JPH022176A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH022176A
JPH022176A JP14489288A JP14489288A JPH022176A JP H022176 A JPH022176 A JP H022176A JP 14489288 A JP14489288 A JP 14489288A JP 14489288 A JP14489288 A JP 14489288A JP H022176 A JPH022176 A JP H022176A
Authority
JP
Japan
Prior art keywords
region
silicon
drain
source
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14489288A
Other languages
Japanese (ja)
Other versions
JP2695843B2 (en
Inventor
Masamizu Konaka
小中 雅水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14489288A priority Critical patent/JP2695843B2/en
Publication of JPH022176A publication Critical patent/JPH022176A/en
Application granted granted Critical
Publication of JP2695843B2 publication Critical patent/JP2695843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To realize a rapid operation with stable current-voltage characteristics which are not affected by a substrate potential at all having little stray capacitance by burying a part of a source region of an SOI element into an insulation film and by extending it to an area immediately below a channel region between a drain region and the source region. CONSTITUTION:For example, a silicon oxide film 220 is deposited on a silicon substrate 210 through a CVD method. An opening section 290 is formed in a tapered shape and an N-type polycrystalline silicon film 230 is prepared. Etching is made to an area deeper than a first silicon layer 230 to form an opening section 292. After a mask is removed, a silicon oxide film 293, etc., is buried into the opening section 292 and then the surface is flattened. A surface of a second silicon layer 240 is heat-oxidized and agate insulation film 250 is formed. For example, arsenic ion is ion-implanted all over to form N-type region 270 and 280.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、絶縁体基板あるいは、絶縁膜上に形成された
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device formed on an insulating substrate or an insulating film.

(従来の技術) 最近、電子ビームやレーザーアニール技術を用いて、絶
縁膜上にシリコンの単結晶層を形成するS OI (5
ilicon on In5ulator)技術の開発
が盛んに行われている。そして、この技術で得られた半
導体層に絶縁ゲート型1界効果トランジスタ(stos
FgT)を形成して成る3次元ICの開発が行われてい
る。この様な絶縁膜上fこ形成された従来のMOSFE
Tのチャネル方間1こ沿りて切断して得られる断面を第
3図falに示す。通常、シリコン基板31には、素子
が形成され、その出番こ、絶縁jd32が厚さ約、1μ
m形成される。ここでは1図面を1副潔にするためシリ
コン基板31上の素子形成図は省略されている。上記形
成されたM縁膜32上に、@述のSOI技術によりて、
単結晶シリコン1534を形成する。この層は、模厚約
0.1μmで不純物磯度N   =IX1014Cm″
″1である。次fこ。
(Prior art) Recently, SOI (5
ilicon on in5ulator) technology is being actively developed. Then, an insulated gate single field effect transistor (STOS) is applied to the semiconductor layer obtained using this technology.
A three-dimensional IC formed by forming FgT is currently under development. A conventional MOSFE formed on such an insulating film
A cross section obtained by cutting along one channel length of T is shown in FIG. Usually, elements are formed on the silicon substrate 31, and the insulation layer 32 has a thickness of about 1 μm.
m is formed. Here, in order to make one drawing into one subtitle, a diagram of the formation of elements on the silicon substrate 31 is omitted. On the M edge film 32 formed above, by the SOI technology mentioned in @,
Single crystal silicon 1534 is formed. This layer has a thickness of approximately 0.1 μm and a degree of impurity N = IX1014Cm''
``It's 1.Next.

ub ゲート絶縁@35を約10OA形成した後、続いで、多
結晶シリコン@36を堆積する。そして通常用いられる
リングラフィ技術で、前記多結晶シリコy[36及びゲ
ート絶七灸膜35をバターニングする。この袋1例えば
ヒ素不純物を露出しているシリコン裾板に導入し、ドレ
イン領域37及びソース領域38が形成される。この様
tこして、絶縁膜32上憂こMOSFETが咋られる。
After forming approximately 10 OA of ub gate insulation @35, polycrystalline silicon @36 is subsequently deposited. Then, the polycrystalline silicon layer 36 and the gate isolation film 35 are patterned using a commonly used phosphorography technique. A drain region 37 and a source region 38 are formed by introducing an impurity, for example, arsenic, into the exposed silicon base plate of this bag 1. In this way, the MOSFET on the insulating film 32 is opened.

このMOSFET)こおいて、前述した様に、基板不純
物濃度がI X 10” cm−”と極めて低儂、度で
In this MOSFET, as mentioned above, the substrate impurity concentration is extremely low at I x 10"cm-".

かつ、半導体層34が約1.0μmと非常に薄いため、
ゲートt4圧が印υ口されると、基板全体が空乏化し、
ソース・ドレイン間を流れる電流のモードは、通常の反
転1を流れる表面型ではなく、層板全体を流れるバルク
型になる。従りて、キャリアの移動度は茂面型よりも大
きく、素子の高速前作が実現出来る利点がある。
Moreover, since the semiconductor layer 34 is very thin at about 1.0 μm,
When the gate t4 pressure is applied, the entire substrate is depleted,
The mode of current flowing between the source and drain is not the usual surface type flowing through the inversion 1, but the bulk type flowing through the entire layer plate. Therefore, the mobility of carriers is greater than that of the Momomen type, and there is an advantage that high-speed previous devices can be realized.

しかし、@述した様【こ、半導体層34の全体が空乏化
するため、ゲート1愼から出る4気力線は。
However, as mentioned above, since the entire semiconductor layer 34 is depleted, the four lines of force coming out from the gate 1.

半導体l′1I34を突き抜けて基板31に終端する。It passes through the semiconductor l'1I34 and terminates at the substrate 31.

従りて基板電位の変動が直接MO8FETの電流−電圧
特性へ愚影響を与える。つまり、第4図のゲート電圧(
V  )に対するドレイン電流(より)の特性図に示す
様に5例えば基板電位v3ubが□Vから一5vに変動
すると、しきい直電圧で約O,tV変化し、1流レベル
で約100倍変化する。この変化は、集積回路を設計す
る上で、大きな妨げとなりていた。
Therefore, variations in substrate potential directly affect the current-voltage characteristics of the MO8FET. In other words, the gate voltage (
For example, when the substrate potential v3ub changes from □V to -5V, the threshold direct voltage changes by about O, tV, and the 1-current level changes by about 100 times, as shown in the characteristic diagram of the drain current (more) versus V). do. This change has been a major hindrance in the design of integrated circuits.

また、第3図(bl iこ示す様に、半導体層34を突
き抜ける電気力線を4気的にシールドするために、絶縁
膜32中1こ、シールド139を設ける構造があるが、
この場合には、ソース38とシールド同39間5 ドレ
イン37とシール11間、そして、シIJコンi[31
とシールド1間の各キャパシターが極めて増大し、素子
の高速前作【こ対して不部会である。一方、そのキャパ
シタンスを減らすために、絶縁膜32,32aの厚さを
厚くすると、微細加工精度が悪化するため、それ程厚く
出来ない制約がある。
In addition, as shown in FIG. 3, there is a structure in which a shield 139 is provided in one part of the insulating film 32 in order to four-dimensionally shield the electric lines of force penetrating the semiconductor layer 34.
In this case, between the source 38 and the shield 39, between the drain 37 and the seal 11, and between the silicon IJ connector i[31
The capacitors between the shield 1 and the shield 1 are extremely large, and the high speed of the device is in contrast to the previous work. On the other hand, if the thickness of the insulating films 32, 32a is increased in order to reduce the capacitance, the precision of microfabrication deteriorates, so there is a restriction that the insulating films 32, 32a cannot be made so thick.

(発明が解決しようとする課題) 本発明は、上記従来法の欠点に鑑みてなされたもので、
その目的とするところは、SOI素子fこBいて、その
素子の゛電流−′シ王特注が基板電位の影響を受けない
安定な特性を有する。かつ浮遊容量の少ない、高速動作
をするSOI素子構造の半導体装置を提供すること1こ
ある。
(Problems to be Solved by the Invention) The present invention has been made in view of the drawbacks of the above-mentioned conventional methods.
The purpose of this is to provide an SOI device with stable characteristics in which the current flow of the device is not affected by the substrate potential. One object of the present invention is to provide a semiconductor device having an SOI element structure that has little stray capacitance and operates at high speed.

〔発明の構成〕[Structure of the invention]

(課1項を:4決するための手段) 本発明の骨子は、SUI素子のソース領域の一部が絶縁
模中誓こ埋設され、かつドレイン領域とソース領域間の
チャネル領域の真下部へ延長されているところ蛋こある
。これによって、基板電位の影響を全く受けない安定し
た電流−電圧特性を有し。
(Means for determining Section 1:4) The gist of the present invention is that a part of the source region of the SUI element is buried in an insulating layer and extends directly below the channel region between the drain region and the source region. There are many places where this is done. As a result, it has stable current-voltage characteristics that are completely unaffected by substrate potential.

かつ浮遊序なの少ない高速動作をするSOI素子構造の
半導体装置が提供される。
In addition, a semiconductor device having an SOI element structure is provided which can operate at high speed with less floating order.

(作用) 本発明(工、前述したSOI4子のソース領域を絶縁僕
中に埋設させ、ドレイy・ソース間のチャネル領域真下
部へ延長させて、SOI累子のゲートを極から出る′電
気力線を上記埋設、延長されたソース領域へ終端させる
。いわゆるシールド効果を利用する所(こある。シール
ド(こ際しては、シールド1とドレイン間、又は、ソー
ス間等の浮遊容lの増大を抑止すると共に、効果的tこ
シールド可能な構造を有するものである。
(Function) The present invention (engineering) embeds the source region of the SOI quadruplets in an insulating layer and extends it directly below the channel region between the drain and the source, so that the gate of the SOI quadrature is The line is terminated to the buried and extended source region.This is where the so-called shielding effect is utilized. It has a structure that can effectively prevent damage and provide effective shielding.

(実施例) 以下1本発明の一実施例の精細について、図面を用いて
説明する。
(Embodiment) The details of one embodiment of the present invention will be described below with reference to the drawings.

第1図1a)は、本発明によるSOI素子の一実施例を
示す上面図である。また、第1図1blば、第1図(a
))こおいてA −A’の一点鎖線で切断されたSOI
素子の断面図である。さらに、第1図1clは、@1図
talにおいて、B−8’の一点鎖線で切断されたSO
I素子の断面図である。第1図1al〜telでの同一
部分は、同一の符号を付して示した。11は、例えば半
導体シリコン基板である。12は前記半導体シリコン基
板上に形成された絶縁膜、例えばシリコン酸化膜であり
、19は埋設されたフィールド絶縁膜である。そして、
14は1例えばP型(100)方位のシリコン半導体層
で、17及び18は、前記シリコン半導体層と反対導電
屋の高不純物濃度1例えばヒ素不純物を有するドレイン
及びソース領域である。さらtこ、13は、前駅ソース
領域に接続されたソース領域と1司導電型を有する埋め
込み半4本1である。15は、ゲート絶縁膜である。そ
して、16は、多結晶シリコンのゲート電極である。
FIG. 1a) is a top view showing an embodiment of an SOI device according to the invention. In addition, if Fig. 1 1bl, Fig. 1 (a
)) Here, the SOI cut along the dashed line of A-A'
FIG. 3 is a cross-sectional view of the element. Furthermore, in Fig. 1 1cl, the SO
FIG. 3 is a cross-sectional view of an I element. Identical parts in FIG. 11 is, for example, a semiconductor silicon substrate. 12 is an insulating film formed on the semiconductor silicon substrate, for example a silicon oxide film, and 19 is a buried field insulating film. and,
Reference numeral 14 denotes a silicon semiconductor layer of, for example, P-type (100) orientation, and reference numerals 17 and 18 denote drain and source regions having a high impurity concentration, for example, arsenic impurity, and having opposite conductivity to the silicon semiconductor layer. Further, 13 is a buried half wire 1 having a source region connected to the previous source region and a conductivity type. 15 is a gate insulating film. And 16 is a gate electrode made of polycrystalline silicon.

嘉2図(ml〜fitは、第1図1〜fclに示した本
発明によるSOI素子の製造工程を示す断面図である。
Figure 2 (ml-fit is a sectional view showing the manufacturing process of the SOI device according to the present invention shown in Figures 1-fcl).

先ず、第2図talに示す様lこ、例えば、シリコン基
板210上にCVD法によりシリコン酸化11i 22
0を約0.5μm堆積する。このシリコン酸化膜220
ヲIJ 7 ’)” ラフィ技術tこよるマスクパター
ンヲ用い。
First, as shown in FIG. 2, for example, silicon oxide 11i 22 is deposited on a silicon substrate 210 by the CVD method.
Deposit about 0.5 μm of 0. This silicon oxide film 220
A mask pattern based on Raffi technology is used.

開口部2909テーパー状にエツチングし形成する。続
いて、第2図tb) 1こ示す如く全面に厚さ約0.2
μmのN型多納晶シリコン嘆230を形成する。
The opening 2909 is formed by etching into a tapered shape. Next, as shown in Figure 2 (tb) 1, the entire surface is coated with a thickness of about 0.2 mm.
A μm N-type polycrystalline silicon layer 230 is formed.

次に、第21図1clζこ示す如く、前記多結晶シリコ
ンFIX230を通常のりソグラフィ技術で、パターニ
ングした侵、全面に、約0.5μmのシリコン酸化膜2
20mを形成する(第2図(d) )。そして1例えば
、加速電圧15KV、ビーム電流2mA、ビーム振りI
’f55 mmの疑似状電子ビームを用いてアニールし
、多結晶シリコン5230を尋結晶化させ、第1シリコ
ン1230を形成させる。その後、前記シリコン酸化膜
220aを通常のリングラフィ技術fこより開口部29
1をテーパー状に形成する(第2図1e))。次lこ、
非結晶シリコン1漠240を約0.1μm形成した後、
固相成長技術(例えば、650℃。
Next, as shown in FIG. 21, the polycrystalline silicon FIX 230 is patterned using normal gluing lithography, and a silicon oxide film 2 of about 0.5 μm thick is formed on the entire surface.
20m (Figure 2(d)). For example, acceleration voltage 15KV, beam current 2mA, beam swing I
Annealing is performed using a pseudo-shaped electron beam of f55 mm to deeply crystallize the polycrystalline silicon 5230 and form the first silicon 1230. Thereafter, the silicon oxide film 220a is formed into the opening 29 using a normal phosphorography technique.
1 into a tapered shape (FIG. 2 1e)). Next time,
After forming an amorphous silicon layer 240 with a thickness of about 0.1 μm,
Solid phase growth technology (e.g. 650°C.

20分)で、重粘晶化させ、第2シリコン層240を形
成させる(第2図げ)〕。そして、素子領域となる部分
をマスクでおおい、池の部分を1例えば反応性イオンエ
ツチングで、前記第1シリコン層230よりも深い位攬
迄、エツチングし、開口部292を形成する(第2JI
gl)、前記マスクを除去した後、開口部2922こ、
例えばシリコン酸化膜293を埋め込み1表面を平臥に
する(第2図(社))。この様に、素子分離工程を終え
た侵、第2シリコ/@240の表面を熱酸化し、ゲート
絶縁膜250を1例えば、1厚で約10OA形成する。
20 minutes) to cause heavy viscosity crystallization and form a second silicon layer 240 (see Figure 2). Then, the portion that will become the element region is covered with a mask, and the pond portion is etched, for example, by reactive ion etching, to a depth deeper than the first silicon layer 230 to form an opening 292 (second JI).
gl), after removing the mask, the opening 2922;
For example, a silicon oxide film 293 is buried and the surface 1 is made flat (FIG. 2). In this manner, after the element isolation process is completed, the surface of the second silicon layer 240 is thermally oxidized to form a gate insulating film 250 with a thickness of about 10 OA, for example.

その後、全面(こ、ボロンイオノ注入を行い、P盟シリ
コylilこする。次に5例えば多結晶シリコン@26
0を約0.4μm形ヴした侵、リングラフィ技術を用い
、前記多結晶シリコン@260をパターニングする。そ
の浸1例えばヒ素イオンを全面1こ、イオン注入し、N
型領域270及び280を形成する(窮2図(1))。
After that, perform boron ion implantation on the entire surface (this), and rub the P-type silicon ylil. Next, for example, polycrystalline silicon
The polycrystalline silicon@260 is patterned using a phosphorography technique with a thickness of approximately 0.4 μm. For example, arsenic ions are implanted into the entire surface, and N
Form regions 270 and 280 (Fig. 2 (1)).

この様蚤こ、ゲート′JL極260、ドレイン頃t42
70.そしてソース領域280を形成した侵、以下、通
常の工湿に従い。
Like this, gate'JL pole 260, drain around t42
70. Then, the process for forming the source region 280 is carried out in accordance with a conventional process.

本発明の一実施例fこよるSOI素子が完成する。An SOI device according to Example F of the present invention is completed.

この様すこして完成した801票子の電気的特性を求め
た結果の一例を第5図に示す。SOI素子のソース領域
の一部がドレイン領域の先端迄、延長されているの廿で
ある。基板1位VsubをOvから一5vに変化させて
も、4流−4王特性が全りf:勅しない非常)こ差れた
特性を肩するSOI素子である。
FIG. 5 shows an example of the results of determining the electrical characteristics of the slightly completed 801 tag. A portion of the source region of the SOI device extends to the tip of the drain region. Even if the substrate No. 1 Vsub is changed from Ov to -5V, the 4th class-4th king characteristic is completely f: an SOI element that can shoulder the difference in characteristics.

尚、@記SO工素子のソース領域の一部の延長距離Xを
変えた場合のしきい直電圧変動(V 5ub=OVと−
5VB: ji; ケるIp=1μAで評1lfliし
たLtい1直1圧VTの差)△vTと、チャネル中央を
原点fことり、ソース領域の一部延長距@Xとの関係を
第6図(こ示す。この関係は、@役される深さを約1μ
m@厚の絶縁膜220内で変えても殆んど変わらない。
In addition, the threshold direct voltage fluctuation (V 5ub = OV and -
5VB: ji; Figure 6 shows the relationship between △vT (difference between Lt and 1 voltage VT evaluated at Ip = 1 μA) and partial extension distance of the source region @X with the center of the channel as the origin f. (This relationship shows that the depth of
Even if it is changed within the insulating film 220 having a thickness of m@, there is almost no difference.

一方、ソース領域の埋設砥長位憧が、ドレインfこ妾近
するtこ従りて、ソースとドレイン間のキャパシタンス
が増大する。すなわち、その延長部230が、ドレイン
領域の真下に入り込むと、キャパシタンスは、延長V巨
4 +こ対して、はぼ正比例して増大する。従りて%前
記延長端の位置をチャネル中央位置を原点として、ビレ
1フ領域方向へチャネル長の174の位・lから、ドレ
イン傾城の先端、すなわちチャネル端の位置に設定され
ることが最適である。
On the other hand, as the depth of the buried grindstone in the source region approaches the drain f, the capacitance between the source and drain increases. That is, as the extension 230 goes beneath the drain region, the capacitance increases approximately in direct proportion to the extension V4 +. Therefore, it is optimal to set the position of the extended end at the tip of the drain slope, that is, at the channel end, from the 174th point of the channel length in the direction of the fin 1f region, with the channel center position as the origin. It is.

上記の実施例は、NチャネルのSOI素子を例fことり
述べたが、PチャネルSOI素子テモよい。
In the above embodiments, an N-channel SOI device has been described as an example, but a P-channel SOI device may also be used.

又、ソース、ドレインの不純物濃度分布は1通常の高a
度のみならず、いわゆるLDD構造の低濃度にした鴨会
でも良い。
In addition, the impurity concentration distribution of the source and drain is 1 normal high a
In addition to this, it is also possible to use a low-density Kamokai with a so-called LDD structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、SOI素子のソース領域の一部がSO
Iの絶縁膜中に埋設され、又、そのドレインとソース間
のチャネル領域の真下部へ延長させる位置に設定するこ
とによって、基板電位変化の影響を全く受けない安定し
た電流−電圧特性が得うれ、かつ、ソース・ドレイン間
のキヤバタンスが小さく、極めて、浸れた高速度SOI
素子が得られる。
According to the present invention, part of the source region of the SOI element is
By embedding it in the insulating film of I and extending it directly below the channel region between its drain and source, stable current-voltage characteristics that are completely unaffected by changes in substrate potential can be obtained. , and the source-drain cavatance is small, making it an extremely immersed high-speed SOI.
An element is obtained.

4、 1!!:J面の簡単な説明 第1図(alは1本発明によるSOI素子の一実施例を
示す上面図、l!1図1b)は、第1図1a)のA −
A’で切断したSOI素子の断面図、第1図(clは、
第1154 (a)のB−B′で切断したSOI素子の
断面図、第2図は、本発明iこよるSOI素子の一実施
例の!11jit工程を示す断面図、第3図(a) 、
 (blは従来のSOI素子断面図、第4図は、前記従
来のSOI素子の特性図、第5図は本発明のSOI素子
の電気的特性を示した図、第6図は本発明のSOI素子
のソース延長距離に対するしきい直電圧変動の関係を示
した図である。
4, 1! ! : Brief explanation of the J plane. Figure 1 (al is 1 is a top view showing an embodiment of the SOI device according to the present invention, l! 1 Figure 1b) is A- of Figure 1 1a).
A cross-sectional view of the SOI device cut at A', FIG. 1 (cl is
1154 FIG. 2 is a cross-sectional view of the SOI device taken along line BB' in (a), showing an embodiment of the SOI device according to the present invention. Cross-sectional view showing the 11-jit process, FIG. 3(a),
(bl is a sectional view of a conventional SOI device, FIG. 4 is a characteristic diagram of the conventional SOI device, FIG. 5 is a diagram showing the electrical characteristics of the SOI device of the present invention, and FIG. 6 is a diagram of the SOI device of the present invention. FIG. 3 is a diagram showing the relationship between threshold direct voltage fluctuation and source extension distance of an element.

11.210.31・・・シリコンを板、12,220
゜220a、32,32a・・・絶縁膜、13,230
・・・ソース領域の埋設延長部、14,240.34・
・・半導体層、15.250.35・・・ゲート絶縁膜
、16,260.36・・・多結晶シリコン@、17,
270.37・・・ドレイン領域、18,280.38
・・・ソース領域、19.293・・・埋め込みフィー
ルド絶縁膜、290,291.292・・・開口部、1
8.240a・・・琳結晶化されたシリコンの残存部、
39・・・シールド1゜ 代理人 弁理士  則 近 W!i  右同     
   松  山  光  之@  l  囚 第1図 第  1  因 第 図 第 図 第 図 一/、O −〇、5 0、s 7.0 チ1ネル中央n・5の二且治宜χ(門)第 図
11.210.31...Silicon plate, 12,220
゜220a, 32, 32a...Insulating film, 13,230
... Buried extension of source area, 14,240.34.
...Semiconductor layer, 15.250.35...Gate insulating film, 16,260.36...Polycrystalline silicon@, 17,
270.37...Drain region, 18,280.38
... Source region, 19.293 ... Buried field insulating film, 290, 291.292 ... Opening, 1
8.240a...Remaining part of silicon crystallized,
39...Shield 1゜Representative Patent Attorney Nori W! i Same as right
Mitsuru Matsuyama @ l Prisoner Figure 1 Figure 1 Cause Figure Figure Figure 1/, O -〇, 5 0, s 7.0 Channel 1 Channel center n. figure

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁体基板、あるいは、絶縁膜上に、島状に形成
された第1不純物を含む複数個の半導体層を有し、前記
半導体層には、第2の不純物を導入してなるソース及び
ドレイン領域が形成され、かつ前記半導体層上に前記ソ
ース、ドレイン間のチャネル領域の電位を制御するゲー
ト領域を有する半導体装置において、前記ソース領域の
一部が、チャネル領域下の前記絶縁体基板、あるいは、
絶縁膜中に埋設され、ドレイン領域方向に延長されてい
ることを特徴とする半導体装置。
(1) A source having a plurality of semiconductor layers containing a first impurity formed in an island shape on an insulating substrate or an insulating film, and a second impurity introduced into the semiconductor layer. and a drain region formed therein, and a semiconductor device having a gate region on the semiconductor layer for controlling the potential of a channel region between the source and the drain, wherein a part of the source region is connected to the insulating substrate below the channel region. ,or,
A semiconductor device characterized by being embedded in an insulating film and extending in the direction of a drain region.
(2)前記ソース領域のドレイン領域方向に延長された
領域がチャネル長の3/4の位置から、ドレイン側のチ
ャネル端位置に設定されていることを特徴とする請求項
1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the region extending in the direction of the drain region of the source region is set from a position of 3/4 of the channel length to a channel end position on the drain side.
JP14489288A 1988-06-14 1988-06-14 Semiconductor device Expired - Fee Related JP2695843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14489288A JP2695843B2 (en) 1988-06-14 1988-06-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14489288A JP2695843B2 (en) 1988-06-14 1988-06-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH022176A true JPH022176A (en) 1990-01-08
JP2695843B2 JP2695843B2 (en) 1998-01-14

Family

ID=15372773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14489288A Expired - Fee Related JP2695843B2 (en) 1988-06-14 1988-06-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2695843B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364074A (en) * 1991-06-11 1992-12-16 Nec Corp Insulated gate field effect transistor
US5191397A (en) * 1989-09-07 1993-03-02 Kabushiki Kaisha Toshiba SOI semiconductor device with a wiring electrode contacts a buried conductor and an impurity region
KR100425462B1 (en) * 2001-09-10 2004-03-30 삼성전자주식회사 Semiconductor device on SOI(silicon on insulator) structure) and method for manufacturing the same
CN103250816A (en) * 2013-05-10 2013-08-21 镇江市丹徒区茗缘茶叶专业合作社 Multifunctional spread cooling sieve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191397A (en) * 1989-09-07 1993-03-02 Kabushiki Kaisha Toshiba SOI semiconductor device with a wiring electrode contacts a buried conductor and an impurity region
JPH04364074A (en) * 1991-06-11 1992-12-16 Nec Corp Insulated gate field effect transistor
KR100425462B1 (en) * 2001-09-10 2004-03-30 삼성전자주식회사 Semiconductor device on SOI(silicon on insulator) structure) and method for manufacturing the same
CN103250816A (en) * 2013-05-10 2013-08-21 镇江市丹徒区茗缘茶叶专业合作社 Multifunctional spread cooling sieve

Also Published As

Publication number Publication date
JP2695843B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US5488243A (en) SOI MOSFET with floating gate
US6960821B2 (en) Method and apparatus on (110) surfaces of silicon structures with conduction in the <110> direction
US4329186A (en) Simultaneously forming fully implanted DMOS together with enhancement and depletion mode MOSFET devices
US5137837A (en) Radiation-hard, high-voltage semiconductive device structure fabricated on SOI substrate
US20090321849A1 (en) Semiconductor device, integrated circuit, and semiconductor manufacturing method
US4232327A (en) Extended drain self-aligned silicon gate MOSFET
US6861304B2 (en) Semiconductor integrated circuit device and method of manufacturing thereof
US20030122214A1 (en) High performance PD SOI tunneling-biased mosfet
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
JPH05160396A (en) Mos field effect transistor
KR20050075448A (en) Novel field effect transistor and method of fabrication
KR100406202B1 (en) Transistor-type ferroelectric nonvolatile memory element
EP0337020B1 (en) Semiconductor device with source and drain depth extenders and a method of making the same
US6657261B2 (en) Ground-plane device with back oxide topography
CN104867834A (en) Single-impurity atom junction-free silicon nano wire transistor based on SOI substrate, and preparation method thereof
JPH022176A (en) Semiconductor device
JPH03173175A (en) Semiconductor device
JPH0728043B2 (en) Semiconductor device
JPS61271854A (en) Semiconductor-element isolating structure and manufacture thereof
JPS59149059A (en) Metal insulator semiconductor transistor and manufacture thereof
JPH04250667A (en) Semiconductor device and manufacture thereof
JP2001044425A (en) Semiconductor device
KR0161891B1 (en) Manufacturing method for semiconductor device
JPS6153773A (en) Semiconductor device and production thereof
JPH0661501A (en) Field-effect semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees