JPH02217344A - Carbon fiber-reinforced hydraulic composite material - Google Patents
Carbon fiber-reinforced hydraulic composite materialInfo
- Publication number
- JPH02217344A JPH02217344A JP3808589A JP3808589A JPH02217344A JP H02217344 A JPH02217344 A JP H02217344A JP 3808589 A JP3808589 A JP 3808589A JP 3808589 A JP3808589 A JP 3808589A JP H02217344 A JPH02217344 A JP H02217344A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- carbon fibers
- carbon fiber
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 50
- 239000004917 carbon fiber Substances 0.000 claims abstract description 50
- 239000000835 fiber Substances 0.000 claims abstract description 39
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 238000007711 solidification Methods 0.000 claims abstract description 5
- 230000008023 solidification Effects 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 21
- 230000003014 reinforcing effect Effects 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 12
- 239000011398 Portland cement Substances 0.000 abstract description 3
- 239000011302 mesophase pitch Substances 0.000 abstract description 2
- 238000009987 spinning Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 239000004568 cement Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000011083 cement mortar Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- -1 alkyl betaine Chemical compound 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011400 blast furnace cement Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000011294 coal tar pitch Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 235000016027 Persea schiedeana Nutrition 0.000 description 1
- 244000261838 Persea schiedeana Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 241000975357 Salangichthys microdon Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、炭素繊維を混入混練し補強された炭素繊維強
化水硬性複合材料l;肩する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a carbon fiber-reinforced hydraulic composite material reinforced by mixing and kneading carbon fibers.
(従来の技術)
近年、ポルトランドセメント、高炉セメント、アルミナ
セメントなどの各種セメント類に炭素繊維を混入した炭
素繊維補強セメントモルタルが、軽量で、強度が大きく
、かつ、靭性が大きく、ひび割れを防止する等の特徴を
もつ材料として、建築・土木分野等への利用が盛んに行
なわれつつある。(Prior technology) In recent years, carbon fiber-reinforced cement mortar, which is made by mixing carbon fiber into various types of cement such as Portland cement, blast furnace cement, and alumina cement, has been developed to be lightweight, strong, and tough, and prevents cracking. As a material with these characteristics, it is increasingly being used in the fields of architecture and civil engineering.
水硬性複合材料の補強用として、単糸引張強度(TS)
が100Kg1〜以上、単糸径(0)が3〜Sθμ程度
の炭素繊維が用いられており、たとえば各種水溶性の集
束剤を付着フィラメン化し混線時に単糸分散させ強度発
現をさせる(特開昭6j−/62!;39号公l;又は
、特殊なミキサー(″″オムニミキサー#にて混線、単
糸分散させ強度発現をさせる方法が知られている(%開
開bo−1IsilIコ号公報)0そして、繊維による
補強の効果は、繊維強度が高くなる程大きくなると一般
にされれている。Single fiber tensile strength (TS) for reinforcing hydraulic composite materials
Carbon fibers with a weight of 100 Kg1 or more and a single fiber diameter (0) of about 3 to Sθμ are used. For example, various water-soluble sizing agents are attached to form filaments and the single fibers are dispersed during cross-crossing to develop strength (Japanese Patent Application Laid-Open No. 6j-/62!; Publication No. 39; Alternatively, a method is known in which the strength is developed by cross-firing and dispersing single fibers using a special mixer ("" Omni-mixer #). )0 It is generally believed that the effect of reinforcing fibers increases as the fiber strength increases.
(発明が解決しようとする課題)
前述のように各種繊維強度、糸径による、繊維補強効果
を発現する炭素繊維補強セメントモルタルの製造方法は
知られているが、このようなプレミックス法により混練
された炭素繊維強化水硬性複合材料を建築・土木材料と
して成型するためには、その混線後の流動性すなわちフ
ロー値が大きいことが不可欠である。(Problems to be Solved by the Invention) As mentioned above, methods for producing carbon fiber-reinforced cement mortar that exhibit fiber reinforcing effects using various fiber strengths and yarn diameters are known, but it is difficult to knead them using such a premix method. In order to mold carbon fiber-reinforced hydraulic composite materials as building and civil engineering materials, it is essential that the fluidity after cross-crossing, that is, the flow value, be large.
現在まで、補強用として使用されている炭素繊維は、繊
維の単糸強度が高ければ、糸径が細くなるため、セメン
トモルタルに対する補強効果は大きいが、流動性は非常
に小さくなり、混練ばできても、事実上製品生産として
の成型は困難となる問題があった。Up until now, carbon fibers used for reinforcement have a large reinforcing effect on cement mortar because the higher the single fiber strength, the smaller the diameter. However, the fluidity is very low and it cannot be mixed. However, there was a problem in that it was actually difficult to mold it for product production.
又、糸径が太ければ繊維の単糸強度が低くなるため流動
性は大きくなり、成型は可能となるが、セメントモルタ
ルに対する補強効果は小さくなるという不都合もある。Further, if the thread diameter is large, the single fiber strength of the fibers will be low, so the fluidity will be high and molding will be possible, but there is also the disadvantage that the reinforcing effect on cement mortar will be small.
このような問題に対し、その成型性を確保するために、
高性能減水剤、空気走行剤などの使用及びセメント類に
対する水の混合比(W/C)の調整などにより検討がな
されてきているが、しかしながらこれは流動性は大きく
なるが、繊維の補強効果の低下をまねくことになり、繊
維単独の補強では製品としての強度が不足するという新
たな問題を生じさせる。To deal with these problems, in order to ensure moldability,
Studies have been conducted by using high-performance water reducing agents, air running agents, etc., and adjusting the mixing ratio of water to cement (W/C), but although this increases fluidity, it has a negative effect on reinforcing the fibers. This causes a new problem in that the strength of the product is insufficient when reinforcing the fiber alone.
そこで、本発明者らは、このような問題を解決する手段
として炭素繊維の各物性からのアプローチに着目し、炭
素繊維の各物性が炭素繊維強化水硬性複合材料の流動性
及びその繊維による強度の補強効果に及ぼす影響につい
て鋭意検討を重ねた。そして、炭素繊維の各物性値と炭
であり、
F=o、oqgxci−o、/+ a xS −z、、
y / / xVf+7ss、t。Therefore, the present inventors focused on an approach based on each physical property of carbon fiber as a means to solve such problems. We have conducted extensive studies on the influence of the reinforcement on the reinforcement effect. Then, each physical property value of carbon fiber and charcoal are F=o, oqgxci-o, /+ a xS -z,,
y//xVf+7ss, t.
・・・・・・・・・(1)
σ:単糸経(μ)
S:スラ’)−1ctd中の炭素繊維の表面積vf:炭
素繊維の混合量(%)
炭素繊維の単糸径(0)と混合量がフロー値の増減に大
きく関与していることを、見出した。・・・・・・・・・(1) σ: Single yarn warp (μ) S: Surface area of carbon fiber in sura')-1ctd vf: Mixed amount of carbon fiber (%) Single yarn diameter of carbon fiber ( 0) and the amount of the mixture were found to be significantly involved in the increase/decrease in the flow value.
そして、さらに検討した結果、前記の問題は、繊維の単
糸強度(TS)がl弘0=270 (Kg1〜)、繊維
の単糸径(c3)が/ 、z(11) 〜、? o(p
)の物性を有する短炭素繊維を全体に対する体積比(v
f) テ/ −1I(X)好ま1.<Tt@2〜1I(
5X)を混入し、固化前のフロー値を/20trm以上
として混練した炭素繊維強化水硬性複合材料により解決
出来ることを見出し、本発明に到達した。As a result of further investigation, the above problem was solved when the single yarn strength (TS) of the fiber was 1 h = 270 (Kg1 ~), and the single yarn diameter (c3) of the fiber was /, z(11) ~,? o(p
) The volume ratio (v
f) Te/-1I(X) preferred 1. <Tt@2~1I(
We have found that this problem can be solved by using a carbon fiber-reinforced hydraulic composite material mixed with 5X) and kneaded with a flow value of /20 trm or more before solidification, and have arrived at the present invention.
(課題を解決するための手段)
すなわち、本発明の要旨は、水硬性原料中に、炭素繊維
を混合分散して得られる炭素繊維5強化水硬性複合材料
において、炭素繊維として単糸引張強度(TS)がt
1Io−27o (K9/mj)、単糸径が/、2(μ
)〜30(μ)の短炭素繊維を全体に対する体積比で/
% +%混入して固化前のフロー値を/20rmn以
上としたことを特徴とする炭素繊維強化水硬性複合材料
にある。(Means for Solving the Problem) That is, the gist of the present invention is to provide a carbon fiber 5-reinforced hydraulic composite material obtained by mixing and dispersing carbon fibers in a hydraulic raw material, which has a single fiber tensile strength ( TS) is t
1Io-27o (K9/mj), single yarn diameter is /, 2(μ
) ~ 30 (μ) short carbon fibers in volume ratio to the whole /
% + % to give a flow value of /20 rmn or more before solidification.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
まず、本発明における水硬性原料としては建築材料や土
木材料に通常用いられる無機系の各種水硬性原料が使用
でき、例えばポルトランドセメント、高炉セメント、ア
ルミナセメント、ケイ酸カルシウム、天然石こう、合成
石こうなどが用いられる。First, as the hydraulic raw material in the present invention, various inorganic hydraulic raw materials commonly used for building materials and civil engineering materials can be used, such as Portland cement, blast furnace cement, alumina cement, calcium silicate, natural gypsum, synthetic gypsum, etc. is used.
本発明で用いる炭素繊維としては公知の炭素繊維であれ
ば特に限定されることなく使用でき、例えばコールター
ルピッチ、石油系ピッチ、石炭液化物、ポリアクリロニ
トリル、セルロース、ポリビニルアルコール等を原料と
した炭素繊維を用いることができる。The carbon fiber used in the present invention is not particularly limited as long as it is a known carbon fiber. For example, carbon fibers made from coal tar pitch, petroleum pitch, liquefied coal, polyacrylonitrile, cellulose, polyvinyl alcohol, etc. Fibers can be used.
これらの炭素繊維は、短繊維で用いられ、糸長さが通常
l〜/θ0(鴎)程度のものが好適である。/(鴫)未
満では、水硬性原料との混合時の分散性は良いが十分な
補強効果は得られにクク、一方/ 00 (mm)を超
えると混線時の分散性が低下し均一な製品が得られにく
いためであるQ
これらの炭素繊維の収束状態としては、たとえば特開昭
63−/1,2!fj9公報記載の方法により製造され
る集束した短繊維状の炭素繊維束のかさ密度が0.0
!; f/ / K1以上、好ましくは0.0 ? f
/ rtt1以上であっても、又、短繊維状の炭素繊
維が綿状であったり、集束が不十分でありてかさ密度が
小さくても良い。These carbon fibers are used in the form of short fibers, and those having a thread length of usually about 1 to /θ0 (seagull) are suitable. If it is less than / (mm), the dispersibility when mixed with the hydraulic raw material is good, but sufficient reinforcing effect cannot be obtained. On the other hand, if it exceeds / (mm), the dispersibility when mixed wires decreases and a uniform product cannot be obtained. This is because it is difficult to obtain Q. The convergence state of these carbon fibers is, for example, JP-A-63-/1,2! The bulk density of the short carbon fiber bundle produced by the method described in fj9 publication is 0.0.
! ; f//K1 or more, preferably 0.0? f
/ rtt1 or more, or the short carbon fibers may be cotton-like or poorly bundled and have a small bulk density.
炭素繊維の集束状態に応じて混合機を適宜選定すればよ
いからである。すなわち、前者の場合の混合機としては
外殻が回転する、及び/又は攪拌羽根を有する構造の次
のような汎用混合機があげられる0
円筒型、二重円錐型、及び正立方体型の外殻が回転する
混合機として傾胴型コンクリートミキサー、回転ドラム
ミキサーなどがある0又、パドル型、プロペラ型、擢型
、タービン型、パン型、リボン型、スクリュー型、ワー
ナー型、ニーグー型などの攪拌羽根を有する混合機が用
いられる0
さらに、外殻が回転しかつ攪拌羽根を有するパン回転型
強制ミキサー、アイリッヒ型ミキサーなども用いられる
。This is because the mixer may be appropriately selected depending on the bundled state of the carbon fibers. In other words, in the former case, the mixers include the following general-purpose mixers with a rotating outer shell and/or a stirring blade. Mixing machines with rotating shells include tilting type concrete mixers and rotating drum mixers. A mixer having a stirring blade is used.Furthermore, a pan rotating forced mixer, an Eirich type mixer, etc., whose outer shell rotates and has a stirring blade, are also used.
混合機構上主に対流及び又はせん断混合をなすものであ
る混線処方としては、炭素繊維束と水硬性原料とを混合
する際には、まず水を加えず混合し、ついで水を加えて
混線する0又、短炭素繊維が線状の場合は、メチルセル
ロース水溶液のような水系粘性体中に特殊なミキサー(
“オムニミキサー″:攪拌羽根がなく、揺動盤上に可撓
自在のゴムボールを取りつけてなり、機構上、主に拡散
混合がなされる)を用いてあらかじめ炭素繊維を混合し
ておき、ついで得られた混合物をさらに傾胴型コンクリ
ートミキサーを用いて水硬性組成物と混合する。The mixing mechanism mainly involves convection and/or shear mixing. When mixing carbon fiber bundles and hydraulic raw materials, first mix without adding water, then add water and mix. 0 Also, if the short carbon fiber is linear, it is added to a special mixer (
“Omni-mixer”: There is no stirring blade, and a flexible rubber ball is attached to a swinging plate.The carbon fiber is mixed in advance using The resulting mixture is further mixed with a hydraulic composition using a tilting concrete mixer.
本発明においては、上記のように単糸引張強度が/lI
O〜J ? o (Kg/d )好ましくはig。In the present invention, as mentioned above, the single yarn tensile strength is /lI
O~J? o (Kg/d) preferably ig.
〜−30(、Kl/d>、単糸径がlコル3o(μ)好
ましくは75〜コよ(μ)の短炭素繊維が用いられる。-30 (, Kl/d>), short carbon fibers having a single yarn diameter of l Cor3o (μ), preferably 75 to Coyo (μ) are used.
単糸引張強度がz<<0(K9/mj)未満では、繊維
強度が低いためにセメントモルタルに対する補強効果が
十分とはならない。又、コクθ(Kt/lxt )を超
えると、繊維強度見合の成型後の成型体の強度向上が、
期待できず頭打ちとなるO
第1図に、vt−b′−コ、J及び弘%における、引張
強度と曲げ強度補強効果の関係を示す。If the single filament tensile strength is less than z<<0 (K9/mj), the reinforcing effect on cement mortar will not be sufficient due to low fiber strength. Moreover, when the body θ (Kt/lxt) is exceeded, the strength of the molded product after molding will increase in proportion to the fiber strength.
Figure 1 shows the relationship between tensile strength and bending strength reinforcing effect in vt-b'-co, J and Hiro%.
第1図において、横軸は、炭素繊維の単糸引張強度(T
S)、縦軸は、繊維混入成型体曲げ強度から繊維未混入
成型体の曲げ強度を差し引いた値(σb・)をである。In Figure 1, the horizontal axis represents the single filament tensile strength (T
S), the vertical axis is the value (σb·) obtained by subtracting the bending strength of the molded product without fibers from the bending strength of the fiber-contained molded product.
図中にプロットしている(σb・)は4’ (crIL
)幅XコCcIIt)厚み×32(m)長さの試験体を
、試験体数n = Jで26(crIL)スパンの二等
分点載荷試験した結果の平均を示すものである。(σb・) plotted in the figure is 4' (crIL
) Width x CcIIt) Thickness x 32 (m) length test specimens were subjected to a bisecting point loading test of 26 (crIL) spans with the number of test specimens n = J.
実線はVf=2(%)、破線はVf=、?(%)、−点
鎖線はVf=4!(X)を示す。The solid line is Vf=2(%), and the broken line is Vf=,? (%), - Dotted chain line is Vf=4! (X) is shown.
また、本発明においては、単糸径/J(μ)〜30(μ
)の炭素繊維が用いられるが、第2図に示すように糸径
がlλ(μ)未満では、フロー値が/ 20 Cttr
m”)を下回り良好な成形が困難となる。In addition, in the present invention, single yarn diameter/J (μ) ~ 30 (μ
) is used, but as shown in Figure 2, when the yarn diameter is less than lλ (μ), the flow value is / 20 Cttr
m''), good molding becomes difficult.
又、SO(μ)を超える混練時に炭素繊維が切損してし
まい、十分な強度が得られない。Furthermore, the carbon fibers are damaged during kneading exceeding SO (μ), making it impossible to obtain sufficient strength.
図中の横軸は、炭素繊維の単糸径を縦軸は混線後のフロ
ー値を示す。In the figure, the horizontal axis shows the single fiber diameter of the carbon fiber, and the vertical axis shows the flow value after cross-crossing.
実線は、V f=2 (X)の時の各フロー値を示すも
のである。The solid lines indicate each flow value when V f = 2 (X).
さらに、本発明においては、上記炭素繊維を、全体に対
する体積比で7〜弘%混入して固化前のフロー値(みか
け上の粘度、JISRrλO7−/9ざりによる。)を
120■以上とすることが必要である。Furthermore, in the present invention, the carbon fibers are mixed in a volume ratio of 7 to 100% to the total volume, so that the flow value before solidification (apparent viscosity, based on JISRrλO7-/9) is 120 ■ or more. is necessary.
炭素繊維の混入量がl(%)未満では必要強度が得られ
ず、ダ(%)を超えると、混線後の流動性、すなわち上
記フロー値が/ 20 (mm)を下回り良好な成型が
困難となる。If the amount of carbon fiber mixed is less than 1 (%), the necessary strength cannot be obtained, and if it exceeds 1 (%), the fluidity after mixing, that is, the above flow value, will be less than / 20 (mm), making it difficult to form well. becomes.
本発明の炭素繊維強化水硬性複合材料の製造においては
、上記のように、特定の炭素繊維を、体積比でl〜lI
X混入して行なわれるが、好適には炭素繊維の引張り強
度(Kp/xd)と繊維補強効果〔炭素繊維入り成形物
の曲げ強度(Kf/cfIi)と炭素繊維なし成形物の
曲げ強度(Kg/cA )との差〕との関係を求め、繊
維補強効果の最大値乃至最大値の90%の引張り強度を
有し、かつ炭素繊維混合後の水硬性複合材料スラリーの
フロー値が120m以上となる単糸径を有する炭素繊維
を用いることにより行なわれる。In producing the carbon fiber-reinforced hydraulic composite material of the present invention, as described above, specific carbon fibers are mixed at a volume ratio of 1 to 1I.
The tensile strength (Kp/xd) of carbon fibers and the fiber reinforcing effect [the bending strength (Kf/cfIi) of carbon fiber-containing moldings and the bending strength (Kg /cA)], and the tensile strength is between the maximum value of the fiber reinforcement effect and 90% of the maximum value, and the flow value of the hydraulic composite material slurry after mixing with carbon fibers is 120 m or more. This is carried out by using carbon fibers having a single yarn diameter of
さらに、本発明で水硬性材料とともに用いる骨材として
は、砂、ケイ砂、砂利、砕石、シラスバルーン、フライ
アッシェ、超微粉シリカ等が挙げられる。Further, examples of the aggregate used with the hydraulic material in the present invention include sand, silica sand, gravel, crushed stone, whitebait balloons, fly ash, ultrafine silica, and the like.
また、分散剤も添加するのが好ましく、具体的ニはメチ
ルセルロース、エチルセルロース、カルボキシメチルセ
ルロース、ヒドロキシエチルセルロース等のセルロース
誘導体、ポリアミド型、ポリアミン型、アルキルピコリ
ニウム塩型、アルキルアミンの水溶性酸型等のカチオン
性界面活性剤、アルキルアミンオキサイド型ノニオン性
界面活性剤、アルキルグリシン型、アルキルアラニン型
、アルキルベタイン型、アルキルイミダシリン型等の両
界面活性剤の内のいずれか一種又は二種以上の混合物が
添加される。It is also preferable to add a dispersant, and specific examples include cellulose derivatives such as methylcellulose, ethylcellulose, carboxymethylcellulose, and hydroxyethylcellulose, polyamide type, polyamine type, alkylpicolinium salt type, and water-soluble acid type of alkylamine. Any one or two or more of the following surfactants: cationic surfactants, alkylamine oxide type nonionic surfactants, alkylglycine types, alkylalanine types, alkyl betaine types, alkylimidacillin type surfactants, etc. The mixture is added.
分散剤の添加量は水硬性原料に対して通常0.7〜70
重量%であり、0./’X未満では分散効果が乏しく、
109gを超えて添加しても格別の効果は得られない0
又、分散剤の他に減水剤、発泡剤、硝泡剤などの混和剤
も適宜添加できる。The amount of dispersant added is usually 0.7 to 70% based on the hydraulic raw material.
% by weight, 0. If it is less than /'X, the dispersion effect is poor,
Even if more than 109 g is added, no particular effect will be obtained. In addition to the dispersant, admixtures such as a water reducing agent, a blowing agent, and a foaming agent may also be added as appropriate.
本発明の炭素繊維を配合した水硬性原料は、通常実施さ
れる各種の成形法、例えば型込成形、押出成形、遠心成
形、抄造成形などの方法により成形し、養生、固化され
、枝状、管状−テ樹秋など各種形状の水硬性複合材料が
製造できる。The hydraulic raw material containing the carbon fibers of the present invention is molded by various commonly used molding methods, such as molding, extrusion, centrifugal molding, and paper molding, and is cured and solidified to form branches, Hydraulic composite materials in various shapes such as tubular and tubular shapes can be manufactured.
(実施例) 以下、実施例により本発明をさらに詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例1〜3
コールタールピッチ系のメソフェーズピッチを溶融紡糸
して得られたモノフィラメント本数2’IO本の原料繊
維に、ポリジメチルシロキサンノ水エマルジョン(エマ
ルジョン濃度、3.3%)をガイドに付けて接触させる
方法により、原料繊維に対し70%付着し、集束した。Examples 1 to 3 A polydimethylsiloxane water emulsion (emulsion concentration, 3.3%) was attached to a guide to a raw material fiber of 2'IO monofilaments obtained by melt-spinning coal tar pitch-based mesophase pitch. By the method of contacting the raw material fibers, 70% of the fibers were attached and bundled.
この集束した原料繊維束を空気中において750℃から
、yio℃まで2.7時間を要して昇温し、370℃に
てO,S時間保持し不融化処理し、続いて、アルゴン雰
囲気中において室温から/ 100°C前後まで弘、3
時間を要して昇温し、1100℃前後にて7時間保持し
炭化処理した。This bundled raw material fiber bundle was heated in air from 750°C to yio°C over a period of 2.7 hours, held at 370°C for O, S hours to be infusible, and then placed in an argon atmosphere. From room temperature to around 100°C, 3
The temperature was raised over time and held at around 1100° C. for 7 hours for carbonization.
得られた炭素繊維の性状を第1表に示した。The properties of the obtained carbon fibers are shown in Table 1.
ついで、この炭素繊維なケン化度gO%のポリビニルア
ルコール(サイジング剤)の水溶液(!1度O1g%)
中に連続的に長繊維状で浸漬し、1g0℃にて乾燥しサ
イジング剤がへg重量%付着した集束された炭素繊維束
を得た。Next, an aqueous solution of polyvinyl alcohol (sizing agent) with a saponification degree of gO% of this carbon fiber (!1 degree O1g%)
The carbon fibers were continuously immersed in a long fiber form and dried at 0° C. to obtain a bundle of carbon fibers with 1g of the sizing agent adhered to the carbon fibers in an amount of 1g by weight.
ついで、該炭素繊維をギロチンカッターにより切断し、
長さ7g(閣)の短炭素繊維を得た。Then, the carbon fiber is cut with a guillotine cutter,
Short carbon fibers with a length of 7 g (kaku) were obtained.
引続き、該短繊維束、早強Iルトランドセメント(10
0重量部)、ケイ砂(50重量部)及びメチルセルロー
ス(O,S重量部)をJISRl;20/規格のセメン
ト練り混ぜ機(先乗製作所製モルタルミキサー C−/
、3tA型)に投入し、30秒秒間式混合し、短繊維が
充分に分散した混合物を得、ついで水(pt重量部)を
加え2分間混練した後、板状のテストピース(長さj
2 Cm s幅4’Cm、厚み2 cm )を成形し、
気中養生(温度20℃、相対湿度65%)し、炭素繊維
含有率コ容量%の炭素繊維強化セメント材を得た。そし
て、材令り日の曲げ強度を中央−点載荷曲げ試験法(ス
パンコls cm )により測定し、テストピース3ケ
の平均値及び変動中の値を第7表に示した。Subsequently, the short fiber bundle, early strength I Rutland cement (10
0 parts by weight), silica sand (50 parts by weight) and methylcellulose (O,S parts by weight) were mixed in a cement mixing machine of JISRl; 20/standard (mortar mixer C-/ manufactured by Senjo Seisakusho)
, 3tA type) and mixed for 30 seconds to obtain a mixture in which short fibers were sufficiently dispersed.Water (pt weight parts) was then added and kneaded for 2 minutes.
2 cm s width 4'Cm, thickness 2cm),
After curing in air (temperature: 20° C., relative humidity: 65%), a carbon fiber-reinforced cement material having a carbon fiber content of % by volume was obtained. The bending strength of the material at the end of its life was measured by the center-point loading bending test method (Spanco ls cm), and the average value and varying values of the three test pieces are shown in Table 7.
又、混練後のフロー値も第1表に示す。The flow values after kneading are also shown in Table 1.
比較例/
オムニミキサー(千代田技研工業製0M−10E型)に
投入し同じ混線、成形処方で得られた炭素繊維強化セメ
ント材を、実施例と同じ試験方法で得られた結果を第1
表に示した。Comparative Example: A carbon fiber-reinforced cement material that was put into an omnimixer (0M-10E type manufactured by Chiyoda Giken Industries) and obtained with the same crosstalk and molding recipe was subjected to the same test method as in the example.
Shown in the table.
結果を第1表に示す。The results are shown in Table 1.
ダ
(発明の効果)
本発明によれば、成型性に優れ、繊維の補強効果を最大
に発揮させた炭素繊維強化水硬性複合材料を得ることが
できる。(Effects of the Invention) According to the present invention, it is possible to obtain a carbon fiber-reinforced hydraulic composite material that has excellent moldability and maximizes the reinforcing effect of fibers.
第1図は、炭素繊維強化水硬性材料の引張強度と曲げ強
度補強効果の関係、第2図は、フロー値と糸径との関係
を示すグラフである。FIG. 1 is a graph showing the relationship between the tensile strength and bending strength reinforcing effect of a carbon fiber reinforced hydraulic material, and FIG. 2 is a graph showing the relationship between flow value and yarn diameter.
Claims (1)
る炭素繊維強化水硬性複合材料において、炭素繊維とし
て単糸引張強度が140〜270(Kg/mm^2)、
単糸径が12(μ)〜30(μ)の短炭素繊維を全体に
対する体積比で1〜4%混入して固化前のフロー値を1
20mm以上としたことを特徴とする炭素繊維強化水硬
性複合材料。(1) In a carbon fiber-reinforced hydraulic composite material obtained by mixing and dispersing carbon fibers in a hydraulic raw material, the carbon fibers have a single fiber tensile strength of 140 to 270 (Kg/mm^2),
Short carbon fibers with a single fiber diameter of 12 (μ) to 30 (μ) are mixed in at a volume ratio of 1 to 4% to the total, and the flow value before solidification is 1.
A carbon fiber reinforced hydraulic composite material characterized by having a thickness of 20 mm or more.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3808589A JPH02217344A (en) | 1989-02-17 | 1989-02-17 | Carbon fiber-reinforced hydraulic composite material |
US07/480,768 US5062897A (en) | 1989-02-17 | 1990-02-16 | Carbon fiber-reinforced hydraulic composite material |
DE90103051T DE69000939T2 (en) | 1989-02-17 | 1990-02-16 | Carbon fiber reinforced hydraulic composite. |
EP90103051A EP0383348B1 (en) | 1989-02-17 | 1990-02-16 | Carbon fiber-reinforced hydraulic composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3808589A JPH02217344A (en) | 1989-02-17 | 1989-02-17 | Carbon fiber-reinforced hydraulic composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02217344A true JPH02217344A (en) | 1990-08-30 |
Family
ID=12515635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3808589A Pending JPH02217344A (en) | 1989-02-17 | 1989-02-17 | Carbon fiber-reinforced hydraulic composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02217344A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186447A (en) * | 1984-03-02 | 1985-09-21 | 鹿島建設株式会社 | Carbon fiber reinforced concrete |
JPS6156178A (en) * | 1984-06-08 | 1986-03-20 | ヘキスト・アクチエンゲゼルシヤフト | Collection of trioxane from aqueous solution by high pressure extraction |
JPS62108755A (en) * | 1985-11-08 | 1987-05-20 | 三菱化学株式会社 | Fiber material for cement reinforcement |
JPS62202846A (en) * | 1986-02-27 | 1987-09-07 | 三菱石油株式会社 | Manufacture of carbon fiber reinforced cement structure |
-
1989
- 1989-02-17 JP JP3808589A patent/JPH02217344A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186447A (en) * | 1984-03-02 | 1985-09-21 | 鹿島建設株式会社 | Carbon fiber reinforced concrete |
JPS6156178A (en) * | 1984-06-08 | 1986-03-20 | ヘキスト・アクチエンゲゼルシヤフト | Collection of trioxane from aqueous solution by high pressure extraction |
JPS62108755A (en) * | 1985-11-08 | 1987-05-20 | 三菱化学株式会社 | Fiber material for cement reinforcement |
JPS62202846A (en) * | 1986-02-27 | 1987-09-07 | 三菱石油株式会社 | Manufacture of carbon fiber reinforced cement structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2036886C1 (en) | Method for preparation of mixture for production of composite material products from composite materials | |
US5062897A (en) | Carbon fiber-reinforced hydraulic composite material | |
EP0261971B1 (en) | Fiber-reinforced cement material and molded article comprising hardened product thereof | |
JPH09295877A (en) | Staple fiber-reinforced concrete | |
US5679149A (en) | Short carbon fiber chopped strands and short carbon fiber reinforced hydraulic composite materials | |
JP2881256B2 (en) | Method for producing carbon fiber reinforced concrete or similar composition | |
JPH02217344A (en) | Carbon fiber-reinforced hydraulic composite material | |
JPH06293546A (en) | Production of hydraulic and inorganic material molding | |
JPH0617255B2 (en) | Manufacturing method of fiber reinforced cement mortar | |
JPS63162559A (en) | Manufacture of carbon fiber reinforced hydraulic composite material | |
JPS6317244A (en) | Material for manufacturing carbon fiber reinforced cement set body | |
JPH06263494A (en) | Carbon short fiber dispersed composition and production of cfrc using the same | |
JP5519437B2 (en) | Short fibers for cement molding reinforcement | |
JPH0535099B2 (en) | ||
JPH06144911A (en) | Extrusion molding method for fiber reinforced inorganic product | |
JP3883625B2 (en) | Lightweight cellular concrete | |
JPH026360A (en) | Lightweight cement composition and production of lightweight cement form therefrom | |
JP3936014B2 (en) | Carbon fiber bundle for cement reinforcement | |
CN110655354A (en) | High-strength tubular pile blended with carbon fibers and manufacturing method thereof | |
CN111285650A (en) | High-toughness concrete and preparation method thereof | |
JPH09136314A (en) | Manufacture of fiber reinforced cement molding | |
JP2010275156A (en) | Cement molded body reinforcing fiber | |
JP2005081657A (en) | Precast concrete molded body comprising fiber reinforced hydraulic curable composition | |
JPS6367109A (en) | Method of dispersing and kneading short fiber | |
JPH07308909A (en) | Preparation of fiber-reinforced cement hardened material |