JPH02217789A - Heat exchanging element and heat exchanger - Google Patents

Heat exchanging element and heat exchanger

Info

Publication number
JPH02217789A
JPH02217789A JP3560089A JP3560089A JPH02217789A JP H02217789 A JPH02217789 A JP H02217789A JP 3560089 A JP3560089 A JP 3560089A JP 3560089 A JP3560089 A JP 3560089A JP H02217789 A JPH02217789 A JP H02217789A
Authority
JP
Japan
Prior art keywords
passage
heat exchange
uneven
corrugated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3560089A
Other languages
Japanese (ja)
Inventor
Yoshitaka Koba
木場 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3560089A priority Critical patent/JPH02217789A/en
Publication of JPH02217789A publication Critical patent/JPH02217789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a heat exchanging area and improve a heat exchanging efficiency by a method wherein heat exchange between a fluid, lowing through a first passage, and another fluid, flowing through a second passage, is effected through corrugated plates provided with a multitude of recessed and projected grooves. CONSTITUTION:The gap of a first passage 8 is formed between the projected groove 5 of a corrugated plate 6 at one side and the recessed groove 4 of the other corrugated plate 7 at the other side in an unit body 2. Upon laminating a plurality of unit bodies 2, corrugated end spacers 10, 10 are interposed between the unit bodies 2,... at both lengthwise ends of the recessed and projected grooves 4, 5 so as to be opposed to the recessed and projected grooves 4, 5 to keep spaces between the unit bodies 2, 2 while the lengthwise both ends of the recessed and projected grooves 4, 5 are sealed by the end spacers 10, 10 to form a second passage 9, orthogonal to a first passage 8, by the neighboring unit bodies 2, 2 and both spacers 10, 10. Heat exchange is effected between a fluid flowing through the first passage 8 and another fluid flowing through the second passage 9 through the corrugated plates 6, 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換エレメント及び熱交換装置、詳しくは
、温度の異なる二つの流体間で熱交換を行う、例えば、
換気装置或は予熱器等に用いる熱交換エレメント及び該
熱交換エレメントを備えた熱交換装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a heat exchange element and a heat exchange device, and more particularly, to a heat exchange element and a heat exchange device, which perform heat exchange between two fluids having different temperatures, for example.
The present invention relates to a heat exchange element used in a ventilation device or a preheater, and a heat exchange device equipped with the heat exchange element.

(従  来  技  術  ) 従来この極の熱交換エレメント及び該熱交換ムを備えた
熱交換器として、例えば特公昭47−19990号公報
に記載されたものが知られており、この公報記載のもの
は、第11図に概略的に示すごとく、複数の平板状仕切
板(A)の間に、鋸歯状波形の断面を仔する間隔板(B
)を挟んで配置すると共に、該間隔板(B)の波形の形
成方向が互いに直交するようにして、矢印(C)の方向
へ気流を流す通気孔CD)及び矢印(E)の方向へ気流
を流す通気孔(F)を形成し、前記矢印(C)方向に流
す気流と前記矢印(E)方向に流す気流との間で、前記
仕切板(A)を介して熱交換するようにしている。
(Prior art) Conventionally, as a heat exchanger equipped with this pole heat exchange element and the heat exchanger, the one described in Japanese Patent Publication No. 19990/1983 is known, for example, and the one described in this publication As schematically shown in FIG.
) are placed on both sides of the spacer plate (B), and the corrugated directions of the spacer plate (B) are perpendicular to each other, so that the airflow hole CD) allows the airflow to flow in the direction of the arrow (C), and the airflow hole CD) allows the airflow to flow in the direction of the arrow (E). A vent hole (F) is formed through which the air flows, and heat is exchanged between the air flow flowing in the direction of the arrow (C) and the air flow flowing in the direction of the arrow (E) via the partition plate (A). There is.

(発明が解決しようとする課題) ところで、前記従来技術の熱交換器では、複数の平板状
仕切板(A)を介して熱交換しているから、熱交換面積
が少なく、このため熱交換効率が悪い問題がある。尚、
熱交換器を大きくすることなく熱交換を増加させる、即
ち熱交換効率をよくするためには、仕切板(A)の間隔
を狭くして段数を多くすることが考えられるが、仕切板
(A、 )の間隔が狭くなるため、前記通気孔(D)及
び通気孔(F)の流路抵抗が増大したり、文目詰まりし
たりすることになり、この結果熱交換効率の向上に限界
があった。また、前記仕切板(A)を介して相隣接する
前記間隔板(B)の波形の形成方向が互いに直交するよ
うに配置しているから、仕切板(A)を多数積層する場
合、積層する毎に前記間隔板(B)の方向を901回転
させ、波形形成方向を互いに90@方向を変なければな
らないため、積層に手間がかかり、量産するための専用
機械がそれだけ複雑になる問題があった。
(Problems to be Solved by the Invention) By the way, in the heat exchanger of the prior art described above, since heat is exchanged through a plurality of flat partition plates (A), the heat exchange area is small, and therefore the heat exchange efficiency is low. There is a bad problem. still,
In order to increase heat exchange without increasing the size of the heat exchanger, that is, to improve heat exchange efficiency, it is possible to narrow the interval between the partition plates (A) and increase the number of stages. , ) becomes narrower, the flow path resistance of the ventilation holes (D) and the ventilation holes (F) increases and the passages become clogged, and as a result, there is a limit to the improvement of heat exchange efficiency. there were. Furthermore, since the directions of the waveforms of the spacer plates (B) adjacent to each other with the partition plate (A) interposed therebetween are arranged so as to be perpendicular to each other, when a large number of partition plates (A) are stacked, the stacking Since the direction of the spacer plate (B) must be rotated 901 times and the waveform forming directions must be changed by 90° each time, there is a problem that lamination is time-consuming and the dedicated machine for mass production becomes more complicated. Ta.

本発明は以上の実情に鑑みて開発したもので、目的とす
るところは、波板の表面積が平板に比較して大きいこと
に注目して、温度の異なる流体と流体との熱交換を表面
積の大きい波形板を介して行えるようにして、熱交換効
率がよ(、かつ、簡単に製作できる熱交換エレメントを
提供する点にあり、また、熱交換効率がより、シかも消
音効果を有する熱交換装置を提供しようとする点である
The present invention was developed in view of the above circumstances, and its purpose is to improve heat exchange between fluids with different temperatures by focusing on the fact that the surface area of a corrugated sheet is larger than that of a flat sheet. The purpose of the present invention is to provide a heat exchange element that allows heat exchange to be carried out through a large corrugated plate and has a high heat exchange efficiency (and is easy to manufacture). The point is that we are trying to provide equipment.

(課題を解決するための手段) 上記目的を達成するために、本発明の熱交換エレメント
は、伝熱性を存し、多数の凹凸条(4)(5)を備えた
一対の波形板(E3)(7)から成り、前記凹凸条(4
)(5)の方向を同一方向とし、凹凸条(4)(5)間
に隙間を形成するごとく接合した複数のエレメント単体
(2)・・・を前記凹凸条(4)(5)の方向を同一方
向として積層し、前記凹凸条(4)(5,)の長さ方向
に延びる複数の第1通路(8)・・・を形成すると共に
、前記各単体(2)・・・間で、かつ、前記凹凸条(4
)(5)の長さ方向両端部に波形の端部スペーサー(1
0)(10)を介装して封止し、前記各単体(2)間に
前記第1通路(8)と直交する方向に延びる第2通路(
9)を形成し、前記第1通路(8)及び第2通路(9)
を流通する流体を、前記波形板(6)(7)・・・を通
して熱交換するようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the heat exchange element of the present invention has a pair of corrugated plates (E3 ) (7), and the uneven stripes (4
) (5) are in the same direction, and a plurality of single elements (2) are joined so as to form gaps between the uneven lines (4) and (5)... in the direction of the uneven lines (4) and (5). are stacked in the same direction to form a plurality of first passages (8) extending in the length direction of the uneven strips (4), (5,), and between each of the single bodies (2)... , and the uneven strip (4
) (5) Wave-shaped end spacers (1
0) (10) is interposed and sealed, and a second passage (
9), and the first passage (8) and the second passage (9)
The fluid flowing through the corrugated plates (6), (7), etc. is heat exchanged through them.

前記エレメント単体(2)・・・間で、凹凸条(4)(
5)の長さ方向中間部位に、少なくとも一つの凹凸状中
間スペーサー(11)を介装するとよい。
Between the single element (2)... there are uneven stripes (4) (
5) It is preferable to interpose at least one uneven intermediate spacer (11) in the longitudinally intermediate portion.

また、エレメント単体(2)・・・における各波形板(
6)(7)間に、これら各波形板(6)(7)の凹条底
部及び凸条頂部と接合する平板状仕切板(3)を介装す
ると効果的である。
In addition, each corrugated plate (
It is effective to interpose a flat partition plate (3) between the corrugated plates 6 and 7, which is connected to the groove bottom and the convex top of each of these corrugated plates (6) and (7).

更に、一対の波形板(6)(7)を凹凸条(4)(5)
を相互に対向させて接合した前記各エレメント単体(2
)・・・が、これら各単体(2)における凹凸条(4)
(5)のピッチを半ピッチずらせて積層するときには、
前記各波形板(6)(7)の凹凸方向端部が、凹条底部
と凸条頂部とが接合する位置で終っているのが好ましい
Furthermore, a pair of corrugated plates (6) (7) are formed into uneven strips (4) (5).
Each of the above-mentioned single elements (2
)... is the uneven strip (4) in each of these single units (2)
(5) When stacking layers with the pitch shifted by half a pitch,
It is preferable that the ends of each of the corrugated plates (6) and (7) in the concavo-convex direction end at a position where the bottom of the groove and the top of the convex line join.

また、端部スペーサー(lO)・・・の長さ方向両端部
における端面を、エレメント単体(2)・・・の積層方
向と同方向の平坦面とし、コーナー部材(14)を接合
するのが好都合である。
In addition, the end surfaces of the end spacer (lO)... at both ends in the length direction are flat surfaces in the same direction as the stacking direction of the element unit (2)... and the corner member (14) is joined. It's convenient.

そして、以上のように構成する熱交換エレメント(1)
は、給気通路(29)と排気通路(30)とを備え、給
排気間で熱交換させるごとくした熱交換装置に適用する
のであって、例えば換気装置に用いる場合には、前記給
気通路(29)と排気通路(30)との交差部に、前記
熱交換エレメント(1)を配設して、前記単体(2)・
・・間に形成した前記第2通路(9)を前記給気通路(
29)に連通させるのであり、また、予熱器として用い
る場合には、前記給気通路(29)と排気通路(30)
との交差部に前記熱交換エレメント(1)を配設して、
前記単体(2)・・・間に形成した前記第2通路(9)
を前記排気通路(30)に連通させたりするとよいので
ある。
And the heat exchange element (1) configured as above
This is applied to a heat exchange device that includes an air supply passage (29) and an exhaust passage (30) and exchanges heat between the supply and exhaust air. For example, when used in a ventilation system, the air supply passage (29) and the exhaust passage (30), the heat exchange element (1) is arranged, and the single unit (2).
...The second passageway (9) formed in between is connected to the air supply passageway (
29), and when used as a preheater, the air supply passage (29) and the exhaust passage (30)
The heat exchange element (1) is arranged at the intersection with the
The single body (2)...the second passageway (9) formed between
It is preferable to communicate with the exhaust passage (30).

(作用) 第1通路(8)を流れる流体と、第2通路(9)を流れ
る流体との熱交換が、多数の凹凸条(4)(5)を備え
た波形板(6)(7)を介して行われるから、熱交換面
積が増大し、かつ第2通路(9)を流れる流体の波形流
れにより熱伝達率がよくなり、熱交換効率が向上するし
、また複数積層するエレメント単体(2)・・・の凹凸
条(4)(5)の方向が同じであるから、前記単体(2
)・・・の積層が同一方向の順送装置を用いて簡単に行
えるのである。
(Function) Heat exchange between the fluid flowing through the first passage (8) and the fluid flowing through the second passage (9) is achieved through corrugated plates (6) (7) equipped with a large number of uneven stripes (4) (5). , the heat exchange area increases, and the wave-shaped flow of the fluid flowing through the second passage (9) improves the heat transfer coefficient, improving the heat exchange efficiency. 2)... Since the directions of the uneven stripes (4) and (5) are the same, the single body (2)
)... can be easily stacked using a progressive feeding device in the same direction.

また、凹凸状中間スペーサー(11)により、積層した
エレメント単体(2)(2)間の間隔が保持でき、しか
も、中間スペーサー(11)かガイドとなり、第2通路
(9)における流体の幅方向の偏流を確実に防止できる
のである。
In addition, the uneven intermediate spacer (11) can maintain the distance between the stacked elements (2) (2), and the intermediate spacer (11) can also act as a guide in the width direction of the fluid in the second passage (9). This makes it possible to reliably prevent drifting.

また、平板状仕切板(3)を用いて前記単体(2)を構
成する場合、各エレメント単体(2)の強度が向上する
し、しかも前記凹凸条(4)(5)を直接接合する場合
に比較して、その製作が簡単になるのである。
Further, when the unit (2) is constructed using a flat partition plate (3), the strength of each element unit (2) is improved, and when the uneven strips (4) and (5) are directly joined. Its production is simpler than that of .

更に、一対の波形板(6)(7)の凹凸条(4)(5)
を相互に対向させて接合した各エレメント単体(2)・
・・を、凹凸条(4)(5)のピッチを半ピッチずらせ
て積層すると、前記各波形板(6)(7)の凹凸方向両
端部には、隣接する単体(2)(2)間に外向きに広が
る開口部が形成されて、第2通路(9)の開口部を広く
できると共に、凹条底部と凸条頂部とが接合する位置で
終っているから、第2通路(9)の流体流入側端面にお
ける各単体(2)・・・の凹条(4)と凸条(5)との
間に流体が流入することがないので、第2通路(9)に
流入しようとする流体の流入抵抗が少なくなるのである
Furthermore, the uneven stripes (4) (5) of the pair of corrugated plates (6) (7)
Each element (2) is joined by facing each other.
. . are laminated with the uneven pitches (4) and (5) shifted by half a pitch, and at both ends of the corrugated plates (6) and (7) in the uneven direction, there is a gap between the adjacent single pieces (2) and (2). Since an opening that expands outward is formed in the second passageway (9), the opening of the second passageway (9) can be widened, and the second passageway (9) ends at a position where the bottom of the concave groove and the top of the convexity join. Since the fluid does not flow between the concave stripes (4) and the protrusive stripes (5) of each unit (2) on the fluid inflow side end face of the fluid inflow side, the fluid tries to flow into the second passage (9). This reduces fluid inflow resistance.

また、前記端部スペーサー(10)・・・の長さ方向両
端部における端面を平坦面にしてコーナー部材(14)
を接合したから、該コーナー部材(14)と端部スペー
サー(10)とを接合し易くなるし、父上下に隣接する
端部スペーサー(10)(10)の長さ方向端部に形成
される外向きに広がる開口部を、前記コーナー部材(1
4)を利用して、外方より閉鎖することができ、第1通
路(8)と第2通路(9)との連通を阻止して、シール
性を向上できる。
Also, the end spacer (10)... has a corner member (14) whose end surfaces at both ends in the length direction are flat surfaces.
Since the corner member (14) and the end spacer (10) are joined, it becomes easier to join the corner member (14) and the end spacer (10), and the end spacer (10) adjacent to the upper and lower ends is formed at the longitudinal end of the (10). The opening expanding outward is connected to the corner member (1).
4) can be closed from the outside, preventing communication between the first passage (8) and the second passage (9), and improving sealing performance.

このように構成した熱交換エレメント(1)を、給気通
路(29)と排気通路(30)とを備えた、例えば換気
装置として用いる熱交換装置に組込んで、第2通路(9
)を給気通路(29)に連通させると、第2通路(9)
を流れる流体は凹凸に沿って流れるから、流路長さが長
くなると共に、波形に流れることになり騒音減衰が大き
くなって、前記給気通路(29)の消音ができ、熱交換
効率がよく、シかも静粛な換気が行えるのである。
The heat exchange element (1) configured as described above is incorporated into a heat exchange device, which is used as a ventilation device, for example, and is equipped with an air supply passage (29) and an exhaust passage (30), and is installed in a second passage (9).
) is communicated with the air supply passage (29), the second passage (9)
Since the fluid flowing through the air flow path (29) flows along the unevenness, the length of the flow path becomes longer and the flow flows in a wave shape, resulting in greater noise attenuation, making it possible to muffle the sound of the air supply passage (29) and improving heat exchange efficiency. This allows quiet ventilation.

また、前記熱交換エレメント(1)を、給気通路(29
)と排気通路(30)とを備えた、例えばバーナー付ボ
イラー等から構成する温水システムにおける予p!4器
として用いる熱交換装置に組込んで、第2通路(9)を
排気通路(30)に連通させることにより、熱交換効率
よく前記排気通路(30)の消音ができ、燃焼騒音を少
なくできるのである。
Further, the heat exchange element (1) is connected to the air supply passage (29).
) and an exhaust passage (30), for example, in a hot water system consisting of a boiler with a burner, etc. By incorporating it into a heat exchange device used as a four-unit heat exchanger and communicating the second passage (9) with the exhaust passage (30), the exhaust passage (30) can be muffled with high heat exchange efficiency, and combustion noise can be reduced. It is.

(実  施  例  ) 第1図は本発明にかかる熱交換エレメント(1)の概略
を示したもので、エレメント単体(2)を複数積層する
ことにより6面体形状に構成している。
(Example) FIG. 1 schematically shows a heat exchange element (1) according to the present invention, which is constructed into a hexahedral shape by laminating a plurality of element units (2).

そして、このエレメント単体(2)は、第2図に拡大し
て示したように、方形の平板状仕切板(3)と、該仕切
板(3)の上下両面に接着され、1〜10−1のピンチ
とした多数の凹凸条(4)(5)を備えた一対の伝熱性
を存する方形の波形板(6)(7)とから形成している
。diJ記各波形板(6)(7)は、前記凹凸条(4)
(5)の方向を同一方向とするのであって、第1.2図
に示したものは、前記平板状仕切板(3)の−側に接着
する波形板(6)の凹条(4)と、他側に接着する波形
板(7)の凸条(5)が対応するごとくしている。
As shown in an enlarged view in FIG. 2, this element (2) is bonded to a rectangular flat partition plate (3) and to both upper and lower surfaces of the partition plate (3). It is formed from a pair of rectangular corrugated plates (6) and (7) having heat conductive properties and having a large number of concavo-convex strips (4) and (5) arranged in a pinch. Each of the corrugated plates (6) and (7) in diJ has the above-mentioned uneven stripes (4).
(5) are the same direction, and the one shown in Fig. 1.2 is the concave strip (4) of the corrugated plate (6) that is adhered to the negative side of the flat partition plate (3). and the ridges (5) of the corrugated plate (7) to be adhered to the other side correspond to each other.

しかして、前記単体(2)には、−側の波形板(6)の
凸条(5)と、他側の波形板(7)の凹条(4)との間
に、第1通路(8)となる隙間が形成されるのである。
Therefore, in the single body (2), there is a first passage ( 8) is formed.

また一方、前記各単体(2)は、複数個積層するのであ
って、この積層に際し、前記各単体(2)・・・間で、
かっ、前記凹凸条(4)(5)の長さ方向両端部には、
前記凹凸条(4)(5)に対応した波形の端部スペーサ
ー(10)(10)を介装して、積層方向に隣接する単
体(2)(2)間の間隔を保持すると共に、前記凹凸条
(4)(5)の長さ方向両端部を、前記端部スペーサー
(10)(10)により1・j止し、隣接する単体(2
)(2)と両スペーサー(10)(10)とにより、前
記第1通路(8)と直交する第2通路(9)を形成する
のであって、第1通路(8)を流れる流体と、第2通路
(9)を流れる流体との間で前記波形板(6)(7)を
介して熱交換が行われるように構成している。
On the other hand, a plurality of the individual units (2) are stacked, and during this stacking, between the individual units (2)...
At both lengthwise ends of the uneven strips (4) and (5),
Wave-shaped end spacers (10) (10) corresponding to the uneven stripes (4) (5) are interposed to maintain the spacing between the adjacent units (2) (2) in the lamination direction, and Both lengthwise ends of the uneven strips (4) and (5) are fixed by the end spacers (10) and (10), and the adjacent single pieces (2
) (2) and both spacers (10) (10) form a second passage (9) perpendicular to the first passage (8), and the fluid flowing through the first passage (8), It is configured such that heat exchange is performed with the fluid flowing through the second passage (9) via the corrugated plates (6) and (7).

しかして、前記単体(2)の積層は、下履のエレメント
単体(2)における波形板(6)の凸条(5)と、上層
のエレメント単体(2)における波形板(7)の四条(
4)と対向するように行なうのであって、前記各単体(
2)間には、波形の第2通路(9)が形成されるのであ
る。
Therefore, the lamination of the single element (2) includes the protruding strips (5) of the corrugated plate (6) on the single element (2) of the underwear, and the four strips (5) of the corrugated plate (7) on the single element (2) of the upper layer.
4), and each of the above single units (
2) A corrugated second passageway (9) is formed therebetween.

尚、前記各単体(2)は、上下に接触する各単体(2)
の波形板(El)(7)における凸条(5)の頂面と凹
条(4)の底面とが、第3図(イ)に示すように同一位
置となるように、前記スペーサー(10)(10)を介
して積層してもよいが、その他第3図(ロ)(ハ)のよ
うに、前記凸条(5)の頂面と凹条(4)の底面とが上
下方向に変位してもよい。
In addition, each unit (2) mentioned above is each unit (2) in contact with the top and bottom.
The spacer (10 ) (10), but as shown in FIG. May be displaced.

又、第1.2図に示したものは余熱交換エレメントであ
って、前記エレメント単体(2)を構成する平板状仕切
板(3)には、例えば、難燃材であるクラフト紙を、ま
た、波形板(6)(7)には吸湿性と難燃性及び伝熱性
を有する紙、例えば、塩化リチウム、シリカゲル等の吸
湿剤を浸透させた紙材を用いるのであって、温度交換と
共に湿分交換可能として三角伏にしているが波形であっ
ても差し支えない。
The one shown in Figure 1.2 is a residual heat exchange element, and the flat partition plate (3) constituting the element (2) is made of, for example, kraft paper, which is a flame retardant material. For the corrugated plates (6) and (7), paper with hygroscopicity, flame retardancy, and heat conductivity, such as paper impregnated with a hygroscopic agent such as lithium chloride or silica gel, is used. Although it is made in a triangular shape so that it can be exchanged, it is also possible to use a wave shape.

又、前記波形板13)(7)には吸湿性のある材料を用
いたが、吸湿性はないが伝熱性を有する材料、例えばア
ルミニウムなどの金属板を用い、温度交換のみ、つまり
、顕熱回収のみに利用してもよい。またこの顕熱交換の
場合、気体相互の他液体相互又は気体と液体との顕熱交
換に利用できる。
In addition, although a hygroscopic material was used for the corrugated plate 13) (7), a material that is not hygroscopic but has heat conductivity, such as a metal plate such as aluminum, is used to exchange only temperature, that is, sensible heat. It may be used only for collection. In the case of this sensible heat exchange, it can be used for sensible heat exchange between gases and other liquids, or between gases and liquids.

又、第1図において、(3a)は閉鎖板であって、単体
(3)の積層上下部に位置し、前記単体(3)を構成す
る一対の波形板(El)(7)の一方を取り除いたもの
から構成している。
In addition, in FIG. 1, (3a) is a closing plate, which is located at the upper and lower parts of the stack of the unit (3), and which closes one of the pair of corrugated plates (El) (7) constituting the unit (3). It is composed of what has been removed.

また、両端部に介装した前記端部スペーサー(10)(
10)間には、第1図のように凹凸状中間スペーサー(
11)を介装して、隣接する単体(2)(2)の中間部
における間隔を保持するとともに、第2通路(9)に流
れる流体の凹凸条(4)(5)の長さ方向への偏流を防
ぐようにしている。更に、各単体(2)における凹凸条
(4)(5)と直交する方向の端部は、すべて、前記平
板状仕切板(3)の−側に接着する波形板(6)の凹条
(4)と、他側に接着する波形板(7)の凸条(5)が
共に前記平板状仕切板(3)に接触するところで終わる
ように切断し、第4図に示すように前記各単体(2)を
、前記凹凸条(4)(5)が半ピッチずらせて積層する
のであって、半ピッチずれた単体(2)の端部には、該
単体(2)に隣接する単体(2)(2)との間に外向き
に広がる開口部が形成できるのであり、前記各第2通路
(9)の開口部を広くできるのである。
In addition, the end spacer (10) (
10) In between, there is an uneven intermediate spacer (
11) to maintain the spacing between the adjacent units (2) and (2) in the middle, and to maintain the distance in the longitudinal direction of the uneven strips (4) and (5) of the fluid flowing into the second passage (9). This is to prevent drifting. Furthermore, the ends of each unit (2) in the direction orthogonal to the uneven strips (4) and (5) are all connected to the grooved strips ( 4) and the convex strip (5) of the corrugated plate (7) to be adhered to the other side are both cut so that they end where they contact the flat partition plate (3), and as shown in FIG. (2) are laminated with the uneven stripes (4) and (5) shifted by half a pitch, and at the end of the unit (2) that is shifted by a half pitch, the unit (2) adjacent to the unit (2) is stacked. ) (2), an opening that expands outward can be formed, and the opening of each of the second passages (9) can be widened.

この結果、前記各第2通路(9)へ流体を流入させる場
合、その流入抵抗を少なくできるのでる。尚前記各単体
(2)は半ピッチずらせて積層するのであるから、同一
寸法の同一形にでき、従ってm産性を向上できると共に
、各単体(2)の端部は閉鎖形状となっているから、寸
法切りした端面の端面処理が不要にできる利点もある。
As a result, when fluid is allowed to flow into each of the second passages (9), the inflow resistance can be reduced. In addition, since the individual units (2) are stacked with a half-pitch shift, they can be made into the same shape with the same dimensions, which improves productivity, and the ends of each unit (2) have a closed shape. Therefore, there is an advantage that end face treatment of the cut end face is not necessary.

また、前記単体(2)を形成する場合、前記仕切板(3
)の両側に前記波形板(6)(7)を接着させてもよい
が、第5図のように、前記仕切板(3)の片側にのみ波
形板(6)を接着し、前記仕切板(3)の大きさを、前
記波形板(6)の凹凸条方向に、単体長さの2倍として
、その長さ方向中央部を、前記凹凸条(4)(5)と直
角方向に前記平板状仕切板(3)を切断することなく、
前記波形板(6)のみを切断(12)して、前記平板状
仕切板(3)を前記波形板(6)の切断部位を中心に折
り返すことによっても簡単に製作できる。
Further, when forming the single body (2), the partition plate (3
), but as shown in FIG. 5, the corrugated plates (6) may be adhered to only one side of the partition plate (3), The size of (3) is set to twice the length of the corrugated plate (6) in the direction of the uneven strips, and the central part in the length direction is Without cutting the flat partition plate (3),
It can also be easily produced by cutting (12) only the corrugated plate (6) and folding back the flat partition plate (3) around the cut portion of the corrugated plate (6).

また第6図(イ)(ロ)に示すように前記端部スペーサ
ー(10)の長さ方向両端部には、前記単体(2)を積
層する方向に平行な平坦面(13)を形成して、アング
ル状のコーナー部材(14)を取り付けている。このコ
ーナー部材(14)は、コーナー部の補強と、コーナー
部におけるシール性をよくするために用いるもので、前
記平担面(13)により簡単に取り付けることができる
のである。
Further, as shown in FIGS. 6(a) and 6(b), flat surfaces (13) parallel to the direction in which the single bodies (2) are stacked are formed at both lengthwise ends of the end spacer (10). An angled corner member (14) is attached thereto. This corner member (14) is used to reinforce the corner portion and improve sealing performance at the corner portion, and can be easily attached to the flat surface (13).

以上のごとく構成した熱交換エレメント(1)の第1通
路(8)と第2通路(9)とに、第1図に示すように流
体を点線矢印方向に、又第2通路(9)に前記流体と温
度の異なる流体を実線矢印方向に流すと、前記エレメン
ト単体(2)を構成する波形板(6)(7)の凹凸条(
4)(5)を介して熱交換が行われるのであって、熱交
換面が波形を呈しているから、平らな面を介し°て熱交
換するのに比較して大きな面積で熱交換が行われ、熱交
換効率が向上するのである。又湿分交換についても同様
に行われるのである。
As shown in Figure 1, fluid is supplied to the first passage (8) and second passage (9) of the heat exchange element (1) configured as above in the direction of the dotted arrow, and to the second passage (9). When a fluid having a temperature different from that of the above fluid flows in the direction of the solid line arrow, the uneven lines (
4) Since heat exchange is performed through (5), and the heat exchange surface is corrugated, heat exchange is performed over a larger area than when heat is exchanged through a flat surface. This improves heat exchange efficiency. Moisture exchange is also carried out in the same way.

また、前記凹凸条(4)(5)の方向はすべて同方向で
あるから、前記波形板(6)及び(7)の方向を変える
必要がなく、熱交換エレメント(1)の製作が簡単にな
るのである。しかも必要に応じて中間スペーサー(工1
)を介装することにより、第2通路(9)における流体
の偏流を防止できるし、また、前記端部スペーサー(1
0)(10)により上下に隣接する前記各単体(2)・
・・間で、前記凹凸条(4)(5)の長さ方向両端部を
封止するから、第2通路(9)のシールも確実に行える
のである。
Furthermore, since the directions of the uneven stripes (4) and (5) are all the same, there is no need to change the directions of the corrugated plates (6) and (7), and the heat exchange element (1) can be manufactured easily. It will become. In addition, an intermediate spacer (process 1) can be added as necessary.
), it is possible to prevent uneven flow of the fluid in the second passageway (9), and the end spacer (1
0) According to (10), each of the above-mentioned single units (2) that are vertically adjacent to each other
Since both lengthwise ends of the uneven stripes (4) and (5) are sealed between them, the second passageway (9) can also be reliably sealed.

尚、第1及び第2図に示した実施例では、平板状仕切板
(3)を用いて、前記熱交換エレメント単体(2)を補
強して形成したが、前記平板状仕切板(3)を用いるこ
とな(、一対の波形板(6)(7)の内、一方の波形板
(6)の凹条(4)と他方の波形板(7)の凸条(5)
とを直接接合して構成してもよいのである。
In the embodiment shown in FIGS. 1 and 2, the flat partition plate (3) is used to reinforce the heat exchange element (2), but the flat partition plate (3) (Of the pair of corrugated plates (6) and (7), the concave line (4) on one corrugated plate (6) and the convex line (5) on the other corrugated plate (7)
It may also be configured by directly joining them.

更に、前記エレメント単体(2)を構成する前記平板状
仕切板(3)の上下両面に、前記波形板(6)(7)を
接合するとき、第7図に示したように前記仕切板(3)
の上面に接合する波形板(6)の凹条(4)と、下面に
接合する波形板(7)の凸条(5)とを互いに半ピッチ
ずらして接合してもよいのである。
Furthermore, when joining the corrugated plates (6) and (7) to both upper and lower surfaces of the flat partition plate (3) constituting the element unit (2), as shown in FIG. 3)
The concave stripes (4) of the corrugated plate (6) to be bonded to the upper surface of the corrugated plate (6) and the protrusive stripes (5) of the corrugated plate (7) to be bonded to the lower surface of the corrugated plate (7) may be shifted by half a pitch from each other.

次に、以上のごとく構成した熱交換エレメント(1)を
用いた熱交換装置について説明する。
Next, a heat exchange device using the heat exchange element (1) configured as above will be explained.

第8図は、空調している室内の換気を行う換気装置を構
成したもので、ケーシング(20)の−側には、給気口
(21)と室内空気取入れ口(22)を設け、他側には
、υ[気口(23)と室外空気取入れ口(24)を設け
ると共に、前記ケーシング(20)の内部空間を隔壁(
25)により4つの区画(26)を形成している。そし
て、各区画(26)には、それぞれ前記給気口(21)
、室内空気取入れ口(22)、排気口(23)と室外空
気取入れ口(24)を個別に連通させ、前記排気口(2
3)に連通ずる区画(26)に排気ファン(27)を配
置すると共に、前記室外空気取入れ口(24)に連通ず
る区画(26)に給気ファン(28)を配置する一方、
前記隔壁(25)の交差部に第1通路(8)及び第2通
路(9)を備えた前記熱交換エレメント(1)を配置し
て、前記第1通路(8)を、前記室内空気取入れ口(2
2)と排気口(23)とに連通して排気通路(30)を
形成し、また前記第2通路(9)を前記給気口(21)
と室外空気取入れ口(24)とに連通して、第9図に示
すように、第1通路(8)には室内から給気通路(29
)を形成して、第9図に示すように、第1通路(8)に
は室内から室外へ出る空気を流すと共に、第2通路(9
)には室外から室内へ入る空気を流すようにしている。
Figure 8 shows the configuration of a ventilation system that ventilates an air-conditioned room, with an air supply port (21) and a room air intake port (22) provided on the negative side of the casing (20). On the side, an air port (23) and an outdoor air intake port (24) are provided, and the internal space of the casing (20) is separated by a partition wall (
25) to form four compartments (26). Each compartment (26) has the air supply port (21).
, the indoor air intake port (22), the exhaust port (23), and the outdoor air intake port (24) are individually communicated with each other, and the exhaust port (2
3), an exhaust fan (27) is disposed in the compartment (26) communicating with the outdoor air intake port (24), and an air supply fan (28) is disposed in the compartment (26) communicating with the outdoor air intake port (24);
The heat exchange element (1) having a first passage (8) and a second passage (9) is arranged at the intersection of the partition wall (25), and the first passage (8) is connected to the room air intake. Mouth (2
2) and the exhaust port (23) to form an exhaust passage (30), and the second passage (9) is connected to the air supply port (21).
As shown in FIG. 9, the first passage (8) is connected to the air supply passage (29) from the room.
), as shown in FIG.
) to allow air to flow into the room from outside.

尚、(31)は前記給気ファン(28)と排気ファン(
27)とを駆動するモータ、(32)(32)はフィル
ターである。
In addition, (31) is the supply air fan (28) and the exhaust fan (
(27) and (32) are filters.

前記給気ファン(28)と排気ファン(27)は空調室
内の換気を行うものであり、又、同一のモータ(31)
で駆動されているから、両ファ7(27)(28)の送
風能力は同一であるのが望ましく、前記第1通路(8)
と第2通路(9)との圧力損失を同一にする必要がある
が、第2通路(9)が第10図に示すように波形を呈し
ているため、第1通路(8)と第2通路(9)とは圧損
が異なるから、前記エレメント単体(2)の形状を矩形
として、第1通路(8)を長辺方向とすると共に、第2
通路(9)を短辺方向にしたのである。
The air supply fan (28) and the exhaust fan (27) are used to ventilate the air conditioned room, and the same motor (31)
Therefore, it is desirable that the air blowing capacity of both fans 7 (27) (28) is the same.
It is necessary to make the pressure loss the same between the first passage (8) and the second passage (9), but since the second passage (9) has a waveform as shown in FIG. Since the pressure loss is different from that of the passage (9), the shape of the single element (2) is rectangular, the first passage (8) is in the long side direction, and the second passage (8) is rectangular in shape.
The passage (9) is arranged in the direction of the short side.

以上のように構成して、給気及び排気ファン(26)(
27)を駆動することにより、第8図に示すように換気
すると、給気ファン(28)の風切り騒音が発生するが
、前記第1通路(8)より騒音の減衰効果の大きい波形
の前記第2通路(9)において騒音が減衰され、室内へ
漏れる給気ファン(28)の騒音が小さくなるのである
With the above configuration, the air supply and exhaust fan (26) (
27) to ventilate as shown in FIG. 8, wind noise from the air supply fan (28) is generated. Noise is attenuated in the two passages (9), and the noise from the air supply fan (28) leaking into the room is reduced.

従って、室内に入る空気と、室外に出る空気が前記波形
板(6t)(7)を介して熱交換し、冷房時には、室内
に入る空気が外気より低温度になり、また、暖房時には
、室内に入る空気が外気より暖かくなり、空調に要する
エネルギーを節約できると共に、静粛な換気が行えるの
である。又、前記単体(2)を伝熱性及び透湿性をもつ
コルゲート紙を用いて形成すると、湿分の交換も熱交換
と同時に行え、快適な換気が行えるのである。
Therefore, the air entering the room and the air exiting outdoors exchange heat through the corrugated plates (6t) and (7), and during cooling, the air entering the room has a lower temperature than the outside air, and during heating, the air entering the room has a lower temperature than the outside air. The incoming air is warmer than the outside air, saving energy needed for air conditioning and providing quiet ventilation. Furthermore, if the unit (2) is formed using corrugated paper having heat conductivity and moisture permeability, moisture exchange can be performed simultaneously with heat exchange, and comfortable ventilation can be achieved.

また第11図に示したものは、例えば機械室(40)等
向に設けた温水システムで、機械室(40)には、空気
を強制的に供給するファン(41)を備えたバーナー(
42)と、給排水配管(43)(43)を接続したボイ
ラー(44)を配置すると共に、一端を前記ファン(4
1)に連通ずる給気ダク)(4,5)及び一端をボイラ
ー(44)に連通ずる排気ダクト(46)とをそれぞれ
交差するごとく配置して、前記給気ダクト(li 5 
)及び排気ダクl−(48)それぞれの他端を、外壁(
47)に設けた給気口(48)と排気口(49)とに接
続して、給気通路(29)と排気通路(30)を形成し
ている。
What is shown in FIG. 11 is a hot water system installed in, for example, a machine room (40), and a burner (41) equipped with a fan (41) that forcibly supplies air is installed in the machine room (40).
42) and a boiler (44) connected to the water supply and drainage pipes (43) (43), and one end of the boiler (44) is connected to the fan (42).
The supply air duct (4, 5) communicating with the boiler (44) and the exhaust duct (46) communicating with the boiler (44) at one end are arranged so as to intersect with each other.
) and the other ends of the exhaust duct l-(48) are connected to the outer wall (
An air supply passage (29) and an exhaust passage (30) are formed by connecting to an air supply port (48) and an exhaust port (49) provided in the air supply port (47).

しかして、前記熱交換エレメント(1)を内装した予熱
器(53)を形成して、該予熱器(53)を給気通路(
28)と排気通路(30)との交差部に配置して、前記
熱交換エレメント(1)の前記第2通路(9)を排気通
路(30)に連通ずると共に、第1通路(8)を給気通
路(29)に連通させている。尚、(52)は燃料パイ
プである。
Thus, a preheater (53) incorporating the heat exchange element (1) is formed, and the preheater (53) is connected to the air supply passage (
28) and the exhaust passage (30), so as to communicate the second passage (9) of the heat exchange element (1) with the exhaust passage (30), and connect the first passage (8) with the exhaust passage (30). It communicates with the air supply passage (29). Note that (52) is a fuel pipe.

以上のように構成して、前記バーナー(42)を燃焼さ
せると、前記熱交換エレメント(1)の第1通路(8)
を流れる燃焼空気と第2通路(9)を流れる高温の燃焼
ガスとが熱交換して、前記バーナー(42)に供給され
る燃焼空気の温度が外気より上がり、バーナー(42)
の燃焼効率がよくなると共に、燃焼ガスの騒音が波形の
前記第2通路(9)の騒音減衰効果により消音され、室
外の騒音が少なくなり騒音公害をなくすことができるの
である。従って、燃焼ガスと燃焼空気との熱交換により
、燃焼空気の温度上昇に見合った燃料が節約できると共
に、静粛な燃焼ガスの排気が行えるのである。
With the above configuration, when the burner (42) is combusted, the first passage (8) of the heat exchange element (1)
The combustion air flowing through the burner (42) and the high-temperature combustion gas flowing through the second passage (9) exchange heat, and the temperature of the combustion air supplied to the burner (42) becomes higher than that of the outside air.
The combustion efficiency is improved, and the noise of the combustion gas is muffled by the noise damping effect of the corrugated second passage (9), reducing outdoor noise and eliminating noise pollution. Therefore, by heat exchange between the combustion gas and the combustion air, fuel can be saved in proportion to the temperature increase of the combustion air, and the combustion gas can be exhausted quietly.

(発明の効果 ) 以上説明したように、本発明の熱交換エレメントによれ
ば、従来の平板を介する熱交換に比較して熱交換面積が
大きくなり、かつ、第2通路(9)を流れる流体の波形
流れにより熱伝達率がよくなり、それだけ熱交換効率が
上昇するし、また各熱交換エレメント単体(2)の凹凸
条(4)(5)を同じ方向にして積層できるから、熱交
換エレメントの製作が簡単になる。
(Effects of the Invention) As explained above, according to the heat exchange element of the present invention, the heat exchange area is larger than that in the conventional heat exchange through flat plates, and the The heat transfer coefficient improves due to the wave-shaped flow, and the heat exchange efficiency increases accordingly. Also, since the uneven strips (4) and (5) of each heat exchange element (2) can be stacked in the same direction, the heat exchange element The production becomes easier.

しかも、中間スペーサー(11)を介装することにより
、前記第2通路(9)における流体の偏流を防ぎ、各単
体(2)間における熱交換を均一にできる。また、前記
平板状仕切板(3)を用いてエレメント単体(2)を形
成すると、エレメント単体(2)の強度が向上するので
ある。
Moreover, by interposing the intermediate spacer (11), uneven flow of the fluid in the second passage (9) can be prevented and heat exchange between the individual units (2) can be made uniform. Moreover, when the element unit (2) is formed using the flat partition plate (3), the strength of the element unit (2) is improved.

更に、エレメント単体(2)・・・における各波形板(
6)(7)の凹凸方向端部が、閉じるようにして、前記
単体(2)の凹凸条(4)(5)を半ピッチずらせて積
層しているから、第2通路(9)の流体流入側端部に外
向きに広がる開口部が形成され、第2通路(9)へ流入
する流体の流入抵抗がなくなるのである。
Furthermore, each corrugated plate (
6) Since the concavo-convex strips (4) and (5) of the single unit (2) are stacked with the concave-convex direction ends closed by a half pitch, the fluid in the second passage (9) An outwardly expanding opening is formed at the inlet end, eliminating resistance to the fluid flowing into the second passageway (9).

また、前記端部スペーサー(10)・・・の長さ方向両
端部における平坦面を利用してコーナー部材(工4)を
接合できるから、該コーナー部材(14)と端部スペー
サー(10)とを接合し易く、かつ、第1通路(8)と
第2通路(9)とを簡単にシールでき、シール性を向上
できる。
In addition, since the corner member (work 4) can be joined using the flat surfaces at both longitudinal ends of the end spacer (10), the corner member (14) and the end spacer (10) can be joined together. The first passage (8) and the second passage (9) can be easily sealed, and the sealing performance can be improved.

このように構成した熱交換エレメント(1)を、給気通
路(29)と排気通路(30)とを備えた例えば換気装
置において熱交換装置として用い、前記第2通路(9)
を給気通路(29)に連通させると、前記第2通路(9
)を流れる流体は凹凸条(4)(5)の長さ方向と直角
方向に前記凹凸条(4)(5)にガ・イドされて波形状
に流れるから、流路長さが長くなると共に、騒音減衰が
大きく、前記給気通路(29)の消音ができ、静かな換
気装置を提供できる。
The heat exchange element (1) configured in this manner is used as a heat exchange device in, for example, a ventilation system equipped with an air supply passage (29) and an exhaust passage (30), and the second passage (9) is used as a heat exchange device.
is communicated with the air supply passage (29), the second passage (9)
) is guided by the uneven lines (4) and (5) in a direction perpendicular to the length direction of the uneven lines (4) and (5), and flows in a wave shape, so as the length of the flow path increases, , the noise attenuation is large, the air supply passageway (29) can be muffled, and a quiet ventilation system can be provided.

また、互いに交差するごとく配置した給気通路(29)
と排気通路(30)との交差部に前記熱交換エレメント
(1)を配設して、該熱交換エレメント(1)を予熱器
としても用いることができ、例えば、バーナーを用いた
温水システムに適用するとき、前記第2通路(9)を排
気通路(30)に連通させると、排気通路(30)にお
ける燃焼騒音の消音ができ、騒音公害の少ない温水シス
テム用熱交換装置を提供できるのである。
In addition, air supply passages (29) arranged so as to cross each other
By disposing the heat exchange element (1) at the intersection of the exhaust passage and the exhaust passage (30), the heat exchange element (1) can also be used as a preheater, for example, in a hot water system using a burner. When applied, if the second passage (9) is communicated with the exhaust passage (30), combustion noise in the exhaust passage (30) can be muffled, and a heat exchange device for a hot water system with less noise pollution can be provided. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる熱交換エレメントの斜視図、第
2図は、エレメント単体の斜視図、第3図はエレメント
単体の積層間隔を示す側面図、第4図は熱交換エレメン
トの部分側面図、第5図はエレメント単体の一製作方法
を示す概略図、第6図はコーナー部材の取付説明図、第
7図はエレメント単体の他の構成図、第8図は換気装置
の説明図、第9図は第7図A−A線矢視図、第10図は
第2通路の模式縦断説明図、第11図は温水システムの
説明図、第12図は、従来例を示す斜視説明図である。 (1)・・・・熱交換エレメント (2)・・・・エレメントm体 (3)・・・・平板状仕切板 (4)・・・・・・凹条 (5)・・・・・・凸条 (6)(7)・・・・・・波形板 (8)・・・・・・第1通路 (9)・・・・・第2通路 (10)・・・・端部スペーサー (11)・・・・中間スペーサー (14)・・・・コーナー部材 (29)・・・・給気通路 (30)・・・・排気通路 第1図 6:涙ff1fA to : 女1鈴スで−7− 11: 中Fa”lスN−す− I4:  コーナー訂→1 (イノ 第2図 第8図 (ロフ (パノ ”tL(rLしく
Fig. 1 is a perspective view of a heat exchange element according to the present invention, Fig. 2 is a perspective view of the element alone, Fig. 3 is a side view showing the lamination interval of the element itself, and Fig. 4 is a partial side view of the heat exchange element. Figure 5 is a schematic diagram showing a method of manufacturing a single element, Figure 6 is an explanatory diagram of mounting a corner member, Figure 7 is another configuration diagram of a single element, Figure 8 is an explanatory diagram of a ventilation system, FIG. 9 is a view taken along the line A-A in FIG. 7, FIG. 10 is a schematic vertical cross-sectional view of the second passage, FIG. 11 is an explanatory view of the hot water system, and FIG. 12 is a perspective view showing a conventional example. It is. (1) Heat exchange element (2) Element m body (3) Flat partition plate (4) Concave strip (5)・Convex stripes (6) (7)...Corrugated plate (8)...First passage (9)...Second passage (10)...End spacer (11)...Intermediate spacer (14)...Corner member (29)...Air supply passage (30)...Exhaust passage Fig. 1 6: ff1fA to: Female 1 Suzu -7- 11: Middle Fa"lsuN-su- I4: Corner revision → 1 (Ino 2nd figure 8

Claims (1)

【特許請求の範囲】 1)伝熱性を有し、多数の凹凸条(4)(5)を備えた
一対の波形板(6)(7)から成り、前記凹凸条(4)
(5)の方向を同一方向とし、凹凸条(4)(5)間に
隙間を形成するごとく接合した複数のエレメント単体(
2)・・・を前記凹凸条(4)(5)の方向を同一方向
として積層し、前記凹凸条(4)(5)の長さ方向に延
びる複数の第1通路(8)・・・を形成すると共に、前
記各単体(2)・・・間で、かつ、前記凹凸条(4)(
5)の長さ方向両端部に波形の端部スペーサー(10)
(10)を介装して封止し、前記各単体(2)間に前記
第1通路(8)と直交する方向に延びる第2通路(9)
を形成し、前記第1通路(8)及び第2通路(9)を流
通する流体を、前記波形板(6)(7)・・・を通して
熱交換するようにしたことを特徴とする熱交換エレメン
ト。 2)エレメント単体(2)・・・間で、凹凸条(4)(
5)の長さ方向中間部位に、少なくとも一つの凹凸状中
間スペーサー(11)を介装している請求項1記載の熱
交換エレメント。 3)エレメント単体(2)・・・における各波形板(6
)(7)間に、これら各波形板(6)(7)の凹条底部
及び凸条頂部と接合する平板状仕切板(3)を介装して
いる請求項1記載の熱交換エレメント。 4)エレメント単体(2)・・・における各波形板(6
)(7)が、これら各波形板(6)(7)の凹凸条(4
)(5)を相互に対向させて接合されており、前記各エ
レメント単体(2)・・・が、これら各単体(2)にお
ける凹凸条(4)(5)のピッチを半ピッチずらせて積
層され、前記各波形板(6)(7)の凹凸方向端部が、
凹条底部と凸条頂部とが接合する位置で終っている請求
項1記載の熱交換エレメント。 5)端部スペーサー(10)・・・の長さ方向両端部に
おける端面を、エレメント単体(2)・・・の積層方向
と同方向の平坦面とし、コーナー部材(14)を接合し
ている請求項1記載の熱交換エレメント。 6)給気通路(29)と排気通路(30)とを備え、給
排気間で熱交換させるごとくした熱交換装置であって、
前記給気通路(29)と排気通路(30)との交差部に
、伝熱性を有し、多数の凹凸条(4)(5)を備えた一
対の波形板(6)(7)から成り、前記凹凸条(4)(
5)の方向を同一方向とし、凹凸条(4)(5)間に隙
間を形成するごとく接合した複数のエレメント単体(2
)・・・を前記凹凸条(4)(5)の方向を同一方向と
して積層し、前記凹凸条(4)(5)の長さ方向に延び
る複数の第1通路(8)・・・を形成すると共に、前記
各単体(2)・・・間で、かつ、前記凹凸条(4)(5
)の長さ方向両端部に波形の端部スペーサー(10)(
10)を介装して封止し、前記各単体(2)間に前記第
1通路(8)と直交する方向に延びる第2通路(9)を
形成した熱交換エレメント(1)を配設して、前記第2
通路(9)を前記給気通路(29)に連通させているこ
とを特徴とする熱交換装置。 7)給気通路(29)と排気通路(30)とを備え、給
排気間で熱交換させるごとくした熱交換装置であって、
前記給気通路(29)と排気通路(30)との交差部に
、伝熱性を有し、多数の凹凸条(4)(5)を備えた一
対の波形板(6)(7)から成り、前記凹凸条(4)(
5)の方向を同一方向とし、凹凸条(4)(5)間に隙
間を形成するごとく接合した複数のエレメント単体(2
)・・・を前記凹凸条(4)(5)の方向を同一方向と
して積層し、前記凹凸条(4)(5)の長さ方向に延び
る複数の第1通路(8)・・・を形成すると共に、前記
各単体(2)・・・間で、かつ、前記凹凸条(4)(5
)の長さ方向両端部に波形の端部スペーサー(10)(
10)を介装して封止し、前記各単体(2)間に前記第
1通路(8)と直交する方向に延びる第2通路(9)を
形成した熱交換エレメント(1)を配設して、前記第2
通路(9)を前記排気通路(30)に連通させているこ
とを特徴とする熱交換装置。
[Scope of Claims] 1) Consisting of a pair of corrugated plates (6) and (7) having heat conductivity and having a large number of uneven stripes (4) and (5), the uneven strips (4)
(5) are in the same direction, and a plurality of single elements (
2) A plurality of first passages (8) are formed by stacking the uneven strips (4) and (5) in the same direction, and extending in the length direction of the uneven strips (4) and (5). At the same time, between each of the single units (2)... and between the uneven stripes (4) (
5) Corrugated end spacers (10) at both lengthwise ends
(10) is interposed and sealed, and a second passageway (9) extends in a direction orthogonal to the first passageway (8) between each of the units (2).
A heat exchanger characterized in that the fluid flowing through the first passage (8) and the second passage (9) is heat exchanged through the corrugated plates (6), (7), etc. element. 2) Single element (2)... Between the uneven stripes (4) (
5. The heat exchange element according to claim 1, wherein at least one uneven intermediate spacer (11) is interposed at the longitudinally intermediate portion of the heat exchange element. 3) Each corrugated plate (6
) (7) A heat exchange element according to claim 1, wherein a flat partition plate (3) is interposed between the corrugated plates (6) and (7) to connect with the concave bottom portion and the convex top portion of each of the corrugated plates (6) and (7). 4) Each corrugated plate (6
) (7) are the uneven stripes (4) of these corrugated plates (6) and (7).
)(5) are joined to face each other, and each element (2)... is laminated with the pitch of the uneven stripes (4) and (5) in each of these elements (2) shifted by half a pitch. The ends of each of the corrugated plates (6) and (7) in the concave and convex direction are
2. The heat exchange element according to claim 1, wherein the concave strip bottom and the convex strip top end at a joining position. 5) The end surfaces of the end spacer (10)...at both ends in the length direction are flat surfaces in the same direction as the stacking direction of the element unit (2)..., and the corner member (14) is joined. A heat exchange element according to claim 1. 6) A heat exchange device comprising an air supply passage (29) and an exhaust passage (30), and configured to exchange heat between the air supply and exhaust air,
At the intersection of the air supply passage (29) and the exhaust passage (30), a pair of corrugated plates (6) and (7) having heat conductivity and having a large number of uneven stripes (4) and (5) are provided. , said uneven strip (4) (
5) are in the same direction, and a plurality of single elements (2
) are laminated with the directions of the uneven strips (4) and (5) in the same direction, and a plurality of first passages (8) extending in the length direction of the uneven strips (4) and (5) are formed. At the same time, between each of the single units (2) and the uneven stripes (4) (5)
) with corrugated end spacers (10) (
10) is interposed and sealed, and a heat exchange element (1) having a second passage (9) extending in a direction orthogonal to the first passage (8) is disposed between each of the units (2). Then, the second
A heat exchange device characterized in that a passage (9) is communicated with the air supply passage (29). 7) A heat exchange device comprising an air supply passage (29) and an exhaust passage (30), in which heat is exchanged between the air supply and exhaust passages,
At the intersection of the air supply passage (29) and the exhaust passage (30), a pair of corrugated plates (6) and (7) having heat conductivity and having a large number of uneven stripes (4) and (5) are provided. , said uneven strip (4) (
5) are in the same direction, and a plurality of single elements (2
) are laminated with the directions of the uneven strips (4) and (5) in the same direction, and a plurality of first passages (8) extending in the length direction of the uneven strips (4) and (5) are formed. At the same time, between each of the single units (2) and the uneven stripes (4) (5)
) with corrugated end spacers (10) (
10) is interposed and sealed, and a heat exchange element (1) having a second passage (9) extending in a direction orthogonal to the first passage (8) is disposed between each of the units (2). Then, the second
A heat exchange device characterized in that a passage (9) is communicated with the exhaust passage (30).
JP3560089A 1989-02-15 1989-02-15 Heat exchanging element and heat exchanger Pending JPH02217789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3560089A JPH02217789A (en) 1989-02-15 1989-02-15 Heat exchanging element and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3560089A JPH02217789A (en) 1989-02-15 1989-02-15 Heat exchanging element and heat exchanger

Publications (1)

Publication Number Publication Date
JPH02217789A true JPH02217789A (en) 1990-08-30

Family

ID=12446312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3560089A Pending JPH02217789A (en) 1989-02-15 1989-02-15 Heat exchanging element and heat exchanger

Country Status (1)

Country Link
JP (1) JPH02217789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910528B2 (en) * 1999-12-27 2005-06-28 Sumitomo Precision Products Co., Ltd. Plate fin heat exchanger for a high temperature
JPWO2010125643A1 (en) * 2009-04-28 2012-10-25 三菱電機株式会社 Heat exchange element
JPWO2010125644A1 (en) * 2009-04-28 2012-10-25 三菱電機株式会社 Total heat exchange element
JP2013113466A (en) * 2011-11-28 2013-06-10 Akuatekku:Kk Air cooling apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123992A (en) * 1979-03-14 1980-09-24 Siemens Ag Heat exchanger
JPS5719027B2 (en) * 1977-09-27 1982-04-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719027B2 (en) * 1977-09-27 1982-04-20
JPS55123992A (en) * 1979-03-14 1980-09-24 Siemens Ag Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910528B2 (en) * 1999-12-27 2005-06-28 Sumitomo Precision Products Co., Ltd. Plate fin heat exchanger for a high temperature
JPWO2010125643A1 (en) * 2009-04-28 2012-10-25 三菱電機株式会社 Heat exchange element
JPWO2010125644A1 (en) * 2009-04-28 2012-10-25 三菱電機株式会社 Total heat exchange element
JP2013113466A (en) * 2011-11-28 2013-06-10 Akuatekku:Kk Air cooling apparatus

Similar Documents

Publication Publication Date Title
US6076598A (en) Opposed flow heat exchanger
US8590606B2 (en) Heat exchange element and manufacturing method thereof, heat exchanger, and heat exchange ventilator
JP3612826B2 (en) Heat exchange element
JP2017521629A (en) Air guide integrated evaporative cooler and manufacturing method thereof
JPH04313693A (en) Heat exchanger
JPH02217789A (en) Heat exchanging element and heat exchanger
KR100911776B1 (en) Heat exchanger, and making method thereof
JP2003214724A (en) Air conditioner
JPS6294796A (en) Pipe type heat exchanger
JPH02238293A (en) Heat exchanger device
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP3156162U (en) Total heat exchange element
CN110057083B (en) Heat pipe total heat exchange core device
JP4082029B2 (en) Plate heat exchanger
JPH04371794A (en) Lamination type heat exchanger
JPH0231298B2 (en)
JPS6021318B2 (en) Heat exchanger
KR200274469Y1 (en) Plate structure of heat exchanger for air-conditioning equipments
KR20180115853A (en) Plastic Heat Exchanger for Heat Recovery
WO2024053082A1 (en) Heat exchange element and heat exchange ventilation device
JP6430089B1 (en) HEAT EXCHANGE ELEMENT, HEAT EXCHANGE VENTILATION DEVICE, AND HEAT EXCHANGE ELEMENT MANUFACTURING METHOD
KR20210000290A (en) A Heat Exchanger
CN111919078B (en) Total heat exchange element and total heat exchanger
JPH0248773Y2 (en)
KR100675748B1 (en) High efficiency multi-stage heat exchanger