JPH02216217A - Deodorizing sheath-core conjugate fiber - Google Patents

Deodorizing sheath-core conjugate fiber

Info

Publication number
JPH02216217A
JPH02216217A JP3111489A JP3111489A JPH02216217A JP H02216217 A JPH02216217 A JP H02216217A JP 3111489 A JP3111489 A JP 3111489A JP 3111489 A JP3111489 A JP 3111489A JP H02216217 A JPH02216217 A JP H02216217A
Authority
JP
Japan
Prior art keywords
fiber
sheath
core
deodorant
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3111489A
Other languages
Japanese (ja)
Other versions
JP2779195B2 (en
Inventor
Masahiro Oshida
押田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1031114A priority Critical patent/JP2779195B2/en
Publication of JPH02216217A publication Critical patent/JPH02216217A/en
Application granted granted Critical
Publication of JP2779195B2 publication Critical patent/JP2779195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having sufficiently high mechanical performance and excellent deodorizing function by forming a sheath part having fine pores and made of a polyester and a core part made of a thermoplastic polymer containing a deodorant. CONSTITUTION:The objective fiber consists of (A) a polyester sheath part containing fine pores having diameter of 0.001-5mum and a length/diameter ratio of <=50, distributed over the cross-section of the fiber, oriented in the direction of the fiber axis and connected at least partly to the core part and (B) a core part made of a thermoplastic polymer containing 1-50wt.% of a deodorant. The fiber stably retains the deodorant and exhibits deodorizing property having excellent durability when used as clothes, sanitary materials, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、消臭機能を有する芯鞘複合繊維に関する。更
に詳しくは、鞘部に特殊な微細孔を有し、耐久性に優れ
た消臭機能と良好な機械的特性とを同時に有する芯鞘複
合繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a core-sheath composite fiber having a deodorizing function. More specifically, the present invention relates to a core-sheath composite fiber that has special micropores in its sheath portion and has a highly durable deodorizing function and good mechanical properties.

〈従来技術) 従来より、m維に防臭性、消臭性等を付与する方法とし
ては、活性炭素!IIIを併用する方法、後加工等によ
って繊維表面に消臭剤を含有する処理剤を付着させる方
法(例えば特公昭47−29984号公報参照)、臭い
吸着剤を配合した重合体を繊維となす方法(例えば実公
昭61−37227号公報参照)等が提案されている。
(Prior art) Activated carbon is the conventional method for imparting deodorizing properties and deodorizing properties to m-fibers. A method in which a treatment agent containing a deodorizing agent is attached to the fiber surface by post-processing etc. (see, for example, Japanese Patent Publication No. 47-29984), a method in which a polymer containing an odor absorbent is made into fibers. (For example, see Japanese Utility Model Publication No. 61-37227.) etc. have been proposed.

しかしながら、活性炭素繊維は1771H自体が着色し
ているとともに非常に脆いため、審美性の要求される衣
料分野1発塵を極度に嫌う衛生材料分野等には使用でき
ない。一方、後加工による方法は、使用中に消臭剤が脱
落し易く、消臭機能の耐久性の点で問題がある。また、
臭い吸着剤を配合する方法は、満足し得る消臭機能を付
与するためには、吸着剤をかなり多量に配合する必要が
有る。そのため、得られるll雑の機械的特性は不十分
なものとなる。かかる機械的特性を改善する方法として
は、消臭剤を配合しないポリマーを併用して複合繊維と
なすのが一般的であるが、十分な消臭機能を発現させる
ためには、消臭剤を配合したポリマーを繊維の外表面に
露出させる必要が有る。そのため、製糸工程、後加工工
程等における機械的摩擦によって、m帷表面から消臭剤
配合ポリマーが脱落し、トラブルが多発するという問題
がある。
However, activated carbon fiber 1771H itself is colored and is extremely brittle, so it cannot be used in the clothing field, where aesthetics are required, and the sanitary material field, where dust generation is extremely objectionable. On the other hand, in the post-processing method, the deodorant tends to fall off during use, and there is a problem in terms of the durability of the deodorizing function. Also,
In the method of blending an odor adsorbent, it is necessary to blend the adsorbent in a fairly large amount in order to provide a satisfactory deodorizing function. Therefore, the mechanical properties of the obtained material are insufficient. A common way to improve such mechanical properties is to use polymers that do not contain deodorants to make composite fibers, but in order to develop sufficient deodorizing function, it is necessary to It is necessary to expose the blended polymer to the outer surface of the fiber. Therefore, there is a problem in that the deodorant-containing polymer falls off from the surface of the m-thread due to mechanical friction during the spinning process, post-processing process, etc., resulting in frequent troubles.

(発明の目的) 本発明は、前記従来技術の有する問題点を解消するため
なされたもので、その目的とするところは、十分な機械
的性能と優れた消臭機能とを同時に有し、かつ製糸・後
加工工程においてトラブル発生のない新規な消臭性複合
繊維を提供することにある。
(Object of the Invention) The present invention was made to solve the problems of the above-mentioned prior art, and its purpose is to simultaneously provide sufficient mechanical performance and an excellent deodorizing function. The object of the present invention is to provide a new deodorizing composite fiber that does not cause any trouble during spinning and post-processing processes.

(発明の構成) 本発明者は、上記目的を達成せんがため鋭意検討した結
果、繊維の中心部に消臭剤を高濃度に存在させ、かつ繊
維表面から該消臭剤存在領域まで連通孔を形成した繊維
は、繊維表層部に消臭剤を含有しないため、上記目的を
同時に達成できることを見い出し、本発明に到達した。
(Structure of the Invention) As a result of intensive studies aimed at achieving the above object, the present inventor has found that a deodorant is present in a high concentration in the center of the fiber, and a communicating hole is formed from the fiber surface to the area where the deodorant exists. It has been discovered that the above objects can be achieved at the same time because the fibers formed with this do not contain a deodorizing agent in the surface layer of the fibers, leading to the present invention.

すなわち本発明は、微細孔を有するポリエステルよりな
る鞘部と、消臭剤を1〜50重量%含有する熱可塑性重
合体よりなる芯部とから構成される芯鞘複合IIMであ
って、該鞘部中の微細孔は、その直径がo、ooi〜5
μ而、その長さが該直径の50倍以下であり、繊維横断
面に散在し、m離軸方向に配列しかつその少なくとも一
部が芯部まで連通していることを特徴とする消臭性芯鞘
複合繊維に係るものである。
That is, the present invention provides a core-sheath composite IIM composed of a sheath made of polyester having micropores and a core made of a thermoplastic polymer containing 1 to 50% by weight of a deodorant, The diameter of the micropores in the part is o, ooi ~ 5
μ, the deodorant is characterized in that its length is 50 times or less the diameter, it is scattered in the cross section of the fiber, it is arranged in the direction m away from the axis, and at least a part of it is in communication with the core. This relates to a core-sheath composite fiber.

本発明の芯鞘複合繊維の鞘部に存在する微細孔は、その
形状においては直径が0.001〜5μmの範囲内で、
その長さは直径の50倍以下でなければならず、またこ
の微細孔は繊維横断面全体に存在し且つm雑軸方向に配
列し、その少なくとも181Sは中空部まで連通してい
なければならない。
The micropores present in the sheath of the core-sheath composite fiber of the present invention have a diameter within the range of 0.001 to 5 μm,
The length must be 50 times or less than the diameter, and the fine pores must exist throughout the fiber cross section and be arranged in the m minor axis direction, and at least 181S of them must be in communication with the hollow part.

なおここで言う微細孔の直径とは、該微細孔が繊維表面
に開口している部分において、繊維軸に垂直な方向の巾
を言う。
Note that the diameter of the micropore referred to herein refers to the width in the direction perpendicular to the fiber axis at the portion where the micropore opens onto the fiber surface.

この微細孔の直径が0.001μmに達しないときは消
臭II能が充分でなく、5μmを越えるとはきは充分な
繊維強度が得られず0.001〜5μmの範囲が好まし
く、特に0.01〜3μmの範囲が好ましい。また、特
に微細孔の長さが、その直径の50倍より長くなると、
他の条件を全て満足しても、llaの強度及び耐フィブ
リル性が低くなり、特に30倍以下が好ましい。
When the diameter of these micropores is less than 0.001 μm, the deodorizing II ability is insufficient, and when it exceeds 5 μm, sufficient fiber strength cannot be obtained. A range of .01 to 3 μm is preferred. In addition, especially when the length of the micropore is longer than 50 times its diameter,
Even if all other conditions are satisfied, the strength and fibril resistance of lla will be low, and 30 times or less is particularly preferred.

更に、この微細孔が繊維横断面全体に散在し且つm維軸
方向に配列し、その少なくとも1部が芯部まで連通して
いることにより、充分な消臭機能が得られる。微細孔が
、複合繊維横断面においてIll衣表面近傍集中したり
、芯部まで連通していないときは、いかに多くの微細孔
を有する複合繊維であっても、消臭性は不充分となる。
Further, since the micropores are scattered throughout the fiber cross section and arranged in the m-fiber axis direction, and at least a portion of them communicates with the core, a sufficient deodorizing function can be obtained. If the micropores are concentrated near the coating surface in the cross section of the composite fiber or do not communicate with the core, the deodorizing properties will be insufficient no matter how many micropores the composite fiber has.

この微細孔が繊維横断面においてどのように存在してい
るか、またその少なくとも1部が芯部まで連通している
か否かは、繊維横断面を3000倍程度程度大して観察
することができる。
How these micropores are present in the cross section of the fiber and whether at least some of them communicate with the core can be determined by observing the cross section of the fiber about 3000 times larger.

また、繊維横断面において上記微細孔の総断面積の占め
る割合は、あまりに小さいと消臭機能が低下するように
なり、あまりに大きいと繊維強度が低下するようになる
ので、繊維横断面積の0.01〜50%であるのが好ま
しく、特に0.1〜30%の範囲が好ましい。
Furthermore, if the proportion of the total cross-sectional area of the micropores in the fiber cross-section is too small, the deodorizing function will be reduced, and if it is too large, the fiber strength will be reduced. It is preferably in the range of 0.01 to 50%, particularly preferably in the range of 0.1 to 30%.

次に、本発明の複合I雑を構成する芯部は、消臭剤を1
〜50重量%含有する熱可塑性重合体からなる。ここで
使用される熱可塑性重合体は特に限定する必要がなく、
単独重合体、共重合体いずれであっても良い。かかる重
合体としては、例えば、ポリエチレン、ポリプロピレン
、ポリスチレン。
Next, the core part constituting the composite I miscellaneous material of the present invention is coated with 1 deodorizer.
It consists of a thermoplastic polymer containing ~50% by weight. The thermoplastic polymer used here does not need to be particularly limited;
It may be either a homopolymer or a copolymer. Examples of such polymers include polyethylene, polypropylene, and polystyrene.

ポリブタジェン、ポリイソプレン、ナイロン−6゜ナイ
ロン−1)6.ポリエチレンテレフタレート、ポリブチ
レンテレフタレート及びこれらを主体とした共重合体等
をあげることができる。これらは単独であっても、2種
以上混合したものであっても良い。
Polybutadiene, polyisoprene, nylon-6° nylon-1)6. Examples include polyethylene terephthalate, polybutylene terephthalate, and copolymers mainly composed of these. These may be used alone or in combination of two or more.

また消臭剤は、臭気成分を吸着するか、もしくは臭気成
分と反応して消臭効果を発現する剤であって、繊維形成
時に分解・揮散しないものであれば特に限定する必要は
ない。かかる剤としては、例えば、活性アルミナ、シリ
カゲル、活性白土。
Further, the deodorant is not particularly limited as long as it is an agent that exhibits a deodorizing effect by adsorbing odor components or reacting with odor components, and does not decompose or volatilize during fiber formation. Examples of such agents include activated alumina, silica gel, and activated clay.

ゼオライト、活性酸化チタン、活性酸化亜鉛等を主成分
とする無機系の極微細孔を有する吸着剤、及びフマル酸
、鉄アスコルビン酸化合物、金属フタロシアニン系化合
物、金属ポルフィリン系化合物、フラボノイド系化合物
、アミノ酸系化合物。
Inorganic adsorbents with extremely fine pores whose main components are zeolite, activated titanium oxide, activated zinc oxide, etc., as well as fumaric acid, iron ascorbic acid compounds, metal phthalocyanine compounds, metal porphyrin compounds, flavonoid compounds, and amino acids. system compound.

タンニン化合物、糖類、プリン塩基等の有機系消臭剤が
あげられる。かかる消臭剤の配合量は、用いる消臭剤の
種類により異なるが、1〜50重量%、好ましくは5〜
35重量%とする必要がある。配合量が1重量%未満で
は十分な消臭機能が得られず、一方50重量%を越える
と製糸性が極めて低下すると共に、得られる門維の機械
的特性も不充分なものとなるため好ましくない。
Examples include organic deodorants such as tannin compounds, sugars, and purine bases. The blending amount of such a deodorant varies depending on the type of deodorant used, but is 1 to 50% by weight, preferably 5 to 50% by weight.
It needs to be 35% by weight. If the blending amount is less than 1% by weight, a sufficient deodorizing function cannot be obtained, while if it exceeds 50% by weight, the silk-spinning properties will be extremely reduced and the mechanical properties of the resulting fibers will be insufficient, so it is preferable. do not have.

また本発明の複合繊維は、芯鞘の複合繊維であれば特に
限定する必要はなく、横断面における芯部及び鞘部の形
状はいずれも任意で良い。例えば外形及び芯部がいずれ
も円形の場合、外形及び芯部のいずれか一方が円形で他
方が異形の場合、外形及び芯部共に類似又は非類似の異
形の場合等であってもよい。外形の大きさについても特
に制限する必要はない。また、芯部の数は1以上任意の
数をとることもできる。
Further, the conjugate fiber of the present invention does not need to be particularly limited as long as it is a core-sheath conjugate fiber, and the shapes of the core and sheath in cross section may be arbitrary. For example, the outer shape and the core may both be circular, one of the outer shape and the core may be circular and the other has an irregular shape, or both the outer shape and the core may have similar or dissimilar irregular shapes. There is no need to particularly limit the size of the external shape. Further, the number of core portions can be any number greater than or equal to one.

繊維横断面における鞘部と芯部の割合も、きわめて広い
範囲をとることができるが、芯部の割合があまりに大き
くなると得られる複合繊維の強度が不充分となるので、
繊維横断面における芯部の占める割合は50%以下が好
ましい。一方、芯部の割合があまりに小さくなると消臭
機能が低下する傾向に有るので、繊維横断面積の5%以
上にするのが好ましい。
The ratio of the sheath part to the core part in the fiber cross section can also be within a very wide range, but if the ratio of the core part is too large, the strength of the composite fiber obtained will be insufficient.
The ratio of the core portion in the fiber cross section is preferably 50% or less. On the other hand, if the proportion of the core is too small, the deodorizing function tends to deteriorate, so it is preferable to make it 5% or more of the fiber cross-sectional area.

本発明の複合繊維を製造するには、種々の手法が考えら
れるが、例えば、特定のスルホン酸金属塩を含有したポ
リエステル、又は有機スルホン酸を共重合したポリエス
テルを通常のポリエステルに配合したちのく以下これら
をあわせて変性ポリエステルという)を鞘部、前記消臭
剤を配合した熱可塑性重合体を芯部とし、芯鞘複合紡糸
口金を用いて溶融紡糸し、必要に応じて延伸、熱処理。
Various methods can be considered to produce the composite fiber of the present invention, but for example, a polyester containing a specific sulfonic acid metal salt or a polyester copolymerized with an organic sulfonic acid may be blended with a normal polyester. (hereinafter collectively referred to as modified polyester) is used as a sheath part, and a thermoplastic polymer blended with the deodorant is used as a core part, and melt-spun using a core-sheath composite spinneret, and stretched and heat treated as necessary.

捲縮(嵩高)加工し、得られた複合繊維を直接又は編織
した後アルカリ水溶液で処理して鞘部の変性ポリエステ
ルの少なくとも1部を除去することによって所定の微細
孔を形成させる方法が好ましく採用される。
Preferably, a method is employed in which predetermined micropores are formed by crimping (bulking) the obtained composite fiber directly or by knitting and weaving it and then treating it with an alkaline aqueous solution to remove at least a part of the modified polyester in the sheath. be done.

ここで使用する複合II帷の鞘部を構成する変性ポリエ
ステルのうち、特定のスルホン酸金属塩を含有したポリ
エステルを例にあげて説明する。ここで対象とするポリ
エステルは、テレフタル酸を主たる酸成分とし、炭素数
2〜6のフルキレングリコール、すなわちエチレングリ
コール、トリメチレングリコール、テトラメチレングリ
コール。
Among the modified polyesters constituting the sheath portion of the composite II cloth used herein, a polyester containing a specific sulfonic acid metal salt will be exemplified and explained. The polyesters targeted here include terephthalic acid as the main acid component and fullylene glycols having 2 to 6 carbon atoms, ie, ethylene glycol, trimethylene glycol, and tetramethylene glycol.

ペンタメチレングリコール、及びヘキサメチレングリコ
ールから選ばれた少なくとも一種のグリコールを主たる
グリコール成分とするポリエステルである。かかるポリ
エステルは、その酸成分の10モル%以下を他の二官能
性カルボン酸で置きかえてもよい。このような他のカル
ボン酸としては例えばイソフタル酸、ナフタリンジカル
ボン酸、ジフェニルジカルボン酸、β−オキシエトキシ
安息香酸、p−オキシ安息香酸の如き二官能性芳香族カ
ルボン酸、セバシン酸、アジピン酸、蓚酸の如き二官能
性脂肪族カルボン酸、及び1,4−シクロヘキサンジカ
ルボン酸の如き二官能性脂環族カルボン酸等をあげるこ
とができる。またポリエステルのグリコール成分の10
モル%以下を他のグリコール成分で置きかえてもよく、
かかるグリコール成分としては主成分以外の上記グリコ
ール及び他のジオール化合物、例えばシクロヘキサン−
1,4−ジメタツール、ネオペンチルグリコール、ビス
フェノールA、ビスフェノールSの如き脂肪族、脂環族
及び芳香族のジオール化合物等があげられる。
A polyester whose main glycol component is at least one type of glycol selected from pentamethylene glycol and hexamethylene glycol. Such polyesters may have up to 10 mole percent of their acid component replaced by other difunctional carboxylic acids. Such other carboxylic acids include, for example, difunctional aromatic carboxylic acids such as isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, β-oxyethoxybenzoic acid, p-oxybenzoic acid, sebacic acid, adipic acid, and oxalic acid. Examples include difunctional aliphatic carboxylic acids such as, and difunctional alicyclic carboxylic acids such as 1,4-cyclohexanedicarboxylic acid. In addition, 10% of the glycol component of polyester
Less than mol% may be replaced with other glycol components,
Such glycol components include the above-mentioned glycols other than the main component and other diol compounds, such as cyclohexane-
Examples include aliphatic, alicyclic and aromatic diol compounds such as 1,4-dimetatool, neopentyl glycol, bisphenol A, and bisphenol S.

かかるポリエステルは任意の製造法によって得ることが
できる。例えば、ポリエチレンテレフタレートについて
説明すれば、テレフタル酸とエチレングリコールとを直
接エステル化反応させるか、テレフタル酸ジメチルの如
きテレフタル酸の低級アルキルエステルとエチレングリ
コールとをエステル交換反応させて、テレフタル酸のグ
リコールエステル及び/又はその低重合体を生成させる
第1段反応、次いでかかる生成物を減圧上加熱して所望
の重合度になるまで重縮合反応させる第2段の反応とに
よって容易に製造される。
Such polyesters can be obtained by any manufacturing method. For example, to explain polyethylene terephthalate, terephthalic acid and ethylene glycol are directly esterified, or a lower alkyl ester of terephthalic acid such as dimethyl terephthalate and ethylene glycol are transesterified to form a glycol ester of terephthalic acid. and/or is easily produced by a first stage reaction in which a low polymer thereof is produced, followed by a second stage reaction in which the product is heated under reduced pressure and subjected to a polycondensation reaction until a desired degree of polymerization is achieved.

上記ポリエステルを鞘成分として溶融紡糸して複合繊維
となすに当り、溶融紡糸が終了するまでの任意の段階で
下記一般式[、I] で表わされるスルホン酸金属塩の少なくとも1種を該ポ
リエステルを構成する酸成分に対して0.3〜15モル
%となる量添加する。
When melt-spinning the above-mentioned polyester as a sheath component to make a composite fiber, at least one sulfonic acid metal salt represented by the following general formula [, I] is added to the polyester at any stage until the melt-spinning is completed. It is added in an amount of 0.3 to 15 mol % based on the constituent acid components.

式中、Ml及びM2は金属であり、Mlとしては特にL
i、に、アルカリ土類金属、 Mn1/2 。
In the formula, Ml and M2 are metals, and Ml is particularly L.
i, alkaline earth metal, Mn1/2.

Cot/2 、又はZn1/2が好ましく、なカテモし
+ 、に、Ca1/2 、MG1/2が特に好ましく、
M2としてはとくにアルカリ金属又はアルカリ土類金属
が好ましく、なかでもしi 、 Na 、 K。
Cot/2 or Zn1/2 is preferred, and Ca1/2 and MG1/2 are particularly preferred,
M2 is particularly preferably an alkali metal or an alkaline earth metal, especially i, Na, K.

Ca1/2 、Mat/2が特に好ましく、Ml及びM
2は同一でも異なっていてもよい。nは1又は2である
。Rは水素原子又はエステル形成性官能基であり、エス
テル形成性官能基としては−C0OR’  (但し、R
′は水素原子、炭素数1〜4のアルキル基又はフェニル
基)又は −GO[0(CH2)u ]m OH(但し、9は2以
上の整数、鋤は1以上の整数)等が好ましい。
Ca1/2, Mat/2 are particularly preferred, Ml and M
2 may be the same or different. n is 1 or 2. R is a hydrogen atom or an ester-forming functional group, and the ester-forming functional group is -C0OR' (However, R
' is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group) or -GO[0(CH2)u]mOH (where 9 is an integer of 2 or more, and 9 is an integer of 1 or more).

かかるスルホン酸金属塩の好ましい具体例としては、3
−カルボメトキシベンゼンスルホン酸Na−5−カルボ
ン酸Li、3−カルボメトキシベンゼンスルホン1に−
5−カルボン酸に、3−カルポメトキシベンゼンスルホ
ン!!Na−5−力ルボン酸Ca1/2.3−カルボメ
トキシベンゼンスルホン酸Na −5−カルボン酸Mg
l/2 、3−ヒドロキシエトキシカルボニルベンゼン
スルホンMNa −5−カルボン酸Mg1/2 、3−
力)レホキシエトキシカルボニルベンゼンスルホン酸N
a5−カルボン酸Zn1/2.ベンゼンスルホン酸Na
−3,5−ジ(カルボン酸[i)、ベンゼンスルホン酸
Na −3,5−ジ(カルボン酸K)、ベンゼンスルホ
ン酸Na −3,5−ジ(カルボン酸Cal/2 ) 
、ベンゼンスルホン酸Na−3,5−ジ(カルボン酸M
(J1/2 )等をあげることができる。
Preferred specific examples of such sulfonic acid metal salts include 3
-Carbomethoxybenzenesulfonic acid Na-5-carboxylic acid Li, 3-carbomethoxybenzenesulfone 1-
5-carboxylic acid, 3-carpomethoxybenzenesulfone! ! Na-5-carboxylic acid Ca1/2.3-carbomethoxybenzenesulfonic acid Na-5-carboxylic acid Mg
l/2, 3-hydroxyethoxycarbonylbenzenesulfone MNa -5-carboxylic acid Mg1/2, 3-
) Lephoxyethoxycarbonylbenzenesulfonic acid N
a5-carboxylic acid Zn1/2. Sodium benzenesulfonate
-3,5-di(carboxylic acid [i), Na-3,5-di(carboxylic acid), Na-3,5-di(carboxylic acid Cal/2) benzenesulfonate
, benzenesulfonic acid Na-3,5-di(carboxylic acid M
(J1/2) etc. can be given.

上記スルホン酸金属塩は1種のみ単独で使用しても、ま
た2種以上併用してもよい。その添加時期は、ポリエス
テルを複合INに溶融紡糸する紡糸工程が終了する以前
の任意の段階でよく、例えばポリエステルの原料中に添
加しても、ポリエステルの合成中に添加しても、また合
成終了後から溶融紡糸するまでの間に添加してもよい。
The above-mentioned sulfonic acid metal salts may be used alone or in combination of two or more. It may be added at any stage before the end of the spinning process of melt-spinning polyester into composite IN; for example, it may be added into the polyester raw material, during polyester synthesis, or at the end of synthesis. It may be added later before melt spinning.

いずれにしても、添加侵溶融状態で混合されるようにす
るのが好ましい。
In any case, it is preferable to mix the additives in a molten state.

上記スルホン酸金属塩の添加量は、あまりに少ないと、
前記の微細孔が充分に形成されず最終的に得られる複合
繊維の消臭性が不充分となる。逆にあまりに多いと、そ
の添加時期がポリエステルの合成が終了する以前では、
充分な重合度のポリエステルが得られ難く、またその添
加時期が合成終了後から溶融紡糸終了以前のときは紡糸
時にトラブルを発生し易い。このため添加量は、ポリエ
ステルを構成する酸成分に対し0.3〜15モル%の範
囲にすべきであり、0.5〜5モル%の範囲が好ましい
If the amount of the sulfonic acid metal salt added is too small,
The above-mentioned micropores are not sufficiently formed, resulting in insufficient deodorizing properties of the final composite fiber. On the other hand, if it is added too much, it will be added before the synthesis of polyester is completed.
It is difficult to obtain polyester with a sufficient degree of polymerization, and if it is added between after the completion of synthesis and before the completion of melt spinning, troubles are likely to occur during spinning. Therefore, the amount added should be in the range of 0.3 to 15 mol%, preferably 0.5 to 5 mol%, based on the acid component constituting the polyester.

次に、有機スルホン酸化合物を共重合したポリエステル
を通常のポリエステルと混合した変性ポリエステルとし
ては、例えば特開昭56−20612号公報に例示され
ている変性ポリエステルをそのまま使用することができ
る。
Next, as the modified polyester obtained by mixing a polyester copolymerized with an organic sulfonic acid compound and a normal polyester, for example, the modified polyester exemplified in JP-A-56-20612 can be used as is.

かくして得られる変性ポリエステルと消臭剤を含有する
熱可塑性ポリマーとも溶融紡糸して芯鞘複合繊維となす
には、格別な方法を採用する必要はなく、通常の複合紡
糸方法が任意に採用される。
There is no need to employ any special method to melt-spun the thus obtained modified polyester and the thermoplastic polymer containing the deodorant to form a core-sheath composite fiber, and a normal composite spinning method can be arbitrarily adopted. .

かくして得られる複合l!雑から変性ポリエステルの一
部を除去するには、必要に応じて延伸熱処理又は仮撚加
工等を施した後、又は更に布帛にした後アルカリ化合物
の水溶液に浸漬処理することにより容易に行なうことが
できる。
The composite l! thus obtained! Part of the modified polyester can be easily removed from the fabric by subjecting it to stretching heat treatment or false twisting as necessary, or by immersing it in an aqueous solution of an alkaline compound after making it into a fabric. can.

ここで使用するアルカリ化合物としては水酸化ナトリウ
ム2水酸化カリウム、テトラメチルアンモニウムハイド
ロオキサイド、炭酸ナトリウム。
The alkaline compounds used here include sodium hydroxide, potassium dihydroxide, tetramethylammonium hydroxide, and sodium carbonate.

炭酸カリウム等をあげることができる。なかでも水酸化
ナトリウム、水酸化カリウムが特に好ましい。
Examples include potassium carbonate. Among these, sodium hydroxide and potassium hydroxide are particularly preferred.

かかるアルカリ化合物の水溶液のIIは、アルカリ化合
物の種類、処理条件等によって異なるが、通常0.01
〜40重量%の範囲が好ましく、特に0.1〜30重量
%の範囲が好ましいa処理温度は常温〜100℃の範囲
が好ましく、処理時間は1分〜4時間の範囲で通常行な
われる。また、このアルカリ化合物の水溶液の処理によ
って溶出除去する変性ポリエステルの量は、複合繊維の
鞘部重量に対して2〜50重量%の範囲にすべきである
。このようにアルカリ化合物の水溶液で処理することに
よって複合繊維横断面の鞘部全体に散在し、繊維軸方向
に配列し且つその少なくとも1部は芯部まで連通してい
る直径が略0.001〜5μm1長さは直径の50倍以
下の微細孔が形成され、優れた消臭性を呈するようにな
る。
The II of such an aqueous solution of an alkali compound varies depending on the type of alkali compound, processing conditions, etc., but is usually 0.01.
-40% by weight is preferred, particularly preferably 0.1-30% by weight.a The treatment temperature is preferably in the range of room temperature to 100°C, and the treatment time is usually carried out in the range of 1 minute to 4 hours. Further, the amount of the modified polyester to be eluted and removed by treatment with the aqueous solution of the alkali compound should be in the range of 2 to 50% by weight based on the weight of the sheath portion of the composite fiber. By treating with an aqueous solution of an alkaline compound in this way, the fibers are scattered throughout the sheath of the cross section of the composite fiber, arranged in the fiber axis direction, and at least a portion of which is in communication with the core, and has a diameter of about 0.001~ With a length of 5 μm, micropores with a diameter of 50 times or less are formed, and exhibit excellent deodorizing properties.

なお、本発明の方法により得られる複合繊維には、必要
に応じて任意の添加剤、例えば触媒2着色防止剤、耐熱
剤、a燃剤、螢光増白剤、艶消剤。
Note that the composite fiber obtained by the method of the present invention may contain optional additives, such as a catalyst 2 color inhibitor, a heat resistant agent, an a-flame agent, a fluorescent whitening agent, and a matting agent, if necessary.

着色剤、無機微粒子等が含まれていてもよい。A coloring agent, inorganic fine particles, etc. may be included.

(効果) 本発明の複合繊維は、消臭剤を含有しない鞘部によって
消臭剤を高濃度に含有した芯部がとりかこまれているた
め、充分な機械的特性を有するともに、使用中等の摩擦
によっても消臭剤の脱落を生ぜず、耐久性に優れた消臭
性能を呈する。また、鞘部には芯部まで連通した微細孔
を有するため、消臭性能のレベルも極めて優れたものと
なり、衣料、衛生材料用途等IJ広い分野での使用が可
能となる。
(Effects) The composite fiber of the present invention has a core containing a high concentration of deodorant surrounded by a sheath that does not contain a deodorant, so it has sufficient mechanical properties and can be used easily. The deodorant does not fall off even when rubbed, and exhibits excellent deodorizing performance with excellent durability. In addition, since the sheath has micropores that communicate with the core, the level of deodorizing performance is extremely high, and IJ can be used in a wide range of fields, such as clothing and sanitary materials.

(実施例) 以下、実施例をあげて本発明をさらに詳述する。(Example) Hereinafter, the present invention will be further explained in detail by giving Examples.

実施例1 テレフタル酸ジメチル100! 1部、エチレングリコ
ール66重量部、酢酸マンガン4水塩0,03重量部を
エステル交換色に仕込み、窒素ガス雰囲気14時間かけ
て140℃から230℃まで昇温して生成するメタノー
ルを系外に留去しながらエステル交換反応を行なった。
Example 1 Dimethyl terephthalate 100! 1 part by weight of ethylene glycol, 66 parts by weight of manganese acetate tetrahydrate, and 0.03 parts by weight of manganese acetate tetrahydrate were added to the transesterification color, and the temperature was raised from 140°C to 230°C over 14 hours in a nitrogen gas atmosphere to remove the generated methanol from the system. The transesterification reaction was carried out while distilling off.

続いて得られた生成物に安定剤として正リン酸の56%
水溶液0.03重吊部。
The resulting product was then treated with 56% of orthophosphoric acid as a stabilizer.
Aqueous solution 0.03 double hanging part.

三酸化アンチモン0.04重量部、ベンゼンスルホン酸
Na −3,5−ジ(カルボンlli!2M(11/2
 )の20%エチレングリコールスラリー 1.5重量
部を添加して重合缶に移した。次いで1時間かけて 7
60MH9から1部鵬まで減圧し、同時に1時間30分
かけて230℃から285℃で更に2時間30分、合計
4時間重合し、極限粘度0,650.軟化点261℃の
変性ポリエステルを得た。
0.04 parts by weight of antimony trioxide, Na-3,5-di(carbonlli!2M(11/2)
20% ethylene glycol slurry (1.5 parts by weight) was added and transferred to a polymerization can. Then over an hour 7
The pressure was reduced from 60MH9 to 1 part pressure, and at the same time polymerization was carried out at 230°C to 285°C for 1 hour and 30 minutes for an additional 2 hours and 30 minutes, for a total of 4 hours, and the intrinsic viscosity was 0.650. A modified polyester having a softening point of 261°C was obtained.

ポリエチレン100重量部と消臭剤トミックスへ〇 −
700(冨田製薬製)50重型部を混練機で充分加熱混
合して得られたブレンド組成物を芯部とし、上記変性ポ
リエステルを鞘部として、同心円型芯鞘複合紡糸機を用
いて紡糸し、100℃で4倍に延伸後、160℃で熱固
定して芯鞘複合繊維を(ワた。
100 parts by weight of polyethylene and deodorant Tomix〇 −
700 (manufactured by Tomita Pharmaceutical Co., Ltd.) 50 heavy weight part was thoroughly heated and mixed in a kneading machine, and the obtained blend composition was used as the core part, and the above-mentioned modified polyester was used as the sheath part, and spun using a concentric core-sheath composite spinning machine, After stretching 4 times at 100°C, it was heat-set at 160°C to form a core-sheath composite fiber.

この複合繊維の横断面における複合比(面積比芯/鞘)
は1/3であり、$1ili構成は30デニール/3フ
イラメントであった。この複合繊維をメリヤス編地にな
し、常法により精練・プリセットを施した後、減量率が
鞘部の重量に対して20%になるよう、1%のカセイソ
ーダ水溶液中潮W1温度にて処理した。
Composite ratio (area ratio core/sheath) in the cross section of this composite fiber
was 1/3 and the $1ili configuration was 30 denier/3 filament. This composite fiber was knitted into a knitted fabric, scoured and preset by a conventional method, and then treated in a 1% caustic soda aqueous solution at a temperature of W1 so that the weight loss rate was 20% based on the weight of the sheath.

得られた布帛5gの入った1500ccの容器中に、濃
度14001)[11のアンモニアガスを入れ、1時間
後にアンモニアの残濃度を測定したところ60ppmで
あった。(消臭率96%) 実施例2 テレフタル酸ジメチル297部、エチレングリコ−/し
265部、3.5−ジ(カルボメトキシ)ベンゼンスル
ホン酸ナトリウム53部(テレフタル酸ジメチルに対し
て11.1モル%)、酢酸マンガン4水塩0.084部
及び酢酸ナトリウム3水塩1.22部を精昭塔付ガラス
フラスコに入れ、常法に従ってエステル交換反応を行な
い、理論量のメタノールが留出した後反応生成物を精留
塔付重縮合用フラスコに入れ、安定剤として正リン酸の
56%水溶液0.090部及び重縮合触媒として三酸化
アンチモン0.135部を加え、温度275℃、常圧下
20分、 30rrrts H9の減圧下15分反応さ
せた後高真空下で100分間反応させた。最終内圧は0
.38訓1であり、得られた共重合ポリマーの極限粘度
は8,405、軟化点は200℃であった。反応終了後
共重合ポリマーを常法に従いチップ化した。
Ammonia gas having a concentration of 14,001) [11] was put into a 1,500 cc container containing 5 g of the obtained fabric, and the residual concentration of ammonia was measured after 1 hour and found to be 60 ppm. (Deodorization rate: 96%) Example 2 297 parts of dimethyl terephthalate, 265 parts of ethylene glycol, 53 parts of sodium 3.5-di(carbomethoxy)benzenesulfonate (11.1 mol based on dimethyl terephthalate) %), 0.084 parts of manganese acetate tetrahydrate and 1.22 parts of sodium acetate trihydrate were placed in a glass flask equipped with a distillation tower, and a transesterification reaction was carried out according to a conventional method. After distillation of the theoretical amount of methanol. The reaction product was placed in a polycondensation flask equipped with a rectifying column, and 0.090 parts of a 56% aqueous solution of orthophosphoric acid as a stabilizer and 0.135 parts of antimony trioxide as a polycondensation catalyst were added, and the mixture was heated at a temperature of 275°C under normal pressure. The mixture was reacted for 15 minutes under a reduced pressure of 30 rrrts H9 for 15 minutes, and then for 100 minutes under high vacuum. Final internal pressure is 0
.. The obtained copolymer had an intrinsic viscosity of 8,405 and a softening point of 200°C. After the reaction was completed, the copolymer was made into chips according to a conventional method.

この共重合ポリマーのチップ15部と極限粘度0.64
0のポリエチレンテレフタレートのチップ85部とをナ
ウタ・ミキサー(網側鉄工所製)中で5分間混合した後
、窒素気流中にて110℃で2時間、更に150℃で7
時間乾燥した後、二軸のスクリウ式押出機を用いて29
0℃で溶融混練してチップ化した。このチップの極限粘
度は0,520.軟化点は262℃であった。
15 parts of chips of this copolymer and an intrinsic viscosity of 0.64
After mixing with 85 parts of polyethylene terephthalate chips of No. 0 for 5 minutes in a Nauta mixer (manufactured by Amiside Ironworks), the mixture was heated at 110°C for 2 hours in a nitrogen stream, and then at 150°C for 7 hours.
After drying for 29 hours, a twin-screw extruder was used to
The mixture was melted and kneaded at 0°C to form chips. The intrinsic viscosity of this chip is 0.520. The softening point was 262°C.

このポリマーを鞘成分とする以外は実施例1と同様にし
て、芯鞘複合繊維を得たく但し、芯鞘比を115とした
)。これを実施例1と同様にメリヤス編地となし、アル
カリ減量処理(減量率15%)して布帛を得た。この布
帛のアンモニアガス消臭率は91%であった。
A core-sheath composite fiber was obtained in the same manner as in Example 1 except that this polymer was used as the sheath component, but the core-sheath ratio was 115). This was knitted into a knitted fabric in the same manner as in Example 1, and subjected to alkali weight loss treatment (loss rate: 15%) to obtain a fabric. The ammonia gas deodorization rate of this fabric was 91%.

実施例3 実施例1において、ポリエチレンに配合する消臭剤の配
合量を第1表に記載の如く変更する以外は実施例1と同
様にして布帛を得た。
Example 3 A fabric was obtained in the same manner as in Example 1, except that the amount of the deodorant added to the polyethylene was changed as shown in Table 1.

この布帛の消臭性を第1表に示す。Table 1 shows the deodorizing properties of this fabric.

第1表 比較例1 実施例1において得られたメリヤス編地にアルカリ処理
を行なわない場合のアンモニアガス消臭率を実施例1と
同様に測定したところ、25%であった。
Table 1 Comparative Example 1 The ammonia gas deodorization rate when the knitted fabric obtained in Example 1 was not subjected to alkali treatment was measured in the same manner as in Example 1, and was found to be 25%.

比較例2 テレフタル酸ジメチル297部、エチレングリコール2
65部、酢酸マンガン4水塩0.084部を精留塔付ガ
ラスフラスコに入れ、常法に従ってエステル交換反応を
行ない、理論量のメタノールが留出した後、反応生成物
を精留塔付重縮合用フラスコに入れ、正リン酸の56%
水溶液0.090部及び三酸化アンチモン0.135部
を加え、温度215℃で常圧下20分、30MH9の減
圧下15分反応を進行させた後、−旦常圧にもどし、炭
素数8〜20で平均炭素数が14であるアルキルスルホ
ン酸ソーダ混合物を7.5部添加した後系内を徐々に減
圧し、撹拌下80分間反応させた。最終内圧は0,32
rNRHsであり、得られたポリマーの極限粘度は0.
622であった。反応終了後常法に従ってチップ化した
Comparative Example 2 297 parts of dimethyl terephthalate, 2 parts of ethylene glycol
65 parts of manganese acetate tetrahydrate and 0.084 parts of manganese acetate tetrahydrate were placed in a glass flask equipped with a rectification tower, and transesterification was carried out according to a conventional method. After the theoretical amount of methanol had been distilled off, the reaction product was placed in a glass flask equipped with a rectification tower. Add 56% of orthophosphoric acid to the condensation flask.
0.090 part of aqueous solution and 0.135 part of antimony trioxide were added, and the reaction was allowed to proceed at a temperature of 215°C for 20 minutes under normal pressure and for 15 minutes under reduced pressure of 30MH9. After adding 7.5 parts of a sodium alkyl sulfonate mixture having an average carbon number of 14, the pressure inside the system was gradually reduced, and the reaction was allowed to proceed for 80 minutes with stirring. The final internal pressure is 0.32
rNRHs, and the intrinsic viscosity of the obtained polymer is 0.
It was 622. After the reaction was completed, chips were formed according to a conventional method.

このポリマーを鞘成分とする以外は実施例1と同様に紡
糸、延伸し、30デニール/3フイラメントのマルチフ
ィラメントを得た。このマルチフィラメントをメリヤス
編地となし、精練、プリセット後0.5%のカセイソー
ダ水溶液で沸騰温度にて180分処理してアルカリ減量
率15%(鞘部の重量に対して)の布帛を得た。この布
帛のアンモニアガス消臭率は95%であった。
A multifilament of 30 denier/3 filaments was obtained by spinning and drawing in the same manner as in Example 1 except that this polymer was used as the sheath component. This multifilament was made into a knitted fabric, and after scouring and presetting, it was treated with a 0.5% caustic soda aqueous solution at boiling temperature for 180 minutes to obtain a fabric with an alkali weight loss rate of 15% (based on the weight of the sheath). . The ammonia gas deodorization rate of this fabric was 95%.

また、アルカリ減量処理侵の単糸の表面を3000倍の
電子顕微鏡で観測したところ、微細孔は筋状で細長く、
はとんどが細孔の径の100倍以上であった。
In addition, when the surface of a single fiber subjected to alkali weight loss treatment was observed using an electron microscope at a magnification of 3000 times, the micropores were striped and elongated.
Most of the diameters were 100 times or more the diameter of the pores.

この布帛の染色品の摩耗200回後の顕微鏡観察でのフ
ィブリルの発生が認められた。
After the dyed fabric was worn 200 times, microscopic observation revealed that fibrils were formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の消臭性複合繊維の好ましい一例を示す
概略図である。 1 微細孔を有する鞘部 2 消臭剤を含有する芯部 3 微細孔 4 芯部まで連通した微細孔
FIG. 1 is a schematic diagram showing a preferred example of the deodorizing composite fiber of the present invention. 1 Sheath part having micropores 2 Core part containing deodorant 3 Micropores 4 Micropores communicating to the core part

Claims (1)

【特許請求の範囲】[Claims] 微細孔を有するポリエステルよりなる鞘部と、消臭剤を
1〜50重量%含有する熱可塑性重合体よりなる芯部と
から構成される芯鞘複合繊維であって、該鞘部中の微細
孔は、その直径が0.001〜5μm、その長さが該直
径の50倍以下であり、繊維横断面に散在し、繊維軸方
向に配列しかつその少なくとも一部が芯部まで連通して
いることを特徴とする消臭性芯鞘複合繊維。
A core-sheath composite fiber consisting of a sheath made of polyester having micropores and a core made of a thermoplastic polymer containing 1 to 50% by weight of a deodorant, the fiber having micropores in the sheath. have a diameter of 0.001 to 5 μm, a length of not more than 50 times the diameter, are scattered in the cross section of the fiber, are arranged in the fiber axis direction, and at least a part of them communicates with the core. A deodorizing core-sheath composite fiber.
JP1031114A 1989-02-13 1989-02-13 Deodorant core-sheath composite fiber Expired - Fee Related JP2779195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031114A JP2779195B2 (en) 1989-02-13 1989-02-13 Deodorant core-sheath composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031114A JP2779195B2 (en) 1989-02-13 1989-02-13 Deodorant core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JPH02216217A true JPH02216217A (en) 1990-08-29
JP2779195B2 JP2779195B2 (en) 1998-07-23

Family

ID=12322376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031114A Expired - Fee Related JP2779195B2 (en) 1989-02-13 1989-02-13 Deodorant core-sheath composite fiber

Country Status (1)

Country Link
JP (1) JP2779195B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120731A (en) * 1978-03-07 1979-09-19 Teijin Ltd Sheath-core type composite fibers and their manufacture
JPS63190013A (en) * 1986-09-16 1988-08-05 Teijin Ltd Deodorant fiberus structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120731A (en) * 1978-03-07 1979-09-19 Teijin Ltd Sheath-core type composite fibers and their manufacture
JPS63190013A (en) * 1986-09-16 1988-08-05 Teijin Ltd Deodorant fiberus structure

Also Published As

Publication number Publication date
JP2779195B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US5047448A (en) Antimicrobial-shaped article and a process for producing the same
EP0023664B1 (en) Process for producing the same of hollow water-absorbing polyester filaments
US4336307A (en) Hollow water absorbing polyester filaments and a process for producing the same
JPS63527B2 (en)
EP0038429A2 (en) Antistatic polyester fibers
JP2809640B2 (en) Polyester fiber and method for producing the same
JPS6262182B2 (en)
JPH02216217A (en) Deodorizing sheath-core conjugate fiber
JP2937337B2 (en) Deodorant polyester fiber
JPS6131231B2 (en)
JPS6219542B2 (en)
JPS6043858B2 (en) polyester molding
JP3293704B2 (en) Polyester fiber and method for producing the same
JPS6335749B2 (en)
JPH08260343A (en) Hollow polyester fiber and its production
JP2691855B2 (en) Polyester fiber and method for producing the same
JP2939688B2 (en) Fibril-like polyester fiber and method for producing the same
JPH0369665A (en) Production of antimicrobial fiber structure
KR840000779B1 (en) Hollow water-absorbing polyester filaments
JPS6163711A (en) Polyester yarn like flax having water absorption property
JPS63120167A (en) Production of synthetic fiber
JPS63546B2 (en)
JPH0411020A (en) Production of conjugate fiber
JPS6244065B2 (en)
JPS6153442B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees