JP2010275156A - Cement molded body reinforcing fiber - Google Patents

Cement molded body reinforcing fiber Download PDF

Info

Publication number
JP2010275156A
JP2010275156A JP2009130474A JP2009130474A JP2010275156A JP 2010275156 A JP2010275156 A JP 2010275156A JP 2009130474 A JP2009130474 A JP 2009130474A JP 2009130474 A JP2009130474 A JP 2009130474A JP 2010275156 A JP2010275156 A JP 2010275156A
Authority
JP
Japan
Prior art keywords
fiber
cement
molded body
reinforcing
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130474A
Other languages
Japanese (ja)
Other versions
JP2010275156A5 (en
JP5275906B2 (en
Inventor
Takeya Dei
丈也 出井
Shinichi Takahashi
真一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2009130474A priority Critical patent/JP5275906B2/en
Publication of JP2010275156A publication Critical patent/JP2010275156A/en
Publication of JP2010275156A5 publication Critical patent/JP2010275156A5/ja
Application granted granted Critical
Publication of JP5275906B2 publication Critical patent/JP5275906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement molded body reinforcing fiber which can be defibrated and uniformly dispersed in a short time without performing mechanical stirring for a long time upon kneading a cement molded body material such as cement paste, mortar and concrete, not even in the case including kneading water, but also, in the case of dry blending including no kneading water, and can impart an excellent reinforcing effect without damaging the fluidity in being fresh of a cement molded body. <P>SOLUTION: The cement molded body reinforcing fiber is a short fiber to which a treatment agent composed of a polycarboxylic acid ether based anionic compound and polyalkylene glycol is imparted. The total coating weight of the treatment agent is 0.5 to 20 wt.% by a solid content ratio, further, the single yarn fineness of the short fiber is 0.5 to 100 dtex, and also, the aspect ratio of the short fiber is 50 to 1,000. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、分散性に優れ、セメント成形体のフレッシュ時の流動性を損なうことなく、補強効果に優れたセメント成形体補強用繊維に関するものである。   The present invention relates to a fiber for reinforcing a cement molded body having excellent dispersibility and excellent reinforcing effect without impairing the fluidity of the cement molded body when fresh.

従来、セメント成形体であるセメントペースト、モルタル、コンクリート等は、圧縮強度、耐久性、不燃性などに優れており、また安価であることから、建築土木用途で大量に使用されている。しかしながら、材料硬化時に乾燥収縮を起こし表面にヒビが生じたり、引張および曲げ強度の低い脆性材料であることから、ひび割れ抑制や曲げ強度および靭性などの機械特性を向上させることを目的として、各種の繊維状物を配合することは公知の技術であり、数多く提案されている。   Conventionally, cement paste, mortar, concrete, and the like, which are cement molded bodies, are excellent in compressive strength, durability, incombustibility, and the like, and are inexpensive, and thus are used in large quantities for construction civil engineering. However, since it is a brittle material that causes drying shrinkage when it is cured and has a low tensile and bending strength, various kinds of materials are used for the purpose of suppressing cracking and improving mechanical properties such as bending strength and toughness. Blending a fibrous material is a known technique and many have been proposed.

しかしながら、繊維をセメント、細骨材、粗骨材などを含むセメント成形体材料中に均一に分散させることは極めて困難であり、材料混練の際に単糸同士が絡みあったり、湾曲してファイバーボールが発生して、目標とする補強効果が得られにくいという問題がある。 また、セメント成形体中で繊維が均一に分散したとしても、繊維の拘束力によってセメント成形体のフレッシュ時の流動性が著しく低下する問題がある。   However, it is extremely difficult to uniformly disperse fibers in cement molded body materials including cement, fine aggregates, coarse aggregates, etc., and single yarns are entangled or curved during material kneading. There is a problem that a ball is generated and it is difficult to obtain a target reinforcing effect. Further, even if the fibers are uniformly dispersed in the cement molded body, there is a problem that the fluidity of the cement molded body when fresh is significantly reduced due to the binding force of the fibers.

このような状況を解決すべく、複数本の繊維を集束剤で結合一体化した集束糸を補強材として使用することが提案されており、熱硬化性樹脂により複数本の繊維を接着した集束糸が示されている(例えば、特許文献1参照)。   In order to solve such a situation, it has been proposed to use as a reinforcing material a bundling yarn in which a plurality of fibers are bonded and integrated with a bundling agent, and a bundling yarn obtained by bonding a plurality of fibers with a thermosetting resin. (For example, refer to Patent Document 1).

このような集束糸を使用した場合、まず集束糸の形態でセメント成形体材料中に分散し、次いで撹拌機中での撹拌羽根や材料との摩擦や剪断力により樹脂が脱離して集束状態が徐々にはずれて複数本の単糸に解繊し、分散されていく。したがって、集束されていない繊維を混入する場合に比較して、均一分散性に優れるという特徴を有している。   When such a bundling yarn is used, it is first dispersed in the cement molding material in the form of a bundling yarn, and then the resin is detached due to friction or shearing force with a stirring blade or material in the stirrer, resulting in a bundling state. Gradually dislodges into multiple single yarns and disperses. Therefore, it has a feature that it is excellent in uniform dispersibility as compared with the case of mixing unfocused fibers.

しかしながら、この集束糸は熱硬化性樹脂により強固に接着されているため、上記のような混練機により高剪断力で長時間の攪拌を行わないことには十分に解繊させることが困難であった。攪拌を行うことにより単繊維に解繊されるが、長時間攪拌すると、すでに解繊された繊維は、未解繊の繊維を解繊させるために攪拌を続けるうちにファイバーボールを形成し、ファイバーボールが形成されると補強効果が損なわれてしまうという問題があった。   However, since this bundling yarn is firmly bonded with a thermosetting resin, it is difficult to sufficiently defibrate without stirring for a long time with a high shear force by a kneader as described above. It was. The fiber is defibrated by stirring, but when it is stirred for a long time, the fiber that has already been defibrated forms a fiber ball while continuing to stir in order to defibrate the undefibrated fiber. When the balls are formed, there is a problem that the reinforcing effect is impaired.

そのため集束剤の改良が行なわれ、特定の水溶性高分子樹脂を集束剤として用いて、PH12における解繊度が50%以上とする技術が開示されている(特許文献2参照)。この集束糸によると、解繊度が優れており、分散性に優れ、ファイバーボールも形成されにくいものであった。   For this reason, the sizing agent has been improved, and a technology has been disclosed in which a specific water-soluble polymer resin is used as a sizing agent to achieve a defibration degree of PH 12 of 50% or more (see Patent Document 2). According to this bundled yarn, the degree of defibration was excellent, the dispersibility was excellent, and the fiber ball was hardly formed.

しかしながら、集束剤が水溶性高分子樹脂であるため、セメント成形体材料中で攪拌されながら樹脂が脱離した後溶解して、増粘作用をもたらし、セメント成形体のフレッシュ時の流動性を低下するという問題があった。   However, since the sizing agent is a water-soluble polymer resin, it dissolves after the resin is released while being stirred in the cement molding material, resulting in a thickening effect and reducing the fluidity of the cement molding when fresh. There was a problem to do.

また繊維添加によるセメント成形体のフレッシュ時の流動性低下を抑制するために、減水剤というコンクリートの混和剤で繊維を集束させたもの(特許文献3参照)が開示されている。確かに減水剤の効果により繊維添加によるセメント成形体のフレッシュ時の流動性低下を抑制できるようになるものの、しかしながら、減水剤の繊維表面付着により、逆に解繊しにくくなるという問題がある。   Moreover, in order to suppress the fluidity | liquidity fall at the time of the freshness of the cement molded object by fiber addition, what bundled the fiber with the concrete admixture called a water reducing agent is disclosed (refer patent document 3). Certainly, the effect of the water reducing agent can suppress a decrease in fluidity of the cement molded body when fresh due to the addition of the fiber, but there is a problem that the fiber surface of the water reducing agent makes it difficult to open the fiber.

また、セメント成形体材料の混練手順として、近年、予めセメント、細骨材、粗骨材などの粉末成分と補強用繊維を混合したプレミックス材料とし、その後練り混ぜ水とを混合することが、施工現場での計量手間や計量ミスをなくす点で好ましく行なわれるようになってきた。   In addition, as a kneading procedure of the cement molded body material, in recent years, premix material in which powder components such as cement, fine aggregate, coarse aggregate and reinforcing fibers are mixed, and then mixing with mixing water, It has come to be favorably performed in terms of eliminating measurement labor and measurement errors at the construction site.

そのためプレミックス法においても通常のミックス法においても、弱い攪拌力でかつ短時間で均一に解繊、分散するセメント成形体補強用繊維が望まれており、上記に示した繊維ではこのような要求に応えられるものではなかった。   Therefore, in both the premix method and the normal mix method, there is a demand for a fiber for reinforcing a cement molded body that can be defibrated and dispersed uniformly in a short time with a weak stirring force. It was not something that could be met.

特公昭62−21743号公報Japanese Examined Patent Publication No. 62-21743 特開平10−183473号公報JP-A-10-183473 特開平8−259289号公報JP-A-8-259289

本発明は上記の問題点を解決するものであって、セメントペースト、モルタル、コンクリートなどのセメント成形体材料の混練時、特にドライプレミックスの場合でも、機械的な攪拌を長時間行うことなく、短時間で解繊、均一分散することができ、セメント成形体のフレッシュ時の流動性を損なうことなく、優れた補強効果を付与することができるセメント成形体補強用繊維を提供することを目的とするものである。   The present invention solves the above-mentioned problems, and when kneading cement molded body materials such as cement paste, mortar, and concrete, particularly in the case of a dry premix, without mechanical stirring for a long time, An object of the present invention is to provide a fiber for reinforcing a cement molded body that can be defibrated and uniformly dispersed in a short time and can give an excellent reinforcing effect without impairing the fluidity of the cement molded body when fresh. To do.

本発明者らは鋭意検討を重ねた結果、セメント粒子はその表面がカチオン性であることから、セメント成形体補強用繊維表面をアニオン性にすることで、セメント/繊維界面での親和性が上がりセメント成形体のフレッシュ時の流動性を損わないことを見出した。また、繊維間の静摩擦力が小さくすることにより、混練による剪断が補強用繊維にかかった時に塊状にならず解繊し易く、セメント成形体中で均一に分散し易いことを見出した。そこで、セメント成形体補強用繊維に、セメント粒子と静電気的な吸着作用のあるポリカルボン酸エーテル系アニオン性化合物と短繊維間の平滑性向上に効果のあるポリアルキレングリコールを付与すれば、上記課題を解決することを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have determined that the surface of the cement particle is cationic, so that the affinity for the cement / fiber interface is increased by making the surface of the reinforcing fiber for cement molding anionic. It was found that the fluidity of the cement molded body when fresh was not impaired. Further, it has been found that by reducing the static friction force between the fibers, when shearing by kneading is applied to the reinforcing fibers, the fibers are not lumped and are easily defibrated and easily dispersed uniformly in the cement molded body. Therefore, if the cement molded body reinforcing fiber is provided with a polycarboxylic acid ether-based anionic compound having an electrostatic adsorptive action with cement particles and a polyalkylene glycol effective in improving the smoothness between the short fibers, the above problem Has been found to solve the problem, and the present invention has been completed.

即ち、本発明によれば、
ポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールから成る処理剤が全繊維重量に対して0.5〜20重量%付与されている短繊維であって、繊維の糸/糸静摩擦係数(F/Fμs)が0.4以下であり、また該短繊維の単糸繊度が0.5〜100dtexで、かつ短繊維のアスペクト比が50〜1000であることを特徴とするセメント成形体補強用繊維、
が提供される。
短繊維としてコポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミド繊維であることが好ましい。
That is, according to the present invention,
A short fiber to which a treatment agent comprising a polycarboxylic acid ether-based anionic compound and a polyalkylene glycol is added in an amount of 0.5 to 20% by weight based on the total fiber weight, and the fiber yarn / thread static friction coefficient (F / Fμs) is 0.4 or less, the single fiber fineness of the short fibers is 0.5 to 100 dtex, and the aspect ratio of the short fibers is 50 to 1000,
Is provided.
The short fiber is preferably a copolyparaphenylene • 3,4′-oxydiphenylene • terephthalamide fiber.

本発明のセメント成形体補強用繊維は、原料の混練手順に関わらず良好な繊維分散性が得られ、セメント成形体のフレッシュ時の流動性を損わず、施工を阻害しない範囲で維持し、かつ高い補強効果を付与することができる。   The fiber for reinforcing a cement molded body of the present invention has good fiber dispersibility regardless of the kneading procedure of the raw material, does not impair the fluidity of the cement molded body when fresh, and maintains it within a range that does not hinder construction, And a high reinforcement effect can be provided.

糸/糸静摩擦係数の測定装置の概略図である。It is the schematic of the measuring apparatus of a thread | yarn / thread static friction coefficient.

以下、本発明を詳細に説明する。
本発明を以下の好適例により説明するが、これらに限定されるものではない。
Hereinafter, the present invention will be described in detail.
The present invention is illustrated by the following preferred examples, but is not limited thereto.

本発明に用いるセメント成形体のセメントとしては、現場の施工条件等を考慮して選定することができ、特に限定されるものではないが、例えば早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらの各種ポルトランドセメントにフライアッシュや高炉スラグなどを混合した高炉セメント等の各種混合セメント、速硬セメント等を、単独または2種以上で用いることができる。   The cement of the cement molded body used in the present invention can be selected in consideration of on-site construction conditions and the like, and is not particularly limited. For example, early strong, very early strong, low heat, moderate heat, etc. These various Portland cements, various mixed cements such as blast furnace cement obtained by mixing fly ash, blast furnace slag, and the like with these various Portland cements, fast-hardening cements and the like can be used alone or in combination of two or more.

また、該セメントには、高炉スラグ粉末、フライアッシュ、シリカヒューム、石灰石粉末、石英粉末、二水石膏、半水石膏、無水石膏、生石灰系膨張材、カルシウムサルフォアルミネート系膨張材などの公知の混和材を添加することができる。その配合割合は特に限定されず、適宜設計することができる。   Also, the cement includes known blast furnace slag powder, fly ash, silica fume, limestone powder, quartz powder, dihydrate gypsum, hemihydrate gypsum, anhydrous gypsum, quick lime-based expansion material, calcium sulfoaluminate-based expansion material, and the like. Of admixture can be added. The blending ratio is not particularly limited and can be appropriately designed.

本発明に用いるセメント成形体の骨材としては、川砂、海砂、山砂、砕砂、3〜8号珪砂、石灰石、及びスラグ細骨材等の細骨材のみや、用途の要求特性に応じて、川砂利、砕石、及び人工骨材等の粗骨材を混合使用することができる。高物性を発現させるためには、微細な粉や粗い骨材を含まない粒度調整した珪砂や石灰石等の細骨材のみを用いるほうが好ましい。さらに、所望の特性のセメント硬化体を得るためには、その粒度構成や配合割合にも好適な範囲があり、骨材の粒度は4mm以下のものが好ましく、1.2mm未満のものが40〜75% で、1.2〜4mmのものが60〜25%である混合物がより好ましく、1.2mm未満のものが55〜70%で、1.2〜4mmのものが45〜30%である混合物が最も好ましい。最大粒度が4mmを超えると流動性や充填性が不足し、1.2〜4mmのものが25%未満では耐久性に劣る場合があり、60%を超えると必要な早期強度が得られない場合がある。   As the aggregate of the cement molded body used in the present invention, only fine aggregates such as river sand, sea sand, mountain sand, crushed sand, No. 3-8 silica sand, limestone, and slag fine aggregate, and according to the required characteristics of the application In addition, coarse aggregates such as river gravel, crushed stone, and artificial aggregate can be mixed and used. In order to express high physical properties, it is preferable to use only fine aggregates such as silica sand and limestone whose particle size is adjusted without containing fine powder or coarse aggregates. Furthermore, in order to obtain a hardened cement body having desired characteristics, the particle size constitution and blending ratio also have a suitable range, and the aggregate particle size is preferably 4 mm or less, and less than 1.2 mm is 40 to 40 mm. More preferred is a mixture of 75% and 1.2 to 4 mm 60 to 25%, less than 1.2 mm 55 to 70% and 1.2 to 4 mm 45 to 30%. A mixture is most preferred. When the maximum particle size exceeds 4 mm, the fluidity and filling properties are insufficient, and those with 1.2 to 4 mm may be inferior in durability when less than 25%, and when they exceed 60%, the required early strength cannot be obtained. There is.

また、本発明に用いるセメント成形体には、適量な練り混ぜ水を添加して混練するが、練り混ぜ水はセメント等の硬化に悪影響を及ぼす成分を含有していなければ、水道水や地下水、河川水等の水を用いることができ、例えば、「JIS A 5308 付属書9 レディーミクストコンクリートの練混ぜに用いる水」に適合するものが好ましい。   Further, the cement molded body used in the present invention is kneaded by adding an appropriate amount of kneaded water, but if the kneaded water does not contain a component that adversely affects the hardening of cement or the like, tap water or ground water, Water such as river water can be used, and for example, one suitable for “JIS A 5308 Appendix 9 Water used for mixing ready mixed concrete” is preferable.

本発明で用いられるポリカルボン酸エーテル系アニオン性化合物は、セメント粒子の分散剤として今日、一般市場で販売されているものでよく、通常、平均分子量が1000〜200000のものが用いられる。   The polycarboxylic acid ether-based anionic compound used in the present invention may be one that is currently sold in the general market as a dispersant for cement particles, and one having an average molecular weight of 1,000 to 200,000 is usually used.

本発明で用いられるポリアルキレングリコールは、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドを重合または共重合して得られるもので、通常、数平均分子量が2000以下、好ましくは400〜1000のものが用いられる。分子量が2000を超える場合はポリアルキレングリコールの固形分の粘性が高く、繊維間の静摩擦力が大きくなって補強用繊維が解繊し難くなる為好ましくない。具体的にはポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等が挙げられる。   The polyalkylene glycol used in the present invention is obtained by polymerizing or copolymerizing alkylene oxides such as ethylene oxide and propylene oxide, and usually has a number average molecular weight of 2000 or less, preferably 400 to 1000. When the molecular weight exceeds 2000, the viscosity of the solid content of the polyalkylene glycol is high, the static friction force between the fibers is increased, and the reinforcing fibers are not easily defibrated. Specific examples include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.

ポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールの全付着量は、セメント成形体補強用繊維全重量に対して0.5〜20重量%であることが必要である。0.5重量%未満の場合、セメント成形体材料混練の際に、補強用繊維の優れた分散性が得られず、フレッシュ時の流動性も低い。一方、20重量%を超える場合、処理剤の影響で繊維とそれ以外のセメント成形体材料が分離したり、水分が過剰にブリードアウトすることがある。好ましくは、1.0〜10.0重量%の範囲で付着されるのが良い。   The total adhesion amount of the polycarboxylic acid ether-based anionic compound and the polyalkylene glycol needs to be 0.5 to 20% by weight with respect to the total weight of the cement molded body reinforcing fiber. When the amount is less than 0.5% by weight, excellent dispersibility of the reinforcing fibers cannot be obtained when the cement molded body material is kneaded, and the fluidity during freshness is low. On the other hand, when it exceeds 20% by weight, the fiber and other cement molded material may be separated or moisture may be excessively bleed out due to the influence of the treatment agent. Preferably, it is good to adhere in the range of 1.0-10.0 weight%.

また、ポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールの配合比は、材料混練時の繊維分散性およびセメント成形体フレッシュ時の流動性によって適宜選定されるが、ポリカルボン酸エーテル系アニオン性化合物/ポリアルキレングリコールの重量比が、20/80〜80/20の範囲で付着されるのが好ましい。ポリカルボン酸エーテル系アニオン性化合物の量が上記の範囲を超える場合は繊維間の静摩擦力が大きくなり、補強用繊維が解繊し難くなる。逆にポリアルキレングリコールの量が上記の範囲を超える場合は、セメント粒子との親和性が低く、セメント成形体のフレッシュ時の流動性を損ってしまう。   The mixing ratio of the polycarboxylic acid ether anionic compound and the polyalkylene glycol is appropriately selected depending on the fiber dispersibility at the time of kneading the material and the fluidity at the time of fresh cement molding, but the polycarboxylic acid ether anionic compound The weight ratio of / polyalkylene glycol is preferably 20/80 to 80/20. When the amount of the polycarboxylic acid ether-based anionic compound exceeds the above range, the static friction force between the fibers becomes large, and the reinforcing fibers are difficult to be defibrated. Conversely, when the amount of polyalkylene glycol exceeds the above range, the affinity with cement particles is low, and the fluidity of the cement molded body when fresh is lost.

次に、本発明のセメント成形体用補強用繊維は、剪断力がかかった時に繊維が分散し易くするため、糸/糸静摩擦係数(F/Fμs)が0.4以下であることが必要であり、好ましくは0.35以下である。糸/糸静摩擦係数(F/Fμs)が0.4を超える場合は繊維にかかる剪断力が小さい場合、繊維が分散し難くなり好ましくない。なお、糸/糸静摩擦係数(F/Fμs)の下限は特に限定するものではない。   Next, the reinforcing fiber for cement molded body of the present invention needs to have a yarn / thread static friction coefficient (F / F μs) of 0.4 or less in order to facilitate dispersion of the fiber when a shearing force is applied. Yes, preferably 0.35 or less. When the yarn / thread static friction coefficient (F / F μs) exceeds 0.4, the fiber is difficult to disperse when the shearing force applied to the fiber is small, which is not preferable. The lower limit of the thread / thread static friction coefficient (F / F μs) is not particularly limited.

また、本発明における糸/糸静摩擦係数(F/F μs)とは、図1に示すような測定装置を用い、繊維(3)の一端をUゲージ(2)に固定し、プーリー(1)にかけ、さらに撚りを2回かけて初荷重(T1)1000gをかけて引っ張る。糸/糸間の交差角度(θ)を15°にとり、撚部の温度を20℃に保ち、Uゲージ(2)を0.1m/分の速度で引っ張る。その際Uゲージ(2)に感知される張力(T2 g)を測定し、初荷重T1に対する応力T2の比として、以下に示す式で静摩擦係数を算出する。
F/F μs==1.40Log10(T2/T1)
Further, the yarn / thread static friction coefficient (F / F μs) in the present invention is a measuring device as shown in FIG. 1, and one end of the fiber (3) is fixed to the U gauge (2), and the pulley (1) And then twisting twice and pulling with an initial load (T1) of 1000 g. The crossing angle (θ) between the yarns / yarns is 15 °, the temperature of the twist portion is kept at 20 ° C., and the U gauge (2) is pulled at a speed of 0.1 m / min. At that time, the tension (T2 g) sensed by the U gauge (2) is measured, and the static friction coefficient is calculated by the following formula as the ratio of the stress T2 to the initial load T1.
F / F μs == 1.40 Log 10 (T2 / T1)

上記ポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールを繊維に付着させる方法としては、単繊維が集まったマルチフィラメント長繊維、さらにはそれを複数本に引き揃えた形状のものやトウ状長繊維を、ボビンやビームクリールから連続的に送繊されるようにして、該処理剤の入った漕の中で含浸させる方法やローラータッチ法によって付着させる方法、スプレー方式により該処理剤を噴霧して付着させる方法などが挙げられるが、繊維に均一に付着させるためには該処理剤の入った浴槽の中で浸漬させる方法が好ましく、次いで絞りロールで一定の付着量に調整すればよい。   As a method for adhering the polycarboxylic acid ether-based anionic compound and the polyalkylene glycol to the fiber, there are a multifilament long fiber in which single fibers are gathered, a shape in which a plurality of the filaments are aligned, and a tow-like long fiber. Is continuously fed from a bobbin or a beam creel, and the treatment agent is sprayed by a method of impregnating in a bag containing the treatment agent, a method of attaching by a roller touch method, or a spray method. Although the method of making it adhere | attach etc. is mentioned, in order to make it adhere uniformly to a fiber, the method of immersing in the bath containing this processing agent is preferable, and what is necessary is just to adjust to a fixed adhesion amount with a squeeze roll.

そしてポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールを付与した後には、乾燥処理を施すことが好ましく、装置としては特に限定されるものではなく、接触型のホットローラー等を用いることができるが、非接触型の熱乾燥炉を用いると該処理剤による装置への付着や汚れがなく作業しやすい。また、この時の処理温度としては105〜200℃程度、特に120〜180℃程度で乾燥することが好ましい。次いで、得られたトウ状繊維物を公知の切断機によって所定の繊維長になるように切断すればよい。なお、該処理剤の付着量は、上記のようにして付着させた後、乾燥処理を行ってもその付着量はほとんど変化しない。   And after giving polycarboxylic-acid-ether type | system | group anionic compound and polyalkylene glycol, it is preferable to give a drying process, It does not specifically limit as an apparatus, Although a contact-type hot roller etc. can be used. When a non-contact type heat drying furnace is used, the processing agent is not attached to the apparatus or contaminated, and the operation is easy. Moreover, it is preferable to dry at about 105-200 degreeC as a process temperature at this time, especially about 120-180 degreeC. Next, the obtained tow-like fiber material may be cut by a known cutting machine so as to have a predetermined fiber length. It should be noted that the amount of the treatment agent deposited hardly changes even if the treatment is performed as described above and then dried.

本発明のセメント成形体補強用繊維の単糸繊度が0.5〜100dtex、短繊維のアスペクト比が50〜2000であることが、繊維混入による補強効果、即ちヒビ割れ抑制、高曲げ強度・高曲げ靱性付与の観点から好ましい。単糸繊度が0.5dtex未満では、セメントがアルカリ性であるために繊維の芯近くまで劣化が起こって、繊維の引張強度の低下が大きくなり、目的の補強効果が得られなくなる場合がある。一方、100dtexを超えると、繊維の細部への行き渡りが不十分となり、かつ、同じ体積含有率で短繊維を添加する場合、単繊維本数が少なくなって充分な補強効果が得られない。好ましくは1〜60dtex、より好ましくは1〜50dtexである。   The single fiber fineness of the reinforcing fiber for cement molded body of the present invention is 0.5 to 100 dtex, and the aspect ratio of the short fiber is 50 to 2000. The reinforcing effect due to fiber mixing, that is, cracking suppression, high bending strength and high This is preferable from the viewpoint of imparting bending toughness. When the single yarn fineness is less than 0.5 dtex, since the cement is alkaline, the fiber is deteriorated to the vicinity of the fiber core, the decrease in the tensile strength of the fiber is increased, and the desired reinforcing effect may not be obtained. On the other hand, when it exceeds 100 dtex, the spread to the details of the fibers becomes insufficient, and when the short fibers are added with the same volume content, the number of single fibers decreases and a sufficient reinforcing effect cannot be obtained. Preferably it is 1-60 dtex, More preferably, it is 1-50 dtex.

また本発明のセメント成形体補強用短繊維のアスペクト比が50未満であると、強度、靱性において繊維添加による補強効果が得られない場合がある。また、2000を超えると混練中に短繊維同士が絡んだり細かく折れたりしてセメント成形体フレッシュ時の流動性が低下し施工性を阻害したり、繊維添加による期待した補強効果が得られない場合が生じる。好ましくは該短繊維の単糸繊度は、0.75〜75dtex、アスペクト比は100〜1000である。   Further, if the aspect ratio of the short fiber for reinforcing a cement molded body of the present invention is less than 50, the reinforcing effect by adding the fiber may not be obtained in strength and toughness. In addition, when it exceeds 2000, short fibers are entangled or finely broken during kneading, and the fluidity at the time of fresh cement molding is deteriorated, impairing the workability, or the expected reinforcement effect due to the addition of fibers cannot be obtained. Occurs. Preferably, the single fiber fineness of the short fibers is 0.75 to 75 dtex, and the aspect ratio is 100 to 1000.

また、上記セメント成形体補強用繊維の繊維混入率は目的に応じて選定することができ、0.01〜10.0容積%の範囲で使用することが好ましい。該繊維混入率が0.01容積%未満ではヒビ割れ抑制や強度、靱性付与が十分ではない場合があり、一方10.0容積%を超えると、繊維単糸同士が絡まりファイバーボールが生じたり、繊維の分散が不完全となり、セメント成形体のフレッシュ時の流動性が損なわれ、施工時の作業性を阻害するだけではなく、繊維混入率に見合う補強効果や靭性改善効果が得られなくなるので好ましくない。特に、該繊維混入率は、0.05〜5.0容積%であることが好ましい。   Moreover, the fiber mixing rate of the said cement molded object reinforcement fiber can be selected according to the objective, and it is preferable to use in the range of 0.01-10.0 volume%. If the fiber mixing rate is less than 0.01% by volume, crack cracking, strength, and toughness may not be sufficient. On the other hand, if it exceeds 10.0% by volume, fiber single yarns are entangled with each other, resulting in fiber balls, Dispersion of fibers is incomplete, the fluidity of the cement molded body when fresh is impaired, not only hindering workability during construction, but also because a reinforcing effect and toughness improving effect commensurate with the fiber mixing rate cannot be obtained, which is preferable Absent. In particular, the fiber mixing rate is preferably 0.05 to 5.0% by volume.

ここで、本発明における繊維混入率(Vf:fiber volume fraction)は、次式で表される割合(容積%)である。
Vf=(V1/V2)×100
[式中、V1は繊維を含有したセメント成形体の単位体積(1,000リットル=1m)中に混入された補強用繊維の容積(リットル)を示し、V2はセメント成形体の単位容積(1,000リットル=1m)を示す]
Here, the fiber mixing ratio (Vf: fiber volume fraction) in the present invention is a ratio (volume%) represented by the following equation.
Vf = (V1 / V2) × 100
[In the formula, V1 represents the volume (liter) of reinforcing fibers mixed in the unit volume (1,000 liters = 1 m 3 ) of the cement-molded body containing fibers, and V2 represents the unit volume of the cement-molded body (1,000 liters = 1 m 3 ). 1,000 liters = 1 m 3 )

本発明のセメント成形体補強用繊維としては、炭素繊維、ガラス繊維、鋼繊維、セラミック繊維、アスベスト繊維等の無機繊維、アラミド繊維、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリアリレート繊維、ポリベンズオキサゾール(PBO)繊維、ナイロン繊維、ポリエステル繊維、アクリル繊維、塩化ビニル繊維、ポリケトン繊維、セルロース繊維、パルプ繊維等の有機繊維等を挙げることができ、これらの一種又は二種以上を組み合わせて、使用することができる。なかでもポリパラフェニレンテレフタラミドやコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド等のパラ型アラミドからなる繊維が他の繊維に比べて補強効果が大きいので好ましく、特にコポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド短繊維は、高温高圧下強アルカリ性の雰囲気中に長時間保持してもその機械的特性の劣化が小さいので、高温高圧下での蒸気養生、例えば180℃、圧力約10Kg/cmの飽和水蒸気による条件下においても高い強力保持率を有するので好ましい。 Examples of the reinforcing fiber for cement molding of the present invention include carbon fibers, glass fibers, steel fibers, ceramic fibers, asbestos fibers, and the like, aramid fibers, vinylon fibers, polypropylene fibers, polyethylene fibers, polyarylate fibers, polybenzoxazoles. Organic fibers such as (PBO) fiber, nylon fiber, polyester fiber, acrylic fiber, vinyl chloride fiber, polyketone fiber, cellulose fiber, and pulp fiber can be used, and these are used alone or in combination of two or more. be able to. Of these, fibers made of para-aramid such as polyparaphenylene terephthalamide and copolyparaphenylene 3,4'oxydiphenylene terephthalamide are preferable because they have a greater reinforcing effect than other fibers, particularly copolyparaphenylene-3. , 4 'oxydiphenylene terephthalamide short fiber is less deteriorated in mechanical properties even when kept in a strong alkaline atmosphere under high temperature and high pressure for a long time. Steam curing under high temperature and high pressure, for example, 180 ° C, pressure It is preferable because it has a high strength retention even under a condition of saturated steam of about 10 kg / cm 2 .

セメント成形体においては、上記材料のほかに、AE減水剤、高性能AE減水剤、収縮低減剤、凝結遅延剤、硬化促進剤、増粘剤、消泡剤、発泡剤、防錆剤、防凍剤、粘土鉱物系チクソ性付与材、着色剤、保水剤等の添加剤を、本発明の目的を実質的に阻害しない範囲で使用することができる。   In cement molded products, in addition to the above materials, AE water reducing agent, high performance AE water reducing agent, shrinkage reducing agent, setting retarder, curing accelerator, thickener, antifoaming agent, foaming agent, rust preventive agent, antifreeze Additives such as an agent, a clay mineral-based thixotropic agent, a colorant, and a water retention agent can be used within a range that does not substantially impair the object of the present invention.

本発明のセメント成形体補強用繊維のセメント成形体材料への添加方法としては特に限定されるものではなく、例えば、モルタルやコンクリートなどの補強用として用いる場合には、予めセメントと細骨材、粗骨材等と本発明のセメント成形体補強用繊維をドライプレミックスとしたのちに練り混ぜ水を添加して混練する方法、または、セメントと細骨材、粗骨材等と練り混ぜ水を十分に撹拌したのち、最後に本発明のセメント成形体補強用繊維を添加して混練りする方法が挙げられる。   The method for adding the cement-molded body reinforcing fiber of the present invention to the cement-molded body material is not particularly limited. For example, when used for reinforcing mortar or concrete, cement and fine aggregate, A method of kneading after adding a coarse aggregate and the fiber for reinforcing a cement molded body of the present invention to a dry premix and then kneading and adding water, or mixing cement and fine aggregate, coarse aggregate, etc. After sufficiently stirring, a method of adding and kneading the cement molded body reinforcing fiber of the present invention may be mentioned.

本発明のセメント成形体補強用繊維を配合した材料の撹拌に用いる混練機としては、特に限定するものではないが、パン型ミキサー、可傾式ミキサー、オムニミキサー、ホバートミキサー、トラックミキサー等が挙げられる。   The kneading machine used for stirring the material containing the reinforcing fiber for cement molded body of the present invention is not particularly limited, and examples thereof include a bread mixer, a tilting mixer, an omni mixer, a Hobart mixer, and a truck mixer. It is done.

本発明のセメント成形体補強用繊維を配合したセメントペースト、モルタル、コンクリート等のセメント成形体の用途は特に限定されるものではなく、一般の土木建築用途に適用できる。例えば、吹き付け成型、プレス成型、振動成型、遠心成型等により、法面補強、建築構造物の基礎など、幅広い用途を挙げることができる。二次製品成形物(ブロック、板状物、シート状物、テトラポット等)の製造についても、種々の成形法により行うことができる。   The use of cement molded bodies such as cement paste, mortar, concrete, etc., in which the fibers for reinforcing cement molded bodies of the present invention are blended is not particularly limited, and can be applied to general civil engineering and architectural uses. For example, a wide range of applications such as slope reinforcement and foundations of building structures can be given by spray molding, press molding, vibration molding, centrifugal molding, and the like. Production of secondary product molded products (blocks, plates, sheets, tetrapots, etc.) can also be performed by various molding methods.

以下に実施例および比較例を挙げて本発明をより具体的に説明する。
なお、実施例における各種の評価は、次のようにして測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Various evaluations in the examples were measured as follows.

(1)繊維長、繊度
JIS−L−1015に準拠して測定した。
(1) Fiber length and fineness Measured according to JIS-L-1015.

(2)繊維の糸/糸静摩擦係数(F/Fμs)
前記した方法で測定、算出した。
(2) Fiber yarn / Thread static friction coefficient (F / Fμs)
Measurement and calculation were performed by the method described above.

(3)セメント、細骨材の粉体成分とセメント成形体補強用繊維のドライプレミックスによる繊維分散性評価方法
普通ポルトランドセメント(住友大阪セメント株式会社製)700g、珪砂5号1400g、及びセメント成形体補強用繊維15gを、モルタルミキサー(株マルイ製、MIC−362型、容量:5L)を用いて140rpmの撹拌速度で約1分間混練して得られたドライプレミックス粉体中の繊維分散性について、繊維の絡まりが無く、かつファイバーボールが生じないときは良好とし、繊維の絡まりがあるか、もしくはファイバーボールが生じたものは不良とした。
(3) Fiber dispersibility evaluation method by dry premix of powder components for cement and fine aggregates and fibers for reinforcing cement moldings 700 g of ordinary Portland cement (Sumitomo Osaka Cement Co., Ltd.), 1400 g of quartz sand 5 and cement molding Fiber dispersibility in dry premix powder obtained by kneading 15 g of body reinforcing fibers with a mortar mixer (manufactured by Marui, MIC-362, volume: 5 L) at a stirring speed of 140 rpm for about 1 minute In the case of no fiber entanglement and no fiber ball was produced, it was determined to be good, and a fiber entanglement or a fiber ball produced was regarded as defective.

(4)補強用繊維添加モルタル中の繊維分散性とモルタルの流動性を示すフロー値の測定方法
上記で得られたセメント成形体補強用繊維添加ドライプレミックス粉体に水400gを添加し、モルタルミキサー(株マルイ製、MIC−362型、容量:5L)を用いて140rpmの撹拌速度で約3分間混練して得られたモルタル中の繊維分散性について、繊維の絡まりが無く均一に分散し、且つ施工時の作業を阻害しないときは良好とし、繊維の絡まりがあるか、もしくは施工時の作業を阻害するときは不良とした。次いで、JIS−R−5201に基づいてモルタルフロー試験を行い、このときの広がったモルタル円形の直径を、円形が歪んでいる場合は最短径と最長径の相加平均をフロー値する。フロー値が大きいほどモルタルの流動性が高いことを示すが、補強用繊維添加モルタルのフロー値が、繊維未添加モルタルのフロー値の80%以上であれば流動性が高く、80%より小さいと流動性が低いと判断する。ただし、最長径は最短径の1〜2倍の範囲内とし、2倍を超えると測定不能、流動性が低いと判断する。
(4) Measuring method of flow value indicating fiber dispersibility and flowability of mortar in reinforcing fiber-added mortar 400 g of water is added to the above-obtained fiber-added dry premix powder for reinforcing a cement molded body, and mortar About the fiber dispersibility in the mortar obtained by kneading for about 3 minutes at a stirring speed of 140 rpm using a mixer (manufactured by Marui Co., Ltd., MIC-362 type, volume: 5 L), the fibers are uniformly dispersed without entanglement of fibers. And when the work at the time of construction was not obstructed, it was judged as good, and when there was entanglement of fibers or when the work at the time of construction was obstructed, it was judged as defective. Next, a mortar flow test is performed based on JIS-R-5201. When the circular distorted mortar diameter is distorted, an arithmetic average of the shortest diameter and the longest diameter is calculated as a flow value. The larger the flow value, the higher the fluidity of the mortar. However, if the flow value of the reinforcing fiber-added mortar is 80% or more of the flow value of the fiber-free mortar, the fluidity is high and less than 80%. Judge that the liquidity is low. However, the longest diameter is in the range of 1 to 2 times the shortest diameter, and if it exceeds 2 times, it is determined that measurement is impossible and fluidity is low.

(5)補強用繊維添加モルタルの曲げ強度測定方法
上記で得たれたセメント成形体補強用繊維添加モルタルを、幅40mm×高さ40mm×長さ160mmの型枠に打設し、20℃、90%RHで材齢28日間養生して、曲げ強度測定用供試体を製造した。上記供試体を、3点曲げ測定法にしたがって測定した。すなわち、10トン用引張圧縮試験機(TOYO BALDWIN社製、UNIVERSAL TESTING INSTRUMENT MODEL UTM 10t)を用い、支点間距離10cmの中心を2mm/分の速度で圧縮し、応力の最高点より曲げ強度を求めた。また、曲げ応力−歪みの関係から供試体の破壊に必要な破壊エネルギーを算出し、曲げ強度12N/mm以上で且つ破壊エネルギー5kN/mm以上を良好とし、曲げ強度12N/mmまたは破壊エネルギー5kN/mm以下を不良とした。
(5) Method of measuring bending strength of reinforcing fiber-added mortar The above-obtained cement-molded body reinforcing fiber-added mortar was cast into a mold having a width of 40 mm, a height of 40 mm, and a length of 160 mm. A specimen for flexural strength measurement was manufactured by curing with% RH for 28 days. The specimen was measured according to a three-point bending measurement method. That is, using a tensile compression tester for 10 tons (made by TOYO BALDWIN, UNIVERSAL TESTING INSTRUMENT MODEL UTM 10t), compress the center at a distance of 10 cm between fulcrums at a speed of 2 mm / min, and obtain the bending strength from the highest point of stress. It was. Also, the fracture energy required for breaking the specimen is calculated from the relationship between the bending stress and strain, the bending strength is 12 N / mm 2 or more and the breaking energy is 5 kN / mm or more, and the bending strength is 12 N / mm 2 or the breaking energy. 5 kN / mm or less was regarded as defective.

[実施例1]
アラミド繊維(帝人テクノプロダクツ株式会社製「テクノーラ」、単糸繊度1.7dtex、繊維本数1000本)を、ポリカルボン酸エーテル系アニオン性化合物(花王製「マイティ21LV」)/ポリプロピレングリコール(松本油脂製、数平均分子量=700)水溶液(配合重量比50/50、水溶液濃度15%)に浸漬した後、120℃で乾燥し、該処理剤付着量が3%の剤処理糸を作成し、繊維の糸/糸静摩擦係数(F/Fμs)を測定、算出した。上記で得られた剤処理糸を6mmにカットして補強用繊維とした。
[Example 1]
Aramid fiber (“Technola” manufactured by Teijin Techno Products Co., Ltd., single yarn fineness 1.7 dtex, number of fibers 1000), polycarboxylic acid ether anionic compound (“Mighty 21LV” manufactured by Kao) / polypropylene glycol (manufactured by Matsumoto Yushi) , Number average molecular weight = 700) After dipping in an aqueous solution (formulation weight ratio 50/50, aqueous solution concentration 15%), it is dried at 120 ° C. to prepare an agent-treated yarn having a treatment agent adhesion amount of 3%. The yarn / yarn static friction coefficient (F / Fμs) was measured and calculated. The agent-treated yarn obtained above was cut into 6 mm to obtain reinforcing fibers.

普通ポルトランドセメント(住友大阪セメント株式会社製)700g、珪砂5号1400g、及び上記の補強用繊維15gを、モルタルミキサー(マルイ製、MIC−362型、容量:5L)を用いて140rpmの撹拌速度で約1分間混練して短繊維が添加されたセメント成形体を調整し、そのドライプレミックス時の繊維分散性、補強用繊維添加モルタルの繊維分散性とフレッシュ時の流動性、および曲げ強度と破壊エネルギーを評価した。結果を表2に示す。   700 g of ordinary Portland cement (manufactured by Sumitomo Osaka Cement Co., Ltd.), 1400 g of silica sand No. 5 and 15 g of the above reinforcing fiber were mixed at a stirring speed of 140 rpm using a mortar mixer (manufactured by Marui, MIC-362 type, capacity: 5 L). Kneaded for about 1 minute to prepare a cement molded body to which short fibers have been added, fiber dispersibility during dry premixing, fiber dispersibility and flowability during fresh fiber addition mortar, bending strength and fracture Energy was evaluated. The results are shown in Table 2.

[実施例2〜5、比較例1〜8]
実施例1において、処理剤、処理剤の配合比、繊維への処理剤付着量を表1に示す通り変更して、繊維の糸/糸静摩擦係数(F/Fμs)の評価、セメント成形体補強用繊維を調整し、そのドライプレミックス時の繊維分散性、補強用繊維添加モルタルの繊維分散性とフレッシュ時の流動性、および曲げ強度と破壊エネルギーを評価し、結果を表2に示す。
[Examples 2 to 5, Comparative Examples 1 to 8]
In Example 1, the treatment agent, the blending ratio of the treatment agents, and the amount of the treatment agent attached to the fibers were changed as shown in Table 1, and the evaluation of the fiber yarn / thread static friction coefficient (F / F μs) was performed. The fibers were adjusted, the fiber dispersibility during the dry premix, the fiber dispersibility of the reinforcing fiber-added mortar and the fluidity during freshness, the bending strength and the breaking energy were evaluated, and the results are shown in Table 2.

[実施例6]
実施例1において、セメント、珪砂と練り混ぜ水を添加して十分に撹拌したのち、最後に本発明のセメント成形体補強用繊維を添加して混練りする方法で行なった。その結果を表2に示す。
[Example 6]
In Example 1, cement, silica sand and kneading water were added and stirred sufficiently, and finally the cement molded body reinforcing fiber of the present invention was added and kneaded. The results are shown in Table 2.

[実施例7]
実施例1において、ポリプロピレングリコールの代わりにポリエチレングリコール(松本油脂製、数平均分子量1000)を使用した以外は同様の方法で行なった。その結果を表2に示す。
[Example 7]
In Example 1, it carried out by the same method except having used polyethyleneglycol (made by Matsumoto Yushi, number average molecular weight 1000) instead of polypropylene glycol. The results are shown in Table 2.

本発明のセメント成形体補強用繊維は、短繊維間の平滑性が高く、セメント、細骨材等の粉体成分とのドライプレミックスにおいて良好な分散性が得られ、更に練り混ぜ水を添加してモルタルとしてもその分散性は変わらず良好であり、且つ施工を阻害しない流動性を維持している。また、繊維が均一に分散しているため、その補強効果も高いことが認められた。又ドライプレミックスを行なわない場合においても繊維は均一に分散し且つ良好なモルタル流動性が得られ補強効果も高いものであった。   The fiber for reinforcing a cement molded body according to the present invention has high smoothness between short fibers, good dispersibility is obtained in a dry premix with powder components such as cement and fine aggregate, and further mixing water is added. As a mortar, the dispersibility remains unchanged and the fluidity is maintained without impeding construction. Moreover, since the fibers were uniformly dispersed, it was confirmed that the reinforcing effect was high. Even when dry premixing was not performed, the fibers were uniformly dispersed, good mortar fluidity was obtained, and the reinforcing effect was high.

Figure 2010275156
Figure 2010275156

Figure 2010275156
Figure 2010275156

セメントペースト、モルタル、コンクリートなどのセメント成形体材料の混練時に、練り混ぜ水を含む場合だけではなく、練り混ぜ水を含まないドライブレンドの場合でも、機械的な攪拌を長時間行うことなく、短時間で解繊、均一分散することができるので、軽量高強度セメント成形体用途として有用である。   When kneading cement molding materials such as cement paste, mortar, concrete, etc., not only when mixing water is included, but also when using dry blends that do not include mixing water, mechanical stirring is not performed for a long time. Since it can be defibrated and dispersed uniformly over time, it is useful as a lightweight, high-strength cement molded product.

1:プーリー
2:Uゲージ
3:繊維
1: Pulley 2: U gauge 3: Fiber

Claims (4)

ポリカルボン酸エーテル系アニオン性化合物とポリアルキレングリコールから成る処理剤が付与された短繊維で、かつ該処理剤の全付着量が固形分比で0.5〜20重量%付与されていることを特徴とするセメント成形体補強用繊維。   It is a short fiber to which a treatment agent comprising a polycarboxylic acid ether-based anionic compound and a polyalkylene glycol has been applied, and the total amount of the treatment agent to be applied is 0.5 to 20% by weight in solid content ratio. A featured fiber for cement molding reinforcement. 繊維の糸/糸静摩擦係数(F/Fμs)が0.4以下であることを特徴とする請求項1記載のセメント成形体補強用繊維。   The fiber for reinforcing a cement-molded article according to claim 1, wherein the fiber has a yarn / thread static friction coefficient (F / F µs) of 0.4 or less. 短繊維の単糸繊度が0.5〜100dtexであり、かつ短繊維のアスペクト比が50〜1000であることを特徴とする請求項1および2記載のセメント成形体補強用繊維。   The fiber for reinforcing a cement molded body according to claim 1 or 2, wherein the single fiber fineness of the short fiber is 0.5 to 100 dtex, and the aspect ratio of the short fiber is 50 to 1000. 短繊維がコポリパラフェニレン・3,4’−オキシジフェニレン・テレフタルアミド繊維であることを特徴とする請求項1、2および3に記載のセメント成形体補強用繊維。   4. The cement-molded body reinforcing fiber according to claim 1, 2 or 3, wherein the short fiber is a copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber.
JP2009130474A 2009-05-29 2009-05-29 Fiber for reinforcing cement molding Active JP5275906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130474A JP5275906B2 (en) 2009-05-29 2009-05-29 Fiber for reinforcing cement molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130474A JP5275906B2 (en) 2009-05-29 2009-05-29 Fiber for reinforcing cement molding

Publications (3)

Publication Number Publication Date
JP2010275156A true JP2010275156A (en) 2010-12-09
JP2010275156A5 JP2010275156A5 (en) 2012-05-31
JP5275906B2 JP5275906B2 (en) 2013-08-28

Family

ID=43422477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130474A Active JP5275906B2 (en) 2009-05-29 2009-05-29 Fiber for reinforcing cement molding

Country Status (1)

Country Link
JP (1) JP5275906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU192709U1 (en) * 2019-07-01 2019-09-26 Акционерное общество "Ульяновский механический завод" Device for creating and maintaining excess pressure in the radar waveguide path

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287975A (en) * 2000-03-31 2001-10-16 Kita Nippon Kagaku Kogyo Kk Cement modifier
JP2002541048A (en) * 1999-04-07 2002-12-03 セリヴァンスキー ドロール Synthetic fiber and cement-based tissue containing the same
JP2005015236A (en) * 2003-06-23 2005-01-20 Teijin Techno Products Ltd Aramid short fiber for reinforcing concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541048A (en) * 1999-04-07 2002-12-03 セリヴァンスキー ドロール Synthetic fiber and cement-based tissue containing the same
JP2001287975A (en) * 2000-03-31 2001-10-16 Kita Nippon Kagaku Kogyo Kk Cement modifier
JP2005015236A (en) * 2003-06-23 2005-01-20 Teijin Techno Products Ltd Aramid short fiber for reinforcing concrete

Also Published As

Publication number Publication date
JP5275906B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP6470315B2 (en) Cement reinforcing fiber material
Zhou et al. Fracture and impact properties of short discrete jute fibre-reinforced cementitious composites
KR101253249B1 (en) Manufacturing methods of ultra-high performance fiber reinforecd concrete mixing the steel fiber of wave and straight type
JP2010116274A (en) Short fiber-reinforced cement formed body
KR100970171B1 (en) Concrete composition comprising polyamide reinforcing fibers
JP6715270B2 (en) Cement composition and cured product thereof
MXPA00011127A (en) Concrete comprising organic fibres dispersed in a cement matrix, concrete cement matrix and premixes.
Liang et al. The utilization of active recycled powder from various construction wastes in preparing ductile fiber-reinforced cementitious composites: A case study
Jun et al. Improvement and mechanism of the mechanical properties of magnesium ammonium phosphate cement with Chopped fibers
Wu et al. Tensile behavior of strain hardening cementitious composites (SHCC) containing reactive recycled powder from various C&D waste
JPH09295877A (en) Staple fiber-reinforced concrete
JP4252369B2 (en) Reinforcing short fibers with excellent defibration properties
JP5758597B2 (en) Reinforcing material and molded article containing the reinforcing material
JP5275906B2 (en) Fiber for reinforcing cement molding
JP5723147B2 (en) Polymer cement mortar
JP5519437B2 (en) Short fibers for cement molding reinforcement
JP5378754B2 (en) Polymer cement composition
JP5823698B2 (en) Polymer cement composition
Muktadir et al. Comparison of compressive strength and flexural capacity between engineered cementitious composites (Bendable Concrete) and conventional concrete used in Bangladesh
JP2001302314A (en) High-toughness, fiber-reinforced concrete and its production process
Bezerra et al. Some properties of fiber-cement composites with selected fibers
JP2011088793A (en) Grout material reinforcing material
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JP7343377B2 (en) cement composition
KR20180010529A (en) High performance cementitious composites containing aggregate powder and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150