し、かつヒータは排気ガスに接し
ないのでヒータが腐食することもない。
Effect According to the above configuration, the cylindrical catalyst body is uniformly heated from the inner diameter side by the resistance heating element heated by electricity, and quickly reaches the activation temperature of the catalyst, and since the heater does not come into contact with exhaust gas, the heater It will not corrode.

また、マイクロ波で加熱されるマイクロ波吸収体を前記
抵抗発熱体の代わりに用いると、マイクロ波を外部から
照射することによって触媒体は内径部側から均一に加熱
され素早く活性化温度に達し、かつマイクロ波吸収体は
セラミックで腐食し難く、また直接排気ガスに接触しな
いもので寿命の問題はない。
Furthermore, when a microwave absorber heated by microwaves is used instead of the resistance heating element, the catalyst body is uniformly heated from the inner diameter side by irradiating microwaves from the outside and quickly reaches the activation temperature. Moreover, the microwave absorber is ceramic and does not easily corrode, and since it does not come into direct contact with exhaust gas, there is no problem with its lifespan.

また、排気ガス等の高温流体経路に連通ずる内径部を有
する筒体を用いても触媒は内部から均一に加熱され素早
く活性化温度に達し、かつヒータはないので腐食するこ
ともない。
Furthermore, even if a cylindrical body having an inner diameter part communicating with a high-temperature fluid path such as exhaust gas is used, the catalyst is uniformly heated from within and quickly reaches the activation temperature, and since there is no heater, there is no corrosion.

さらに、可燃性ガスの予混合気経路に連通ずる内径部に
酸化触媒を有する筒状触媒体を、電力ではなくガスや石
油等の予混合気で発熱させると、急速にかつ高温に触媒
を活性化温度に達することが可能であり、しかもこの予
混合気の排気の水分は外周面の触媒の被毒を起こすこと
がない。
Furthermore, if a cylindrical catalyst body that has an oxidation catalyst on its inner diameter that communicates with the combustible gas premixture path is heated with a premixture of gas or petroleum, etc. rather than electricity, the catalyst will be activated rapidly and at a high temperature. temperature can be reached, and the moisture in the exhaust gas of this premixture does not poison the catalyst on the outer peripheral surface.

また、触媒体の温度検出も、温度検出部を触媒体の内径
部に設けることにより、温度検出部が腐食性の排気ガス
に接触して腐食するということがないので、正確、敏感
に測定できる結果、触媒体の高温劣化を防止することが
できる。
In addition, by providing the temperature detection part on the inner diameter of the catalyst body, the temperature detection part will not come into contact with corrosive exhaust gas and corrode, allowing accurate and sensitive measurement. As a result, high temperature deterioration of the catalyst body can be prevented.

実施例 以下、本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す。第1図において、
1は電気で加熱される抵抗発熱体であり、螺旋状に巻回
されている。抵抗発熱体1は、筒状触媒体2の内径部3
に設けられている。この筒状触媒体2の外周面には突起
部4が形成されている。
FIG. 1 shows one embodiment of the invention. In Figure 1,
1 is a resistance heating element that is heated by electricity and is spirally wound. The resistance heating element 1 is connected to the inner diameter part 3 of the cylindrical catalyst body 2.
It is set in. A protrusion 4 is formed on the outer peripheral surface of this cylindrical catalyst body 2 .

この突起部4は触媒体2の実効表面積を増加し、反応を
促進するものである。内径部3には温度検出部5が設け
られ、触媒体2の温度を検知し、この信号にしたがって
、通電量あるいは被処理ガス(外径部を流れる)の濃度
、流量を制御し、触媒体2の温度を最適に保つものであ
る。
The protrusions 4 increase the effective surface area of the catalyst body 2 and promote the reaction. A temperature detection unit 5 is provided in the inner diameter part 3, which detects the temperature of the catalyst body 2, and according to this signal, controls the amount of current or the concentration and flow rate of the gas to be treated (flowing through the outer diameter part), and controls the temperature of the catalyst body 2. This is to maintain the temperature of No. 2 at an optimum level.

筒状触媒体2は、次のような方法で各種タイプが形成さ
れる。
Various types of the cylindrical catalyst body 2 are formed by the following methods.

