JPH0221756Y2 - - Google Patents

Info

Publication number
JPH0221756Y2
JPH0221756Y2 JP1984130391U JP13039184U JPH0221756Y2 JP H0221756 Y2 JPH0221756 Y2 JP H0221756Y2 JP 1984130391 U JP1984130391 U JP 1984130391U JP 13039184 U JP13039184 U JP 13039184U JP H0221756 Y2 JPH0221756 Y2 JP H0221756Y2
Authority
JP
Japan
Prior art keywords
furnace
infrared
heating element
cylindrical heating
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984130391U
Other languages
Japanese (ja)
Other versions
JPS6144196U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13039184U priority Critical patent/JPS6144196U/en
Publication of JPS6144196U publication Critical patent/JPS6144196U/en
Application granted granted Critical
Publication of JPH0221756Y2 publication Critical patent/JPH0221756Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はセラミツクス印刷基板等を焼成する炉
内温度が900℃〜1000℃と比較的高温の赤外線焼
成炉の改良に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to an improvement of an infrared firing furnace which has a relatively high internal temperature of 900°C to 1000°C for firing ceramic printed circuit boards and the like.

(従来の技術) 従来のこの種赤外線焼成炉としては炉内温度が
900℃〜1000℃と高温でクリーンな雰囲気が要求
されるため、炉体内の天井部と底部に熱膨張係数
が小さくて耐酸化性に優れた石英管内に電熱線を
収納した赤外線筒状発熱体を該炉体の炉幅方向に
多数配設したものが知られている。(例えば実開
昭59−55395号公報) (考案が解決しようとする問題点) しかしながら、このような赤外線焼成炉は使用
する赤外線筒状発熱体の長さ方向の温度区分制御
ができないために両端方部程外気への熱放散によ
り温度が低下し、このため赤外線筒状発熱体の有
効長は被焼成物の幅すなわちベルト幅より大きく
とらねばならず、炉幅が大きくなるばかりか電気
容量が大きくなつて不経済となるという問題点が
あつた。
(Conventional technology) Conventional infrared firing furnaces of this type have low internal temperatures.
Because a clean atmosphere at high temperatures of 900℃ to 1000℃ is required, an infrared cylindrical heating element is installed in the ceiling and bottom of the furnace, with a heating wire housed in a quartz tube with a small coefficient of thermal expansion and excellent oxidation resistance. It is known that a large number of these are arranged in the furnace width direction of the furnace body. (For example, Japanese Utility Model Application Publication No. 59-55395) (Problems to be solved by the invention) However, such an infrared firing furnace cannot control the temperature division in the length direction of the infrared cylindrical heating element used, so As the temperature decreases due to heat dissipation into the outside air, the effective length of the infrared cylindrical heating element must be larger than the width of the object to be fired, that is, the belt width, which not only increases the furnace width but also increases the electric capacity. The problem was that it became uneconomical as it grew larger.

(問題点を解決するための手段) 本考案は前記のような問題点を解決した温度分
布の良好な赤外線焼成炉を目的として完成された
もので、被焼成品を移送する搬送路を入口側から
出口側にわたつて設けた炉体内に該炉体の炉幅方
向に延びる赤外線筒状発熱体を多数配設するとと
もに炉体の対向する側壁の内側位置には両端に直
角状に突出して形成された取付脚部8e,8eを
もつて側壁1aに位置調節自在に取付けられた炉
長方向に延びる温度低下補償用の赤外線筒状発熱
体を配設したことを特徴とするものである。
(Means for solving the problems) The present invention was completed with the aim of creating an infrared firing furnace with good temperature distribution that solved the problems mentioned above. A large number of infrared cylindrical heating elements extending in the width direction of the furnace body are disposed in the furnace body extending from the furnace body to the outlet side, and are formed on the inner side of the opposing side walls of the furnace body so as to protrude at right angles from both ends. The present invention is characterized in that an infrared cylindrical heating element for temperature drop compensation extending in the longitudinal direction of the furnace is attached to the side wall 1a with adjustable mounting legs 8e, 8e.

(実施例) 次に、本考案を図示の実施例について詳細に説
明すれば、1は耐火断熱煉瓦、高温耐火繊維等の
断熱材で構成される焼成用の炉体であつて、該炉
体1の炉内天井部および底部には炉体1の炉幅方
向すなわち搬送方向に対し直交する方向に延びる
赤外線筒状発熱体2の多数本が一定間隔で並設さ
れている。なお、この赤外線筒状発熱体2は耐酸
化性に優れているうえ高温に適したコイル状の
鉄・クロム線等の高温用抵抗発熱体2cが巻付け
られたアルミナ磁器等のセラミツクス材等よりな
る棒状または管状の耐熱性芯材2bを、熱膨張が
小さくて耐酸化性に優れた石英管2a内に遊挿し
てその両端を該石英管2aの両端方部に充填され
たバルク状の高温耐火繊維等の断熱緩衝材2d,
2dに前記耐熱性芯材2bが石英管2aの中心ま
たは上方に偏心された状態となるよう支持させた
ものである。また、炉体1の炉幅より若干長くし
たこの赤外線筒状発熱体2はその両端が該炉体1
の対向する各側壁1aの上方部に一直線状に配列
された挿入孔3および各挿入孔3,3間の下方に
位置するように両側壁1aの下方部に一直線状に
配列された挿入孔3にそれぞれ挿通されて炉内天
井部と底部への配置が千鳥状となるよう側壁1
a,1a間に並行に架設され、各側壁1aの外面
に取付けられたホルダー4に突出端が固定されて
いる。さらに、前記耐熱性芯材2bに巻付けられ
た高温用抵抗発熱体2cは炉内の温度分布を極力
向上させるために有効発熱長が炉内幅と略等しく
なるようになつており、その両端のリード線の端
末は石英管2aの両端より外部に導出され、上下
の赤外線筒状発熱体2のリード線は連結されて1
つのヒータ回路を構成している。なお、石英管2
a、耐熱性芯材2bおよび高温用抵抗発熱体2
c、バルク状の断熱緩衝材2dは接着固定される
ものではなく、バルク状の断熱緩衝材2dを取り
除けば炉外より各別に挿脱できるようになつてい
る。5は炉体1の入口側から出口側にわたつて設
けられた被焼成品を搬送するための無端ネツトコ
ンベア式の搬送路であつて、耐熱性と耐酸化性に
優れたニツケル・クロム系合金線等によつて編成
された無端ベルト状のネツト5aは炉内底部に上
端が前記赤外線筒状発熱体2より若干上方に位置
するように配設してある耐火物製の支持台6上の
炉長方向に延びるガイド用石英管7上を摺動され
るものとしてある。8は炉体1内に対向する側壁
1a,1aの内側位置に前記赤外線筒状発熱体2
と直交する方向すなわち該側壁1aに沿つて配設
された炉長方向に延びる温度低下補償用の赤外線
筒状発熱体であつて、該赤外線筒状発熱体8も前
記赤外線筒状発熱体2と略同様の構成としている
が、石英管8aの両端方部に該石英管8aから直
角状に石英管よりなる取付脚部8e,8eが溶接
連結されていて各取付脚部8eよりリード線の端
末が外部に導出され、この赤外線筒状発熱体8は
側壁1aに設けた段付孔に装脱自在に嵌着される
断熱ブロツク9に設けた上下方向に長い挿込孔9
aに取付脚部8e,8eをもつて挿着されて側壁
1aに対して着脱と上下および前後方向に位置調
節自在に取付けられている。10はアルメル−ク
ロメル等の熱起電材料よりなる温度検出端であつ
て、該温度検出端10は炉体1の天井部から炉内
に挿入されており、温度調節計に接続してヒータ
を使用目的に応じた適正温度に維持する。なお、
図中11は炉体1の下部に設けられる乾燥用の炉
体、12は乾燥用の炉体11の搬送路、13は乾
燥用の炉体11の出口側に搬送された被焼成品2
1を焼成用の炉体1の入口側の搬送路5上に移載
する移載装置、14および15は焼成用の炉体1
の出口側に設けた搬送路洗浄装置及び乾燥装置、
16,17は搬送路5,12のローラ、18は乾
燥用の炉体11の天井部に配設された角盤状の遠
赤外線輻射ヒータである。
(Example) Next, the present invention will be described in detail with reference to the illustrated embodiment. 1 is a firing furnace body made of a heat insulating material such as fireproof insulation bricks and high temperature refractory fibers; A large number of infrared cylindrical heating elements 2 are arranged in parallel at regular intervals on the ceiling and bottom of the furnace body 1, extending in the width direction of the furnace body 1, that is, in a direction orthogonal to the conveying direction. The infrared cylindrical heating element 2 is made of a ceramic material such as alumina porcelain, etc., which has excellent oxidation resistance and is wrapped with a high-temperature resistance heating element 2c such as a coiled iron or chrome wire suitable for high temperatures. A rod-shaped or tubular heat-resistant core material 2b is loosely inserted into a quartz tube 2a, which has small thermal expansion and excellent oxidation resistance, and both ends of the rod-shaped or tubular heat-resistant core material 2b are filled into both end portions of the quartz tube 2a. Insulating cushioning material 2d such as fireproof fiber,
2d supports the heat-resistant core material 2b so that it is eccentric to the center or above the quartz tube 2a. Moreover, this infrared cylindrical heating element 2, which is slightly longer than the furnace width of the furnace body 1, has both ends connected to the furnace body 1.
The insertion holes 3 are arranged in a straight line in the upper part of each side wall 1a facing each other, and the insertion holes 3 are arranged in a straight line in the lower part of both side walls 1a so as to be located below between the insertion holes 3, 3. side walls 1 so that they are inserted into the furnace ceiling and bottom in a staggered manner.
The projecting end is fixed to a holder 4 which is installed in parallel between the side walls 1a and 1a and attached to the outer surface of each side wall 1a. Furthermore, the high-temperature resistance heating element 2c wound around the heat-resistant core material 2b is designed so that its effective heat generation length is approximately equal to the width inside the furnace in order to improve the temperature distribution inside the furnace as much as possible. The ends of the lead wires are led out from both ends of the quartz tube 2a, and the lead wires of the upper and lower infrared cylindrical heating elements 2 are connected.
It consists of two heater circuits. In addition, quartz tube 2
a, heat-resistant core material 2b and high-temperature resistance heating element 2
c. The bulk heat insulating buffer material 2d is not fixed by adhesive, but can be inserted and removed individually from outside the furnace by removing the bulk heat insulating buffer material 2d. Reference numeral 5 denotes an endless net conveyor type conveyor path for conveying the products to be fired, which is provided from the inlet side to the outlet side of the furnace body 1, and is made of a nickel-chromium alloy with excellent heat resistance and oxidation resistance. An endless belt-like net 5a made of wires or the like is placed on a refractory support 6 disposed at the bottom of the furnace so that its upper end is located slightly above the infrared cylindrical heating element 2. It is assumed to be slid on a guide quartz tube 7 extending in the furnace length direction. 8 is the infrared cylindrical heating element 2 located inside the opposing side walls 1a, 1a in the furnace body 1.
An infrared cylindrical heating element for temperature drop compensation extending in the direction perpendicular to the side wall 1a, that is, along the furnace length direction, and the infrared cylindrical heating element 8 is also similar to the infrared cylindrical heating element 2. Although the configuration is substantially the same, mounting legs 8e, 8e made of quartz tubes are welded to both ends of the quartz tube 8a at right angles from the quartz tube 8a, and the ends of the lead wires are connected to each end of the quartz tube 8a. is led out to the outside, and this infrared cylindrical heating element 8 is inserted into a vertically elongated insertion hole 9 provided in a heat insulating block 9 that is removably fitted into a stepped hole provided in the side wall 1a.
a with mounting legs 8e, 8e, and is attached to the side wall 1a so that it can be attached to and detached from the side wall 1a and its position can be freely adjusted in the vertical and longitudinal directions. Reference numeral 10 denotes a temperature detection end made of a thermoelectric material such as alumel-chromel. The temperature detection end 10 is inserted into the furnace from the ceiling of the furnace body 1, and is connected to a temperature controller to turn on the heater. Maintain the appropriate temperature according to the purpose of use. In addition,
In the figure, 11 is a drying furnace provided at the lower part of the furnace 1, 12 is a conveyance path for the drying furnace 11, and 13 is a fired product 2 conveyed to the outlet side of the drying furnace 11.
1 onto the conveyance path 5 on the entrance side of the firing furnace body 1; 14 and 15 are the firing furnace bodies 1;
conveyance path cleaning device and drying device installed on the exit side of the
16 and 17 are rollers of the conveyance paths 5 and 12, and 18 is a square disk-shaped far-infrared radiation heater disposed on the ceiling of the drying furnace body 11.

(作用) このように構成されたものは、被焼成品を搬送
する搬送路5に載せられた被焼成品21が焼成用
の炉体1内に送られると、被焼成品21は炉体1
内に多数配設されている炉幅方向に延びる赤外線
筒状発熱体2からの輻射熱によつて加熱されるう
えに炉体1の対向する側壁1a,1aの内側位置
に各側壁1aに沿つて炉長方向に配設された赤外
線筒状発熱体8からの補助輻射加熱により被焼成
品21は均一に加熱されるものであり、例えば、
炉内温度を1000℃に設定した場合搬送路5直上の
中央と端の雰囲気温度は側壁1a,1aに沿つた
赤外線筒状発熱体8がない場合の温度差が±7.5
℃であつたのに対し温度低下補償用の赤外線筒状
発熱体8を配設することにより±1℃に改善さ
れ、温度分布が良好となるので炉幅を最小限にお
さえることができ、電気容量も小さくできるので
経済的なものである。しかも、赤外線筒状発熱体
8が炉長方向に延びていることによつて僅かな設
置数で炉体1内の側壁1a,1aに沿う部分の温
度低下を補償でき設置手数を簡略化できる利点も
ある。さらに、高温用抵抗発熱体2cは耐熱性芯
材2bに巻付けられて完全に石英管2a内に収納
されているので、1000℃以上となつても石英管2
aの熱変形や高温用抵抗発熱体2cの自重による
赤外線筒状発熱体2の変形がなくなり、変形によ
り被焼成品21への照射距離が不揃いとなること
がないので、炉内の温度分布が極めてよく、ま
た、発熱体が露呈されたヒータに見られる酸化物
等の落下現象がなくなつて炉内をクリーンな雰囲
気にすることができる。なお、本実施例のように
赤外線筒状発熱体8を各側壁1aに位置調節自在
に取付けたものとしておけば、炉外から挿入位置
を調節できて炉内の温度分布を微妙に調節するこ
とができ、また、赤外線筒状発熱体8を断熱ブロ
ツク9に挿着してこの断熱ブロツク9を前記段付
孔に着脱できるようにしておけば、赤外線筒状発
熱体8を取替える場合に炉体1を解体しなくても
炉外から簡単に短時間で交換することができ、さ
らに、赤外線筒状発熱体2,8の石英管、高温用
抵抗発熱体、耐熱性芯材およびバルク状の断熱緩
衝材の接着固定されないままにしておけば、ヒー
タ断線の場合には高温用抵抗発熱体のみを交換す
ればよく、メンテナンス費用が経済的となる。
(Function) With this configuration, when the article to be fired 21 placed on the conveyance path 5 for conveying the article to be fired is sent into the furnace body 1 for firing, the article to be fired 21 is transferred to the furnace body 1.
In addition to being heated by radiant heat from infrared cylindrical heating elements 2 extending in the width direction of the furnace body 1, which are arranged in large numbers inside the furnace body 1, it is heated by the radiant heat from the infrared cylindrical heating elements 2 disposed inside the furnace body 1, and is placed along each side wall 1a at an inside position of the opposing side walls 1a, 1a of the furnace body 1. The product to be fired 21 is uniformly heated by auxiliary radiation heating from an infrared cylindrical heating element 8 disposed in the longitudinal direction of the furnace.
When the temperature inside the furnace is set to 1000°C, the temperature difference between the center and the edge directly above the conveyance path 5 is ±7.5 when there is no infrared cylindrical heating element 8 along the side walls 1a, 1a.
℃, but by installing the infrared cylindrical heating element 8 to compensate for the temperature drop, the temperature has been improved to ±1℃.The temperature distribution is good, so the width of the furnace can be kept to a minimum, and the electric It is economical because the capacity can be reduced. Moreover, since the infrared cylindrical heating element 8 extends in the furnace length direction, the temperature drop in the portion along the side walls 1a, 1a inside the furnace body 1 can be compensated for with a small number of installations, and the installation process can be simplified. There is also. Furthermore, since the high-temperature resistance heating element 2c is wrapped around the heat-resistant core material 2b and completely housed within the quartz tube 2a, even if the temperature reaches 1000°C or higher, the quartz tube
There is no deformation of the infrared cylindrical heating element 2 due to the thermal deformation of a or the weight of the high-temperature resistance heating element 2c, and the irradiation distance to the fired product 21 does not become uneven due to deformation, so the temperature distribution in the furnace is maintained. Furthermore, the phenomenon of falling oxides, etc., which is observed in heaters with exposed heating elements, is eliminated, and a clean atmosphere can be created in the furnace. In addition, if the infrared cylindrical heating element 8 is attached to each side wall 1a so that its position can be adjusted as in this embodiment, the insertion position can be adjusted from outside the furnace, and the temperature distribution inside the furnace can be finely adjusted. In addition, if the infrared cylindrical heating element 8 is inserted into the heat insulating block 9 and the heat insulating block 9 is made detachable from the stepped hole, when the infrared cylindrical heating element 8 is replaced, the furnace body It can be easily replaced from outside the furnace in a short time without disassembling the infrared cylindrical heating element 1, and the quartz tube of the infrared cylindrical heating element 2, 8, high temperature resistance heating element, heat resistant core material, and bulk insulation. If the cushioning material is not fixed with adhesive, only the high-temperature resistance heating element needs to be replaced in the event of heater breakage, resulting in economical maintenance costs.

(考案の効果) 本考案は前記説明によつて明らかなように、炉
幅方向に延びる多数の赤外線筒状発熱体が配設さ
れた炉体内にその側壁に沿つて炉長方向に延びる
温度低下補償用の赤外線筒状発熱体を配設したか
ら炉内の温度分布が改善でき、従つて、炉幅を最
小限におさえて電気容量も小さくできる極めて経
済的なもので、従来のこの種赤外線焼成炉の問題
点を解決したものとして実用的価値極めて大なも
のである。
(Effect of the invention) As is clear from the above description, the present invention provides temperature reduction that extends in the furnace length direction along the side wall of the furnace body in which a large number of infrared cylindrical heating elements are arranged extending in the furnace width direction. The provision of a compensating infrared cylindrical heating element improves the temperature distribution within the furnace, and it is extremely economical, minimizing the width of the furnace and reducing the electric capacity, compared to conventional infrared rays of this type. It is of great practical value as it solves the problems of firing furnaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す一部切欠正面
図、第2図は同じく要部の一部切欠正面図、第3
図は同じく要部の一部切欠側面図である。 1:炉体、1a:側壁、2:炉幅方向に延びる
赤外線筒状発熱体、5:搬送路、8:炉長方向に
延びる温度低下補償用の赤外線筒状発熱体、8
e:取付脚部。
Fig. 1 is a partially cutaway front view showing an embodiment of the present invention, Fig. 2 is a partially cutaway front view of the main part, and Fig.
The figure is also a partially cutaway side view of the main part. 1: Furnace body, 1a: Side wall, 2: Infrared cylindrical heating element extending in the furnace width direction, 5: Conveyance path, 8: Infrared cylindrical heating element for temperature drop compensation extending in the furnace length direction, 8
e: Mounting leg.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被焼成品を移送する搬送炉5を入口側から出口
側にわたつて設けた炉体1内に該炉体1の炉幅方
向に延びる赤外線筒状発熱体2を多数配設すると
ともに炉体1の対向する側壁1a,1aの内側位
置には両端に直角状に突出して形成された取付脚
部8e,8eをもつて側壁1aに位置調節自在に
取付けられた炉長方向に延びる温度低下補償用の
赤外線筒状発熱体8を配設したことを特徴とする
赤外線焼成炉。
A large number of infrared cylindrical heating elements 2 extending in the furnace width direction of the furnace body 1 are disposed within the furnace body 1 in which a transfer furnace 5 for transferring the products to be fired is provided from the inlet side to the outlet side. A temperature drop compensating device extending in the furnace length direction is attached to the side wall 1a so that its position can be adjusted freely, with mounting legs 8e, 8e formed at right angles on both ends of the inner side of the opposing side walls 1a, 1a. An infrared firing furnace characterized by disposing an infrared cylindrical heating element 8.
JP13039184U 1984-08-27 1984-08-27 infrared firing furnace Granted JPS6144196U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13039184U JPS6144196U (en) 1984-08-27 1984-08-27 infrared firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13039184U JPS6144196U (en) 1984-08-27 1984-08-27 infrared firing furnace

Publications (2)

Publication Number Publication Date
JPS6144196U JPS6144196U (en) 1986-03-24
JPH0221756Y2 true JPH0221756Y2 (en) 1990-06-12

Family

ID=30689002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13039184U Granted JPS6144196U (en) 1984-08-27 1984-08-27 infrared firing furnace

Country Status (1)

Country Link
JP (1) JPS6144196U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129378A (en) * 1983-01-10 1984-07-25 レイデイアント・テクノロジ−・コ−ポレイシヨン Infrared furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129378A (en) * 1983-01-10 1984-07-25 レイデイアント・テクノロジ−・コ−ポレイシヨン Infrared furnace

Also Published As

Publication number Publication date
JPS6144196U (en) 1986-03-24

Similar Documents

Publication Publication Date Title
JPS62241838A (en) Method of heating thin plate glass and heating device
GB2082739A (en) Furnace for porcelain enamelling
JPH0221756Y2 (en)
HU216981B (en) Induction furnace
US3314666A (en) Fast fire tunnel kiln
JPH0222633Y2 (en)
US5981920A (en) Furnace for heating glass sheets
JPS5986888A (en) Heater
US5609785A (en) Method and apparatus for improving the performance of a heating furnace for metal slabs
JPH0318112B2 (en)
EP0061158B1 (en) Method for firing thick film electronic circuits
JPS6045686B2 (en) Heating furnace heat transfer accelerator
EP0504117B1 (en) A tempering furnace, in particular for sheets of glass and similar
JP3985289B2 (en) Continuous heat treatment furnace
JPH0216853Y2 (en)
US4597735A (en) High-efficiency porcelain enameling furnace
CN211084801U (en) Electric heating roller way kiln
KR200471723Y1 (en) Heater for furnace and muffle type furnace using the same
JP7172221B2 (en) Method for adjusting temperature of heating element and method for manufacturing glass article
JPH0230137Y2 (en)
JPH0222637Y2 (en)
JP7180019B1 (en) Continuous heating furnace
JP3316811B2 (en) Radiant tube and continuous furnace using the same
CA2384393C (en) Furnace for heating glass sheets
JPH07190628A (en) Inside temperature measuring method of beam kiln and control device