JPH02218130A - Silicon carbide oxynitride thin film and manufacture thereof - Google Patents

Silicon carbide oxynitride thin film and manufacture thereof

Info

Publication number
JPH02218130A
JPH02218130A JP3857289A JP3857289A JPH02218130A JP H02218130 A JPH02218130 A JP H02218130A JP 3857289 A JP3857289 A JP 3857289A JP 3857289 A JP3857289 A JP 3857289A JP H02218130 A JPH02218130 A JP H02218130A
Authority
JP
Japan
Prior art keywords
gas
thin film
silicon
plasma
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3857289A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Akihiro Korechika
哲広 是近
Seiichiro Sakaguchi
誠一郎 坂口
Keizaburo Kuramasu
敬三郎 倉増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3857289A priority Critical patent/JPH02218130A/en
Publication of JPH02218130A publication Critical patent/JPH02218130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an insulating thin film characterized by high perforance by forming the thin film by using the mixed gas of hydrogenized silicon gas such as monosilane, nitrogen gas and carbon monoxide gas or the mixed gas of silicon hydride, nitrogen gas and carbon dioxide gas. CONSTITUTION:A microwave is introduced into a plasma generating chamber from a microwave oscillator 13 through a waveguide 12. A magnetic field is applied in the plasma generating chamber with an electromagnet 15. The mixed gas of SiH4, CO2 and N2 or the mixed gas of SiH4, CO and N2 is introduced through a gas introducing port 16 as a raw material gas. For example, the pressure in a reaction container is kept at 1.0mTorr. When plasma 17 having a high degree of dissociation is generated, the plasma 17 reaches a substrate holder 19 through a plasma drawing window 18. Silicon carbide oxynitride is formed on a substrate 20. Thus, an insulating thin film characterized by fine structure and less inner strain can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主に酸化窒化シリコンカーバイド(シリコン
カーバイドオキシナイトライド)と呼ぶべき断絶縁薄膜
との室温付近の比較的低温での製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention mainly relates to a method for manufacturing an insulating thin film called silicon carbide oxynitride (silicon carbide oxynitride) at a relatively low temperature near room temperature. be.

従来の技術 従来、マイクロ波電子サイクロトロン共鳴吸収を利用し
たプラズマ分解によって酸化窒化シリコンを半導体装置
の保護膜として形成する場合、第3図に示すような構成
を持つ製造装置にて行った。
2. Description of the Related Art Conventionally, when silicon oxynitride was formed as a protective film for a semiconductor device by plasma decomposition using microwave electron cyclotron resonance absorption, a manufacturing apparatus having a configuration as shown in FIG. 3 was used.

31が真空チャンバーで排気孔32より真空に排気され
る。導波管33を通してマイクロ波発振器34からマイ
クロ波がプラズマ発生室35へ導入される。電磁石36
によってプラズマ発生室35に磁界が印加される。37
はガス導入口で5IH4、Ne、Neo、02等の原料
ガスが導入され、例えば反応容器内の圧力を1 、 Q
 uTorr程度に保つ。磁界の強さを電子サイクロト
ロン共鳴条件を溝たすように設定することにより、解離
度の高いプラズマが得られる。発生したプラズマはプラ
ズマ引出し窓38を通過して基板ホルダー39に達しホ
ルダー39上の基板40に窒化シリコン、酸化窒化シリ
コン、酸化シリコン薄膜等が堆積される。
A vacuum chamber 31 is evacuated to a vacuum through an exhaust hole 32. Microwaves are introduced from a microwave oscillator 34 into a plasma generation chamber 35 through a waveguide 33 . electromagnet 36
A magnetic field is applied to the plasma generation chamber 35 by this. 37
The raw material gases such as 5IH4, Ne, Neo, 02, etc. are introduced at the gas inlet, and the pressure inside the reaction vessel is, for example, 1, Q.
Keep it at about uTorr. Plasma with a high degree of dissociation can be obtained by setting the strength of the magnetic field so as to satisfy the electron cyclotron resonance conditions. The generated plasma passes through the plasma extraction window 38 and reaches the substrate holder 39, where silicon nitride, silicon oxynitride, silicon oxide thin film, etc. are deposited on the substrate 40 on the holder 39.

発明が解決しようとする課題 しかしながら、この様な従来の絶縁膜では、例えば窒化
シリコンの場合、原料ガスとしてモノシランと窒素ガス
を用い、堆積させても良質な窒化シリコンを得ることは
出来たが、膜の内部に生ずる応力が大きくクラックが発
生しやすいという問題があり、デバイスへの応用範囲が
限定されていた。一方、酸化シリコンや酸化窒化シリコ
ンの場合は、シランガスと窒素(N、)、酸素(o2)
ガスを使用するため、プラズマ中でガスどうしの反応を
引き起こしてしまい、基板との密着性の悪い状態で膜形
成が行われるため、はがれやすいという問題や耐摩耗層
としてイメージセンサやサーマルヘッドに適用する場合
硬度不足の点に大きな問題点があった。
Problems to be Solved by the Invention However, in the case of such conventional insulating films, for example, in the case of silicon nitride, high quality silicon nitride could be obtained even if monosilane and nitrogen gas were used as source gases and deposited. There is a problem in that the stress generated inside the film is large and cracks are likely to occur, which limits the scope of its application to devices. On the other hand, in the case of silicon oxide and silicon oxynitride, silane gas, nitrogen (N, ), and oxygen (O2) are used.
Since it uses gas, it causes a reaction between the gases in the plasma, and the film is formed with poor adhesion to the substrate, which causes the problem of easy peeling.It is also used as a wear-resistant layer in image sensors and thermal heads. In this case, there was a major problem in that the hardness was insufficient.

本発明は、この様な問題点を解決することを目的として
いる。
The present invention aims to solve such problems.

課題を解決するための手段 上記問題点を解決するために、本発明は少なくともシリ
コン、炭素、酸素、窒素の4元素が固体薄膜の基本的骨
格を成し、かつ前記炭素元素の配位数が2〜4であるこ
とを特徴とする酸化窒化シリコンカーバイド膜を提供す
るものである。また、本発明では従来はモノシランと窒
素の混合ガスを原料ガスとして窒化シリコン(シリコン
ナイトライド)膜を形成し使用されていたが本発明では
原料ガスとして、モノシランやジシラン等の水素化シリ
コンガスと、窒素ガスさらにCOやCOa等の酸化炭素
を原料ガスとし5iCON膜を形成することと、マイク
ロ波電力を適度な値に調節することによって、上記問題
点が解決できることを見いだした。本発明は上記手段に
より高性能な絶縁薄膜とそれを実現する製造方法を提供
するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides that at least four elements, silicon, carbon, oxygen, and nitrogen, form the basic skeleton of the solid thin film, and that the coordination number of the carbon element is The present invention provides an oxynitride silicon carbide film characterized in that the number is 2 to 4. In addition, in the present invention, a silicon nitride film was conventionally formed using a mixed gas of monosilane and nitrogen as a raw material gas, but in the present invention, a hydrogenated silicon gas such as monosilane or disilane is used as a raw material gas. It has been found that the above problems can be solved by forming a 5iCON film using nitrogen gas and carbon oxides such as CO and COa as raw material gases, and by adjusting the microwave power to an appropriate value. The present invention provides a high-performance insulating thin film and a manufacturing method for realizing the same by the above-mentioned means.

作用 上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。従来の方法では、モノシラン
と酸素と窒素の混合ガスを原料ガスとして酸化窒化シリ
コン(シリコンオキシナイトライド)膜を形成する方法
で、SiN[と5i02の中間的性質の膜を使い分けて
使用していた。
Effects The effects of the present invention produced by using the above-mentioned means are as follows. In the conventional method, a silicon oxynitride (silicon oxynitride) film is formed using a mixed gas of monosilane, oxygen, and nitrogen as a raw material gas, and films with properties intermediate between SiN and 5i02 are selectively used. .

プラズマ中で高励起な状態となっている窒素が、膜中に
数多く取り込まれ、膜中の内部歪を取り去ることができ
なかったものを、本発明で二酸化炭素(CO2)を使用
することによって、炭素、酸素と窒素を効率よくシリコ
ン原子と結合させ、構造がち密でかつ内部歪の小さな優
れた絶縁薄膜を形成可能とし、しかもマイクロ波電力を
調整するだけで、内部応力を調整でき、膜の性質を連続
的に可変しやすくできるものである。
By using carbon dioxide (CO2) in the present invention, a large amount of nitrogen, which is highly excited in the plasma, is incorporated into the film and the internal strain in the film cannot be removed. By efficiently combining carbon, oxygen, and nitrogen with silicon atoms, it is possible to form an excellent insulating thin film with a dense structure and low internal strain.In addition, the internal stress can be adjusted simply by adjusting the microwave power, and the film It is possible to easily change the properties continuously.

実施例 第一の実施例として、本発明の製造方法を用いて酸化窒
化シリコン薄膜を室温で形成した場合の例について示す
EXAMPLE 1 As a first example, an example in which a silicon oxynitride thin film is formed at room temperature using the manufacturing method of the present invention will be described.

以下図面に基づき、本発明の代表的な実施例を示す。第
1図は本発明に使用した装置概略図である。10が真空
チャンバーで、排気孔11より真空に排気される。導波
管12を通してマイクロ波発振器13からマイクロ波が
プラズマ発生室14へ導入される。電磁石16によりプ
ラズマ発生室14に磁界が印加される。16はガス導入
口で5IH4とCO2、N2の混合ガスもしくは、5I
H4、COとN2の混合ガスが原料ガスとして導入され
、例えば反応容器内の圧力を1 、 Q a+TOrr
程度に保つ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Representative embodiments of the present invention will be shown below based on the drawings. FIG. 1 is a schematic diagram of the apparatus used in the present invention. 10 is a vacuum chamber, which is evacuated to a vacuum through an exhaust hole 11. Microwaves are introduced from a microwave oscillator 13 into a plasma generation chamber 14 through a waveguide 12 . A magnetic field is applied to the plasma generation chamber 14 by the electromagnet 16 . 16 is a gas inlet port for a mixed gas of 5IH4, CO2, and N2 or 5I
A mixed gas of H4, CO and N2 is introduced as a raw material gas, and for example, the pressure inside the reaction vessel is set to 1, Q a + TOrr
Keep it at a moderate level.

プラズマ発生室の磁界の強さを電子サイクロトロン共鳴
条件を満たすように設定することにより、解離度の高い
プラズマ17が発生する。発生したプラズマはプラズマ
引出し窓 18を通過して基板ホルダー19に達し基板
20にシリコンカーバイドオキシナイトライドが形成さ
れる。この時、例えば5iHaとCo、Naの混合比を
1:  10: 50〜1:  100: 50の間の
値としておき、マイクロ波の電力をそれぞれの原料ガス
がよく励起される電力に設定することによって、任意の
組成の5iCON膜を形成することが可能である。第2
図に5iHaとN2のガス流量比を一定とし、CO流量
を変化させた時の、膜のビッカース硬度の変化を示して
いる。第2図から判るように、CO流量を変化させるこ
とによって硬度が調節できることが判る。もちろんSi
H4とN2の混合比を変化させると、これらの変化の割
合も変化する。
Plasma 17 with a high degree of dissociation is generated by setting the strength of the magnetic field in the plasma generation chamber to satisfy electron cyclotron resonance conditions. The generated plasma passes through the plasma extraction window 18 and reaches the substrate holder 19, where silicon carbide oxynitride is formed on the substrate 20. At this time, for example, the mixing ratio of 5iHa, Co, and Na should be set to a value between 1:10:50 and 1:100:50, and the microwave power should be set to a power that can well excite each source gas. Accordingly, it is possible to form a 5iCON film of any composition. Second
The figure shows changes in the Vickers hardness of the film when the gas flow rate ratio of 5iHa and N2 is constant and the CO flow rate is varied. As can be seen from FIG. 2, it can be seen that the hardness can be adjusted by changing the CO flow rate. Of course Si
When the mixing ratio of H4 and N2 is changed, the rate of these changes also changes.

第4図に同じ<SiH4とN2のガス流量比を一定とし
、単結晶シリコン基板上にCOガス流量を変化させ堆積
させた時の、膜中の内部応力の変化を示している。第4
図から判るように、co流量を変化させることによって
応力が非常に小さくできる。本実施例では基板を室温と
したが、基板が損傷を受けなければこれより高い温度で
形成しても問題無い。
FIG. 4 shows the change in internal stress in the film when deposited on a single-crystal silicon substrate while keeping the gas flow rate ratio of SiH4 and N2 constant and varying the CO gas flow rate. Fourth
As can be seen from the figure, the stress can be made very small by changing the co flow rate. In this embodiment, the substrate was kept at room temperature, but there is no problem in forming at a higher temperature as long as the substrate is not damaged.

本実施例はECRプラズマCVD法を用いた場合につい
て述べたが、いわゆる一般的なプラズマCVD法におい
て200〜400℃の基板加熱を行なえばほぼ同様な効
果が得られる。但し、一般のプラズマはECRプラズマ
に比ベガスの種類によって励起しにくい場合があるので
、各々のガスの流量比を適切な値に設定し直す必要があ
ることは、言うまでもない。
Although this embodiment has been described using the ECR plasma CVD method, substantially the same effect can be obtained by heating the substrate at 200 to 400° C. in the so-called general plasma CVD method. However, since general plasma may be more difficult to excite than ECR plasma depending on the type of gas, it goes without saying that it is necessary to reset the flow rate ratio of each gas to an appropriate value.

また、本実施例では水素化シリコンガスとしてモノシラ
ン(SiHa)を、炭化酸素ガスとしてCOガスを用い
て説明したが、モノシランの代わりにジシランを、CO
の代わりにCO2使用しても同様の効果が得られること
は言うまでもない。
Furthermore, in this example, monosilane (SiHa) was used as the hydrogenated silicon gas and CO gas was used as the carboxylic oxygen gas, but disilane (SiHa) was used instead of monosilane.
It goes without saying that the same effect can be obtained by using CO2 instead of .

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

先ず、実施例のにも示した通り、CO流量を変化させる
ことによって膜のビッカース硬°度が簡単に調節できる
ことが上げられる。またこの時の堆、積速麿は、ある程
度マイクロ波電力を印加しておけば堆積速度はほとんど
変化していないので硬度の異なる膜を得ようとしたとき
にも、堆積速度の変化による生産性の低下は無いことが
上げられる。
First, as shown in the examples, the Vickers hardness of the membrane can be easily adjusted by changing the CO flow rate. In addition, the deposition rate at this time does not change much if microwave power is applied to a certain extent, so even when trying to obtain a film with different hardness, the productivity can be improved by changing the deposition rate. It can be said that there is no decrease in

さらには、マイクロ波電力を調整することにょうて応力
が非常に小さな膜を得ることができる。
Furthermore, a film with very low stress can be obtained by adjusting the microwave power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシリコンカーバイトオキシナイトライ
ド薄膜形成に使用したECRプラズマCVD装置概略図
、第2図はビッカース硬度のCO依存性を示す図、第3
図は従来のECRプラズマCVD装置の概略図、第4図
は膜中の内部応力のCO流星依存性を示す図である。 10・・・真空チャンバー 11・・・排気孔、12・
・・導波管、13・・・マイクロ波発振器、14・・・
プラズマ発生室、15・・・電磁石、16・・・ガス導
入口、17・・・プラズマ、18・・・プラズマ引出し
窓、19・・・基板ホルダー 代理人の氏名 弁理士 粟野重孝 はか1名第 図 COf、l愛 (、gcCx) 第 図 に0 CO3肥髪 (ΔCcrrL) 瀞
Figure 1 is a schematic diagram of the ECR plasma CVD apparatus used for forming the silicon carbide oxynitride thin film of the present invention, Figure 2 is a diagram showing the CO dependence of Vickers hardness, and Figure 3 is a diagram showing the CO dependence of Vickers hardness.
The figure is a schematic diagram of a conventional ECR plasma CVD apparatus, and FIG. 4 is a diagram showing the dependence of internal stress in a film on CO meteors. 10... Vacuum chamber 11... Exhaust hole, 12.
...Waveguide, 13...Microwave oscillator, 14...
Plasma generation chamber, 15... Electromagnet, 16... Gas inlet, 17... Plasma, 18... Plasma drawer window, 19... Name of substrate holder agent Patent attorney Shigetaka Awano 1 person Figure COf, l love (, gcCx) Figure 0 CO3 hypertrophy (ΔCcrrL)

Claims (3)

【特許請求の範囲】[Claims] (1)少なくともシリコン、炭素、酸素、窒素の4元素
が固体薄膜の基本的骨格を成し、かつ前記炭素元素の配
位数が2〜4であることを特徴とする酸化窒化シリコン
カーバイド薄膜。
(1) A silicon oxynitride silicon carbide thin film, characterized in that at least four elements, silicon, carbon, oxygen, and nitrogen, form the basic skeleton of the solid thin film, and the carbon element has a coordination number of 2 to 4.
(2)酸化窒化シリコンカーバイド薄膜の製造方法に於
て、高周波、直流もしくは交流電界によるプラズマ分解
による前記薄膜の堆積過程において、少なくともモノシ
ラン等の水素化シリコンガス、窒素ガスと一酸化炭素(
CO)ガス、もしくは水素化シリコン、窒素ガスと二酸
化炭素(CO_2)ガスの混合ガスを用いて形成するこ
と特徴とする酸化窒化シリコンカーバイド薄膜の製造方
(2) In the method for producing a silicon oxynitride silicon carbide thin film, in the process of depositing the thin film by plasma decomposition using a high frequency, direct current or alternating current electric field, at least hydrogenated silicon gas such as monosilane, nitrogen gas and carbon monoxide (
A method for producing a silicon oxynitride silicon carbide thin film, characterized in that it is formed using a mixed gas of silicon hydride, nitrogen gas, and carbon dioxide (CO_2) gas.
(3)酸化窒化シリコンカーバイド薄膜の製造方法に於
て、少なくともモノシラン等の水素化シリコンガスと酸
化炭素ガスと窒素ガスとの混合ガス、もしくは水素化シ
リコン、酸化炭素、亜酸化窒素と窒素ガスの混合ガスを
用いて形成すること特徴とする酸化窒化シリコンカーバ
イド薄膜の製造方法。
(3) In the method for producing an oxynitride silicon carbide thin film, at least a mixed gas of silicon hydride gas such as monosilane, carbon oxide gas, and nitrogen gas, or a mixture of silicon hydride, carbon oxide, nitrous oxide, and nitrogen gas is used. A method for producing a silicon oxynitride silicon carbide thin film, characterized in that it is formed using a mixed gas.
JP3857289A 1989-02-17 1989-02-17 Silicon carbide oxynitride thin film and manufacture thereof Pending JPH02218130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3857289A JPH02218130A (en) 1989-02-17 1989-02-17 Silicon carbide oxynitride thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3857289A JPH02218130A (en) 1989-02-17 1989-02-17 Silicon carbide oxynitride thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02218130A true JPH02218130A (en) 1990-08-30

Family

ID=12529007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3857289A Pending JPH02218130A (en) 1989-02-17 1989-02-17 Silicon carbide oxynitride thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02218130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001040A (en) * 2001-06-28 2003-01-06 동부전자 주식회사 Method for forming a passivation layer in a semiconductor manufacturing procedure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001040A (en) * 2001-06-28 2003-01-06 동부전자 주식회사 Method for forming a passivation layer in a semiconductor manufacturing procedure

Similar Documents

Publication Publication Date Title
US4845054A (en) Low temperature chemical vapor deposition of silicon dioxide films
EP0584252B1 (en) A PROCESS FOR DEPOSITING A SIOx FILM HAVING REDUCED INTRINSIC STRESS AND/OR REDUCED HYDROGEN CONTENT
US6025280A (en) Use of SiD4 for deposition of ultra thin and controllable oxides
US4572841A (en) Low temperature method of deposition silicon dioxide
US4900591A (en) Method for the deposition of high quality silicon dioxide at low temperature
US4576829A (en) Low temperature growth of silicon dioxide on silicon
US20070134433A1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
JPS5628637A (en) Film making method
JPH0732151B2 (en) Low temperature chemical vapor deposition of silicon dioxide film
US3503798A (en) Silicon nitride film deposition method
JPS6164124A (en) Thin film manufacturing equipment
JPH02218130A (en) Silicon carbide oxynitride thin film and manufacture thereof
JPH04362017A (en) Formation of oriented ta2o5 thin film
Pankov et al. The Effect of Hydrogen Addition on the Fluorine Doping Level of SiOF Films Prepared by Remote Plasma-Enhanced Chemical Vapor Deposition Using SiF4-Based Plasmas
JPH0543393A (en) Method for preparing carbon material
JPH0492893A (en) Vapor-phase synthesis of diamond thin film
JPH02139929A (en) Manufacture of insulating thin film
JPS63166970A (en) Method for synthesizing carbon film
JPS59177919A (en) Selective growth of thin film
JPH0324266A (en) Wear resistant thin film and production thereof
EP0412644A3 (en) Low temperature low pressure thermal cvd process for forming conformal group iii and/or group v-doped silicate glass coating of uniform thickness on integrated structure
JP2977150B2 (en) Method for manufacturing silicon dioxide insulating film
JPH0449620A (en) Manufacture of semiconductor device
JP2002289615A (en) Method and apparatus for forming thin film