1)第2図に示すように、中心が中空の星型(歯車型)
断面に押し出し成形したタイプであり、内径部に発熱体
1がセットされる。この方法は、成形が容易である。
1) Star-shaped (gear-shaped) with a hollow center as shown in Figure 2
It is a type that is extruded in cross section, and the heating element 1 is set in the inner diameter part. This method is easy to mold.

2)第3図に示すように、内部が中空の円柱状に押し出
し成形したのち、成形体の外周面を転造ダイスで突起部
4をフィン形成する。幾何学的表面積が大きく、反応性
がよい。
2) As shown in FIG. 3, after extrusion molding into a hollow cylindrical shape, the outer peripheral surface of the molded body is formed with a fin-like protrusion 4 using a rolling die. Large geometric surface area and good reactivity.

3)その他自由な種々の形状が、ロストワックス、砂割
り型等で製造可能である。
3) Various other shapes can be manufactured using lost wax, sand molds, etc.

さらに、第4図に示すように、筒体状に押し出し成形し
、成形体の内径部3に抵抗発熱体1を挿入した後、成形
体の外周面に突起部4を成形加工すると同時に内径を縮
めることにより、この成形体を抵抗発熱体1に密着させ
ることができるので、熱伝導を高めた筒状触媒体2を得
ることができる。
Furthermore, as shown in FIG. 4, after extrusion molding into a cylindrical shape and inserting a resistance heating element 1 into the inner diameter part 3 of the molded body, a protrusion 4 is formed on the outer peripheral surface of the molded body, and at the same time the inner diameter is By shrinking, this molded body can be brought into close contact with the resistance heating element 1, so that a cylindrical catalyst body 2 with improved heat conduction can be obtained.

このような筒状触媒体2は、アルミナ、シリカ、マクネ
シア、カルシア、チタニア等およびそれらノ複合体の骨
材をコーンスターチ、メチルセルローズ、セラミックゾ
ル等の結合肋材と混撚し、押し出し成形して焼成した筒
状の担体に白金族金属触媒等を担持したものである。
Such a cylindrical catalyst body 2 is made by mixing and twisting aggregates of alumina, silica, macnesia, calcia, titania, etc. and composites thereof with binding ribs such as cornstarch, methyl cellulose, ceramic sol, etc., extrusion molding, and firing. A platinum group metal catalyst is supported on a cylindrical carrier.

アルミン酸石灰のような水硬化性を有するセメント系の
素材を含む材料で成形した場合は、突出部4の成形直後
に水中に入れ、浮力によって突出部4の変形を防止した
まま硬化させることが可能である。この場合、水温を高
め硬化時間を早めれば生産性はよく、変形が少ないもの
となる。
When molded with a material containing a hydraulic cement material such as lime aluminate, it is possible to put the protrusion 4 into water immediately after molding and harden it while preventing the protrusion 4 from deforming due to buoyancy. It is possible. In this case, increasing the water temperature and speeding up the curing time will improve productivity and reduce deformation.

また、筒状触媒体2を金属製とし、表面にセラミック、
ホーロ処理を施したものに、触媒層を形成したものでも
良い。この様な金属製の筒状触媒体2は内部の抵抗発熱
体1で均一に高温加熱することが可能であり、これに担
持された酸化触媒は、効果的にタバコの煙等の室内の汚
染物質、臭気を除去することができる。
Moreover, the cylindrical catalyst body 2 is made of metal, and the surface is made of ceramic.
A catalyst layer may be formed on a material that has been subjected to hollow treatment. Such a metal cylindrical catalyst body 2 can be uniformly heated to a high temperature by the internal resistance heating element 1, and the oxidation catalyst supported on it can effectively eliminate indoor pollution such as cigarette smoke. Can remove substances and odors.

また、抵抗発熱体1は、直接被処理流体と接触しないた
め、腐食されることはない。ここに担持する触媒は白金
族金属触媒が活性力の点から望ましいものである。
Furthermore, the resistance heating element 1 does not come into direct contact with the fluid to be treated, so it will not be corroded. The catalyst supported here is preferably a platinum group metal catalyst from the viewpoint of activity.

この筒状触媒体2の内径部3に温度検出部5を設けてい
るので、触媒温度を容易に検出できる。
Since the temperature detection part 5 is provided in the inner diameter part 3 of this cylindrical catalyst body 2, the catalyst temperature can be easily detected.

抵抗発熱体1に通電後、触媒が活性化温度に達したこと
が容易に、正確に判断し得るので、装置の運転開始時間
が早まる。
After the resistance heating element 1 is energized, it can be easily and accurately determined that the catalyst has reached the activation temperature, so that the start time of the device is shortened.

また、ガス濃度を制御し、酸化反応熱のみで筒状触媒体
2を通電なしで触媒の活性化温度を保つことができ、電
力消費量の節約ができる。また、運転中に被処理ガスが
濃い濃度となって触媒体2の温度が酸化反応で急に上昇
した時、抵抗発熱体1の通電を停止、あるいはガス発生
部を制御することによって温度上昇を停止させることが
可能であるので、触媒の寿命を長いものとすることがで
きる。
In addition, by controlling the gas concentration, the activation temperature of the catalyst can be maintained using only the heat of oxidation reaction without energizing the cylindrical catalyst body 2, and power consumption can be saved. Also, when the temperature of the catalyst 2 suddenly rises due to oxidation reaction due to the high concentration of the gas to be treated during operation, the temperature rise can be suppressed by stopping the energization of the resistance heating element 1 or by controlling the gas generating section. Since it is possible to stop the catalyst, the life of the catalyst can be extended.

また第5図に示すように、筒状触媒体2の内径部3に窒
化珪素、炭化珪素、ジルコニア、各種磁性体等のような
マイクロ波吸収体8を設け、かつ、筒状触媒体2をアル
ミナ、シリカ、マクネシア、カルシア、チタニアのよう
なマイクロ波透過体で成形し、これにマイクロ波を外部
のマグネトロン7から照射して発熱させてもよい。この
場合は筒状触媒体2が被処理経路内に内包され、臭気等
が外部に漏洩しにくいものとなる。
Further, as shown in FIG. 5, a microwave absorber 8 such as silicon nitride, silicon carbide, zirconia, various magnetic materials, etc. is provided on the inner diameter portion 3 of the cylindrical catalyst body 2, and the cylindrical catalyst body 2 is It may be formed of a microwave transparent material such as alumina, silica, macnesia, calcia, or titania, and then irradiated with microwaves from an external magnetron 7 to generate heat. In this case, the cylindrical catalyst body 2 is enclosed within the path to be treated, making it difficult for odor etc. to leak outside.

また第8図に示すように、筒状触媒体2の内径部3に別
個に設けたガス燃焼部8の燃焼排気ガス等の高温流体を
導入してもよい。送風機9によって送風される空気は被
処理ガスの発生部10とガス燃焼部8とに分岐し、ガス
燃焼部8において、ガスパイプ11から供給される燃料
ガスと混合して燃焼する。この場合、電気加熱よりも急
速に筒状触媒体2が加熱され、かつ運転コストも安いも
のとなる。
Furthermore, as shown in FIG. 8, high-temperature fluid such as combustion exhaust gas from a gas combustion section 8 provided separately into the inner diameter portion 3 of the cylindrical catalyst body 2 may be introduced. The air blown by the blower 9 is branched into a treatment gas generation section 10 and a gas combustion section 8, where it is mixed with fuel gas supplied from a gas pipe 11 and burned. In this case, the cylindrical catalyst body 2 is heated more rapidly than electric heating, and the operating cost is also lower.

さらに、第7図に示すように、筒状触媒体2の内径部3
に触媒を担持し、ガスパイプ11から供給される燃料ガ
スと、送風機9から供給され加湿手段12で加湿された
空気とを混合してこの内径部3に供給し、前記触媒にて
発熱させ、筒状触媒体2を加熱してその外周で排気等の
被処理流体を浄化してもよい。
Further, as shown in FIG. 7, the inner diameter portion 3 of the cylindrical catalyst body 2
The fuel gas supplied from the gas pipe 11 and the air supplied from the blower 9 and humidified by the humidifying means 12 are mixed and supplied to this inner diameter part 3, and the catalyst is generated to generate heat, and the cylinder is heated. The catalyst body 2 may be heated to purify the fluid to be treated, such as exhaust gas, on its outer periphery.

また第8図に示すように、筒状触媒体2の内径部3に送
風機9の加圧空気を導入することによって、万−生じた
筒状触媒体2のひびを通って外部から侵入する排気ガス
を押し戻し、内径部3の抵抗発熱体1あるいはマイクロ
波吸収体4の損傷を防止し、あるいは装置外への排気漏
れの防止を行なってもよい。
In addition, as shown in FIG. 8, by introducing pressurized air from the blower 9 into the inner diameter portion 3 of the cylindrical catalyst body 2, exhaust gas that enters from the outside through cracks in the cylindrical catalyst body 2 is created. The gas may be pushed back to prevent damage to the resistance heating element 1 or the microwave absorber 4 in the inner diameter portion 3, or to prevent exhaust leakage to the outside of the apparatus.

発明の効果 本発明の筒状触媒体によると、以上のように触媒体を内
径部から均一に加熱でき、素早く活性化温度に達して確
実に脱臭浄化できる。さらに電気、排気、燃焼熱のよう
な熱源を用いても触媒が水分被毒しにくり、ドライに保
たれるため、触媒が未燃成分を効果的に吸着反応させ、
臭気等の浄化がし易い。
Effects of the Invention According to the cylindrical catalyst body of the present invention, as described above, the catalyst body can be uniformly heated from the inner diameter portion, quickly reaching the activation temperature, and reliably deodorizing and purifying the catalyst body. Furthermore, even when heat sources such as electricity, exhaust, or combustion heat are used, the catalyst is resistant to water poisoning and remains dry, allowing the catalyst to effectively adsorb and react unburned components.
Easy to clean odor etc.

また、触媒加熱熱源として電気を用いた場合は電気使用
量が小となって経済的であり、かつ触媒が活性化する時
間が短いので、装置を短時間の内に運転開始させること
ができる。
Furthermore, when electricity is used as a heat source for heating the catalyst, the amount of electricity used is small, which is economical, and since the time for activating the catalyst is short, the device can be started operating within a short time.

また、触媒体全体が均一に温度上昇し、従来の触媒体に
みられた局部的温度バラツキによる臭気の発生がなく、
かつ直接発熱体は高温の排気ガスに接触しないため腐食
が生じない。
In addition, the temperature of the entire catalyst increases uniformly, eliminating the generation of odors caused by local temperature variations seen in conventional catalysts.
Moreover, since the direct heating element does not come into contact with high-temperature exhaust gas, corrosion does not occur.

また、触媒体の温度検出も、検出部が腐食性の排気ガス
に接触しないので、検出部の排気ガスによる腐食はなく
、かつ温度も正確、敏感に測定できるため、触媒が高温
劣化しにくい。
In addition, when detecting the temperature of the catalyst, since the detection part does not come into contact with corrosive exhaust gas, the detection part is not corroded by the exhaust gas, and the temperature can be measured accurately and sensitively, so that the catalyst is unlikely to deteriorate at high temperatures.

また、ガスを用いて筒状触媒体を加熱した場合、更に運
転コストを低下させることができ、かつ直接被処理ガス
が接触する外径面が水分被毒しにくく、触媒の活性を保
つことができる。
In addition, when the cylindrical catalyst body is heated using gas, the operating cost can be further reduced, and the outer diameter surface, which is in direct contact with the gas to be treated, is less likely to be poisoned by water, and the activity of the catalyst can be maintained. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における筒状触媒体の要部縦
断面図、第2図、第3図は同実施例の突起部の形状例を
示す外観図、第4図は本発明の他の実施例における筒状
触媒体の要部縦断面図、第6図〜第8図は各々本発明の
その他の実施例における筒状触媒体の断面図である。 l・・・抵抗発熱体、2・・・筒状触媒体、3・・・内
径部、4・・・突起部、5・・・温度検出器、e・・・
マイクロ波吸収体、7・・・マグネトロン、8・・・ガ
ス燃焼部、9・・・送風機、11・・・ガスパイプ、1
2・・・加湿手段。 代理人の氏名 弁理士 粟野重孝 はか1名l・・−お
し狽ト腎−伴、 ?・−・冑1大角気謀体 3・−門&部 4〜 突起部 6−マイクロ仮吸収体 嬉 図 9−乏風機
FIG. 1 is a vertical cross-sectional view of a main part of a cylindrical catalyst body according to an embodiment of the present invention, FIGS. 2 and 3 are external views showing examples of the shape of the protrusions of the same embodiment, and FIG. FIGS. 6 to 8 are longitudinal sectional views of main parts of a cylindrical catalyst body in other embodiments of the present invention, and FIGS. 6 to 8 are sectional views of cylindrical catalyst bodies in other embodiments of the present invention, respectively. l... Resistance heating element, 2... Cylindrical catalyst body, 3... Inner diameter portion, 4... Protrusion, 5... Temperature detector, e...
Microwave absorber, 7... Magnetron, 8... Gas combustion section, 9... Blower, 11... Gas pipe, 1
2... Humidification means. Name of agent: Patent attorney Shigetaka Awano 1 person...・-・Kabutsu 1 Large-horned plot 3 ・- Gate & part 4 ~ Protrusion 6 - Micro temporary absorber Hizu figure 9 - Shofuuki

Claims (9)

【特許請求の範囲】[Claims] (1)通電によって加熱される抵抗発熱体と、前記抵抗
発熱体の外周に設けた筒体と、前記筒体の外周面に設け
た突起部と、前記突起部に担持した酸化反応触媒とを備
えたことを特徴とする筒状触媒体。
(1) A resistance heating element that is heated by energization, a cylinder provided on the outer periphery of the resistance heating element, a protrusion provided on the outer peripheral surface of the cylinder, and an oxidation reaction catalyst supported on the protrusion. A cylindrical catalyst body characterized by comprising:
(2)マイクロ波で加熱されるマイクロ波吸収体と、前
記マイクロ波吸収体の外周に設けたセラミック筒体と、
前記セラミック筒体の外周面に設けた突起部と、前記突
起部に担持した酸化反応触媒とを備えたことを特徴とす
る筒状触媒体体。
(2) a microwave absorber heated by microwaves; a ceramic cylinder provided on the outer periphery of the microwave absorber;
A cylindrical catalyst body comprising: a protrusion provided on the outer peripheral surface of the ceramic cylinder; and an oxidation reaction catalyst supported on the protrusion.
(3)高温流体経路に連通する内径部を有する筒体と、
前記筒体の外周面に設けた突起部と、前記突起部に坦持
した酸化反応触媒とを備えたことを特徴とする筒状触媒
体。
(3) a cylindrical body having an inner diameter portion communicating with the high temperature fluid path;
A cylindrical catalyst body comprising: a protrusion provided on the outer peripheral surface of the cylindrical body; and an oxidation reaction catalyst supported on the protrusion.
(4)可燃性ガスの予混合気経路に連通する内径部に酸
化触媒を有する筒体と、前記筒体の外周面に設けた突起
部と、前記突起部に坦持した酸化反応触媒とを備えたこ
とを特徴とする筒状触媒体。
(4) A cylindrical body having an oxidation catalyst on its inner diameter that communicates with a premixture path of combustible gas, a protrusion provided on the outer peripheral surface of the cylindrical body, and an oxidation reaction catalyst supported on the protrusion. A cylindrical catalyst body characterized by comprising:
(5)突起部がフィン状である請求項1、2、3または
4記載の筒状触媒体。
(5) The cylindrical catalyst body according to claim 1, 2, 3, or 4, wherein the protrusion has a fin shape.
(6)突起部が星型断面である請求項1、2、3または
4記載の筒状触媒体。
(6) The cylindrical catalyst body according to claim 1, 2, 3 or 4, wherein the protrusion has a star-shaped cross section.
(7)内径部を加圧する空気経路を設けた請求項1、2
または3記載の筒状触媒体。
(7) Claims 1 and 2 in which an air path for pressurizing the inner diameter portion is provided.
or the cylindrical catalyst body according to 3.
(8)内径部に温度検知手段を設けた請求項1、2、3
または4記載の筒状触媒体。
(8) Claims 1, 2, and 3, wherein a temperature detection means is provided on the inner diameter part.
or 4. The cylindrical catalyst body according to 4.
(9)混練されたセラミック材料と流動材とを筒状に押
し出し成形し、この筒状成形体の内径部に抵抗発熱体を
挿入した後、前記筒状成形体の外周面に突起部を成形加
工することを特徴とする筒状触媒体の製造方法。
(9) Extrude the kneaded ceramic material and fluid material into a cylindrical shape, insert a resistance heating element into the inner diameter of the cylindrical molded body, and then form a protrusion on the outer peripheral surface of the cylindrical molded body. 1. A method for manufacturing a cylindrical catalyst body, the method comprising processing the cylindrical catalyst body.
JP1040871A 1989-02-21 1989-02-21 Cylindrical catalyst body and method for producing the same Expired - Fee Related JP2523855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040871A JP2523855B2 (en) 1989-02-21 1989-02-21 Cylindrical catalyst body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040871A JP2523855B2 (en) 1989-02-21 1989-02-21 Cylindrical catalyst body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02218440A true JPH02218440A (en) 1990-08-31
JP2523855B2 JP2523855B2 (en) 1996-08-14

Family

ID=12592583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040871A Expired - Fee Related JP2523855B2 (en) 1989-02-21 1989-02-21 Cylindrical catalyst body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2523855B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265697A (en) * 1994-03-28 1995-10-17 Matsushita Electric Ind Co Ltd Production of deodorizing element
JPH11141906A (en) * 1997-11-07 1999-05-28 Matsushita Electric Ind Co Ltd Deodorization unit and air conditioner using the same
JP2006024502A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp Microwave exothermic body and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322890A (en) * 1976-08-16 1978-03-02 Tdk Corp Catalyst element for purifying harmful gas
JPS5427145U (en) * 1977-07-25 1979-02-22
JPS59136139A (en) * 1983-01-25 1984-08-04 Babcock Hitachi Kk Structural body of catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322890A (en) * 1976-08-16 1978-03-02 Tdk Corp Catalyst element for purifying harmful gas
JPS5427145U (en) * 1977-07-25 1979-02-22
JPS59136139A (en) * 1983-01-25 1984-08-04 Babcock Hitachi Kk Structural body of catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265697A (en) * 1994-03-28 1995-10-17 Matsushita Electric Ind Co Ltd Production of deodorizing element
JPH11141906A (en) * 1997-11-07 1999-05-28 Matsushita Electric Ind Co Ltd Deodorization unit and air conditioner using the same
JP2006024502A (en) * 2004-07-09 2006-01-26 Nippon Steel Corp Microwave exothermic body and its manufacturing method
JP4551143B2 (en) * 2004-07-09 2010-09-22 新日本製鐵株式会社 Microwave heating element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2523855B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
CN101820994B (en) Monolith, catalyst convertor for purifying exhaust gas using the same and method for manufacturing the catalyst
US5822977A (en) Method of and apparatus for purifying exhaust gas utilizing a heated filter which is heated at a rate of no more than 10° C./minute
JPH02206690A (en) Fuel activation method and activation system
US5482685A (en) Deodorizing apparatus
JPH02218440A (en) Tubular catalyst and its manufacture method
JPH10259709A (en) Method for purifying exhaust gas and exhaust emission control device
KR100998248B1 (en) Deodorizing Device for Food Garbage Disposal Apparatus Having Hybrid Type Heater
CN210373852U (en) Clean air supply device for environmental chamber
CN108397782A (en) A kind of volatile organic matter heatable catalytic combustion reactor and its method
JP3267044B2 (en) Catalytic reactor
JPS636737B2 (en)
CN208936179U (en) A kind of reverse flow reactor for catalytic combustion of contaminants and consersion unit
JP3219404B2 (en) Exhaust gas purification device
JP3589204B2 (en) Garbage disposal equipment
WO1999013270A1 (en) Deodorizing apparatus and deodorizing method
KR100847856B1 (en) Deodorizing device for food garbage disposal apparatus having hybrid type heater
JP3334462B2 (en) Deodorizing device
JPS60193525A (en) Smoke and odor consuming apparatus of exhaust gas in electric furnace for wax type calcination
JPH04110522A (en) Heater
KR101541743B1 (en) device for purifying with self-heating catalyst and method for manufacturing the same
JPS60207818A (en) Liquid fuel burner
JPH08155266A (en) Deodorizing heater and deodorizing apparatus
JPS59189209A (en) Purifying facility for gas
CN217816796U (en) Improved structure of oxidation chamber of RTO waste gas treatment device
JPS5855291Y2 (en) radiant tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees