JPH02215732A - Alkylation catalyst of toluene and preparation thereof - Google Patents

Alkylation catalyst of toluene and preparation thereof

Info

Publication number
JPH02215732A
JPH02215732A JP1028532A JP2853289A JPH02215732A JP H02215732 A JPH02215732 A JP H02215732A JP 1028532 A JP1028532 A JP 1028532A JP 2853289 A JP2853289 A JP 2853289A JP H02215732 A JPH02215732 A JP H02215732A
Authority
JP
Japan
Prior art keywords
catalyst
toluene
sodium oxide
reaction
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1028532A
Other languages
Japanese (ja)
Other versions
JPH0639421B2 (en
Inventor
Knuuttila Pekka
ペッカ・クヌーチーラ
Ari Hokka Aira
アイラ・アリ・ホッカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neste Oyj
Original Assignee
Neste Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neste Oyj filed Critical Neste Oyj
Priority to JP1028532A priority Critical patent/JPH0639421B2/en
Publication of JPH02215732A publication Critical patent/JPH02215732A/en
Publication of JPH0639421B2 publication Critical patent/JPH0639421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To obtain a catalyst for alkylating toluen containing Na2O on a K2CO3 support, easy in the treatment of a starting material and having the same activity as an alkali metal catalyst, by mixing Na2O and K2CO3.
CONSTITUTION: Na2O and K2CO3 are heated at 260-280°C for 0.5-1 hr pref. under reduced pressure to obtain the catalyst containing Na2O on a K2CO3 support Na2O and K2CO3 do no show any catalytic activity independently but, though no chemical reaction is not generated between Na2O and K2CO3 in the above mentioned catalyst, this catalyst shows excellent catalytic activity. The proper concn. of Na2O in the catalyst is 10-70% (pref., 40-60%). The alkylation of toluene by propylene is designated as an example and the main product in this case is isobutylbenzene.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 [産業上の利用分野コ 零R明はトルエンのアルキル化触媒およびその製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a toluene alkylation catalyst and a method for producing the same.

[従来の技術と課題] 周知のようにオレフィンでアルキル芳香族類の側鎖をア
ルキル化するには、アルカリ金属触媒が好適であり、金
属ナトリウムまたは金属カリウムを無機担体もしくはグ
ラファイト担体上に分散さに金属ナトリウムを含んだ触
媒が開示されている。イギリス特許第1.289.28
0号公報には、非水性カリウム化合物上にナトリウムお
よび/またはリチウムを分散させて製造した触媒が開示
されている。同じく本発明者によるフィンランド特許出
願第8B53[f3号にはから固形K 2 CO3の表
面にナトリウム含有化合物から熱的にナトリウムを分散
させた触媒に言及している。
[Prior Art and Problems] As is well known, an alkali metal catalyst is suitable for alkylating the side chain of an alkyl aromatic compound with an olefin, and metallic sodium or metallic potassium is dispersed on an inorganic or graphite carrier. discloses a catalyst containing metallic sodium. British Patent No. 1.289.28
No. 0 discloses a catalyst produced by dispersing sodium and/or lithium on a non-aqueous potassium compound. Finnish patent application no. 8B53[f3, also by the present inventor, refers to a catalyst in which sodium is thermally dispersed from a sodium-containing compound onto the surface of solid K 2 CO 3 .

これらの触媒の欠点の一つは、触媒の製法と取扱が繁雑
であり、高温での活性が比較的に低く、かつタールとコ
ークス化のために活性が急速に低下することである。
One of the disadvantages of these catalysts is that the preparation and handling of the catalyst is complicated, the activity at high temperatures is relatively low, and the activity decreases rapidly due to tarring and coking.

[課題を解決するための手段] 上記の触媒に比べて本発明の触媒は出発材料の処理が容
易で、そのうえアルカリ金属触媒同様の活性を有する。
[Means for Solving the Problems] Compared to the above-mentioned catalysts, the catalyst of the present invention has easier processing of the starting material and, moreover, has an activity similar to that of an alkali metal catalyst.

本発明の触媒は炭酸カリウム(K 2COG)担体上に
酸化ナトリウム(Na21)を含有している。
The catalyst of the present invention contains sodium oxide (Na21) on a potassium carbonate (K2COG) support.

本発明の触媒の製法は酸化す) IJウム(N a 2
O)と炭酸カリウム(KaCO3)とを混合するところ
に特徴がある。
The method for producing the catalyst of the present invention is to oxidize IJium (N a 2
It is characterized by mixing O) and potassium carbonate (KaCO3).

トルエンのアルキル化に使用する本発明の触媒は炭酸カ
リウム(K2CO3)担体上に酸化ナトリウム(Na2
O)を含有している系から成るのが特徴である。
The catalyst of the present invention used for the alkylation of toluene comprises sodium oxide (Na2) on a potassium carbonate (K2CO3) support.
It is characterized by a system containing O).

本発明の触媒の製法は、単に酸化ナトリウムと炭酸カリ
ウムとを混合し次いで該混合物を加熱すればよい。加熱
温度は100〜400℃、好ましくは280〜280℃
であり、加熱時間は0.5〜1時間である。この加熱は
減圧下で行うのが有利であるが絶対条件ではない。
The catalyst of the present invention can be produced simply by mixing sodium oxide and potassium carbonate and then heating the mixture. Heating temperature is 100-400℃, preferably 280-280℃
The heating time is 0.5 to 1 hour. It is advantageous, but not an absolute requirement, for this heating to be carried out under reduced pressure.

本発明の触媒では、酸化ナトリウムと炭酸カリウムの何
れか単独では何等の触媒活性を示さないことは驚くべき
ことである。また最終触媒のX線回折分析によれば酸化
ナトリウムと炭酸カリウムの何れの相も認められるので
、酸化ナトリウムと炭酸カリウム間では何等の化学反応
も生起していないのである。
It is surprising that the catalyst of the present invention does not exhibit any catalytic activity when using either sodium oxide or potassium carbonate alone. Furthermore, according to X-ray diffraction analysis of the final catalyst, both sodium oxide and potassium carbonate phases were observed, so no chemical reaction occurred between sodium oxide and potassium carbonate.

本発明の触媒はプロピレンによるトルエンの側鎖のアル
キル化反応に上りで試験を行った。
The catalyst of the present invention was tested in the alkylation reaction of the side chain of toluene with propylene.

このアルキル化反応は次の反応式で説明できるトルエン
  イソブチルベンゼン この反応で得られ主生成物はイソブチルベンゼンでアル
。n−フチルベンゼン、プロピレンダイマーである4−
メチル−1−ペンテンが副反応の結果副生する。
This alkylation reaction can be explained by the following reaction formula: toluene isobutylbenzene The main product obtained in this reaction is isobutylbenzene. n-phthylbenzene, 4- which is a propylene dimer
Methyl-1-pentene is produced as a by-product as a result of side reactions.

試験はl da’の連続式マイクロ反応器中で実施した
The test was carried out in an l da' continuous microreactor.

反応後、ガスおよび液相をガスクロマトグラフィーで分
析した。
After the reaction, the gas and liquid phases were analyzed by gas chromatography.

[実施例] 次に実施例により本発明の触媒の製法と該触媒を使用し
たアルキル化反応を述べるが、本発明はこれらのみに限
定されるものではない。
[Example] Next, a method for producing the catalyst of the present invention and an alkylation reaction using the catalyst will be described with reference to Examples, but the present invention is not limited thereto.

触媒をl da3Paar  鋼製反応器中で270℃
、減圧下で製造した。酸化ナトリウムと炭酸カリウムの
所望量を計量して仕込み、密閉して減圧とした。混合物
を260℃〜280℃に加熱し該温度で0゜5〜1.0
時間保持した。
The catalyst was heated to l da3 Paar at 270°C in a steel reactor.
, prepared under reduced pressure. The desired amounts of sodium oxide and potassium carbonate were weighed and charged, and the container was sealed and reduced pressure was applied. The mixture was heated to 260°C to 280°C and the temperature was 0°5 to 1.0°C.
Holds time.

Gllの触媒を調製したが、そのナトリウム含育量は0
〜100重量%の範囲で変動させた。
A catalyst of Gll was prepared, but its sodium content was 0.
It was varied in the range of ~100% by weight.

11些立瓦 仕上がり触媒は暗灰色または褐色を示す。14〜90重
量%の酸化ナトリウム含宵量の触媒の製造に際しては反
応器の壁に金属相が観察できる。仕上がり触媒の中で酸
化ナトリウム40重量%含有の触媒につきX線回折法(
MRD)を用いて分析した。この回折分析において触媒
中に観察される相は酸化ナトリウム、炭酸カリウムおよ
び多分金属ナトリウムである。酸化ナトリウムは結晶が
大きく、その濃度は高い。炭酸カリウムは小さな結晶か
または酸化ナトリウムで被覆されているかの何れかであ
ることはこれらのピークが低く広いことから分かる。
11 The finished catalyst exhibits a dark gray or brown color. When producing catalysts with a sodium oxide content of 14 to 90% by weight, a metallic phase can be observed on the walls of the reactor. X-ray diffraction method (
MRD). The phases observed in the catalyst in this diffraction analysis are sodium oxide, potassium carbonate and possibly sodium metal. Sodium oxide has large crystals and a high concentration. The low and broad nature of these peaks indicates that the potassium carbonate is either small crystals or coated with sodium oxide.

肚1」Ul トルエンの側鎖をプロピレンでアルキル化する反応に該
触媒を用いて試験した。この試験はldm3Parrオ
ートクレーブおよび連続式マイクロ反応器中で実施した
The catalyst was used in a reaction to alkylate the side chain of toluene with propylene. This test was conducted in an ldm3Parr autoclave and continuous microreactor.

パー    、  の− 反応条件を次のように選択した:反応時間 t=19時
間、反応温度 T : 175℃、トルエン/プロピレ
ン モル比n(T)n(P)=0.7 、触媒質量−=
23.0g 窒素雰囲気下で触媒をこの反応器中に充填した。反応器
を閉じ減圧にした。反応器蓋のバルブを通じ減圧を利用
してトルエンを装入した。液状でプロピレンを反応器中
に供給した。
The reaction conditions were chosen as follows: reaction time t=19 hours, reaction temperature T: 175°C, toluene/propylene molar ratio n(T)n(P)=0.7, catalyst mass −=
23.0 g of catalyst was charged into the reactor under nitrogen atmosphere. The reactor was closed and vacuum applied. Toluene was charged using vacuum through a valve on the reactor lid. Propylene was fed into the reactor in liquid form.

反応後(175℃、19時間)、ガス相および液相をガ
スクロマトグラフィーで分析した。
After the reaction (175°C, 19 hours), the gas and liquid phases were analyzed by gas chromatography.

/イ − この反応において得られる主生成物はイソブチルベンゼ
ンCIBB)であった。副反応の結果得られた反応混合
物中にはまたn−ブチルベンゼン(NBB)、プロピレ
ンの二量化物である4−メチル−1−ペンテン(4MI
P)、および4−メチル−1−ペンテンの異性化物、お
よび各種のヘキセン異性体が含まれていた。
/I - The main product obtained in this reaction was isobutylbenzene CIBB). The reaction mixture obtained as a result of the side reaction also contains n-butylbenzene (NBB) and 4-methyl-1-pentene (4MI), which is a dimerized product of propylene.
P), and isomerized products of 4-methyl-1-pentene, and various hexene isomers.

試験結果を第1表に示した。生成物組成から出発原料の
転化率、各種生成成分の選択率、およびIBBについて
の該触媒の活性を計算した。第1図は生成物へのトルエ
ンとプロピレンの転化率を触媒中の酸化ナトリウムに対
してプロットした図である。第2図は触媒活性をg−I
BB/(g−cat)にて示した触媒の活性を示したも
のである。
The test results are shown in Table 1. From the product composition, the conversion of starting materials, the selectivity of various product components, and the activity of the catalyst with respect to IBB were calculated. FIG. 1 is a plot of toluene and propylene conversion to product versus sodium oxide in the catalyst. Figure 2 shows the catalytic activity g-I
It shows the activity of the catalyst expressed as BB/(g-cat).

(以下余白) 第1表および第1〜2図から分かるように、該反応にお
ける転化率と活性はナトリウム濃度が60重量%のとき
に最高である。しかし酸化ナトリウムが2Oまたは40
重量%のところでも結果はそれ程悪くはないことが分か
る。
(Left below) As can be seen from Table 1 and Figures 1 and 2, the conversion rate and activity in the reaction are highest when the sodium concentration is 60% by weight. However, sodium oxide is 2O or 40
It can be seen that the results are not too bad even in terms of weight percentage.

N a * O/ K * COa触媒をB%Na/に
、CO,触媒と比較したところ、触媒の活性および転化
率について2O.40および60重量%酸化物触媒のほ
うが格段に良好な結果であった。同一条件で試験したN
 a / K 2CO3触媒ではトルエンの転化率は3
0%、プロピレンの転化率は42%、触媒活性は4〜5
・IBB/(g−cat)であるのに対して、酸化ナト
リウム2O−110重量%を含む触媒の転化率は46〜
B5%および64〜74%であり、触媒活性は5〜7・
IBB/(g−cat)であった。
When the Na*O/K*COa catalyst was compared with the B%Na/CO, catalyst, the activity and conversion rate of the catalyst was 2O. The 40 and 60 wt% oxide catalysts gave much better results. N tested under the same conditions
With a/K2CO3 catalyst, the conversion rate of toluene is 3
0%, propylene conversion rate is 42%, catalyst activity is 4-5
・IBB/(g-cat), whereas the conversion rate of the catalyst containing 110% by weight of sodium oxide 2O-1 is 46~
B is 5% and 64-74%, and the catalytic activity is 5-7.
IBB/(g-cat).

加えて、酸化物触媒は容易に活性化され、誘導期間は観
察されなかった。換言すれば、反応温厚が175℃に上
昇した直後に反応圧は降下しはじめた。アルカリ金属触
媒では反応開始に約1時間を必要とした。
In addition, the oxide catalyst was easily activated and no induction period was observed. In other words, the reaction pressure began to drop immediately after the reaction temperature rose to 175°C. The alkali metal catalyst required about 1 hour to start the reaction.

アルカリ金属触媒と酸化物触媒との著しい差異は、後者
の場合の4−メチル−I−ペンテンに対スる異性化効率
である。4−メチルートペンテン異性化物生成の選択率
は酸化物触媒の場合ではアルカリ金属触媒の約2倍であ
る。しかしながらこの異性化反応は温度を低下させ、反
応時間を短縮することにより低減できる。
A significant difference between alkali metal and oxide catalysts is the isomerization efficiency for 4-methyl-I-pentene in the latter case. The selectivity for the formation of 4-methyltopentene isomers is approximately twice as high in the case of oxide catalysts as in the case of alkali metal catalysts. However, this isomerization reaction can be reduced by lowering the temperature and shortening the reaction time.

連19立ヌ」−友囚一 連続式マイクロ反応器における試験用と17て4゜%N
 a 2O / K 2CO3触媒を選んだ。試験のパ
ラメータは次のようであった:トルエン供給速度約9g
/br、プロピレン供給速度 約2O g/hr、反応
温度 170℃、反応圧 90バール、触媒f1 2B
g・ Na2O/KzCO3触媒は連続式反応器でイソブチル
ベンゼンを製造するのに特に好適と考えられる。その理
由はNBBよりも重いタール分の生成が特に少ないから
である。温度が増加しても、また触媒がより老化しても
、いずれに場合でもタール分は増加しない。Na2O/
KaCOa触媒は寧ろ微細粉末に近いにも係わらず、触
媒のタールによる汚染がないので反応器での圧力損失は
認められない。そこで、反応器内の温度を2O0℃まで
上昇することができる。N a 2O / K QC0
3触媒の欠点としては二量化生成物として4−メチル−
2−ペンテンを生成する傾向があることである。
For testing in a continuous microreactor and 17 degrees 4%N
A2O/K2CO3 catalyst was chosen. The test parameters were as follows: toluene feed rate of approximately 9g;
/br, propylene feed rate approximately 2O g/hr, reaction temperature 170°C, reaction pressure 90 bar, catalyst f1 2B
The g.Na2O/KzCO3 catalyst is considered particularly suitable for producing isobutylbenzene in a continuous reactor. The reason for this is that the production of heavier tar components is particularly less than that of NBB. The tar content does not increase in either case, even if the temperature increases or the catalyst becomes more aged. Na2O/
Although the KaCOa catalyst is more like a fine powder, no pressure loss is observed in the reactor because the catalyst is not contaminated by tar. Therefore, the temperature inside the reactor can be raised to 200°C. N a 2 O / K QC0
The disadvantage of the 3-catalyst is that the dimerization product is 4-methyl-
It has a tendency to form 2-pentene.

この異性化傾向は反応温度に著しく依存する。150℃
に温度を低下させると、この異性化レシオはNa/Ka
CO3触媒のそれに近(まで低減する(以下余白)
This isomerization tendency is highly dependent on the reaction temperature. 150℃
When the temperature is lowered to , this isomerization ratio becomes Na/Ka
Reduced to close to that of CO3 catalyst (blank below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は触媒中の酸化ナトリウム濃度に対するトルエン
とプロピレンの転化率を示すグラフ図、第2図は触媒中
の酸化ナトリウムの各種濃度に対するイソブチルベンゼ
ンへの触媒活性を示すグラフ図である。 代理人   秋  元  輝  鰺14.・ほか1名
FIG. 1 is a graph showing the conversion rates of toluene and propylene with respect to the concentration of sodium oxide in the catalyst, and FIG. 2 is a graph showing the catalytic activity to isobutylbenzene with respect to various concentrations of sodium oxide in the catalyst. Agent Akira Akimoto 14.・1 other person

Claims (9)

【特許請求の範囲】[Claims] (1)炭酸カリウム(K_2CO_3)担体上に酸化ナ
トリウム(Na_2O)を含むトルエンのアルキル化触
媒。
(1) Toluene alkylation catalyst containing sodium oxide (Na_2O) on a potassium carbonate (K_2CO_3) support.
(2)触媒中の酸化ナトリウム濃度が10〜70%であ
る特許請求の範囲第1項記載の触媒。
(2) The catalyst according to claim 1, wherein the sodium oxide concentration in the catalyst is 10 to 70%.
(3)酸化ナトリウム濃度が40〜60%である特許請
求の範囲第1項記載の触媒。
(3) The catalyst according to claim 1, wherein the sodium oxide concentration is 40 to 60%.
(4)炭酸カリウム(K_2CO_3)担体上に酸化ナ
トリウム(Na_2O)を含むトルエンのアルキル化触
媒の製法であって、該方法が酸化ナトリウム(Na_2
O)と炭酸カリウム(K_2CO_3)とを混合するこ
とから成る製法。
(4) A method for producing a toluene alkylation catalyst containing sodium oxide (Na_2O) on a potassium carbonate (K_2CO_3) carrier, the method comprising:
A manufacturing method consisting of mixing O) and potassium carbonate (K_2CO_3).
(5)触媒中の酸化ナトリウムの濃度を10〜70重量
%とする特許請求の範囲第4項記載の製法。
(5) The method according to claim 4, wherein the concentration of sodium oxide in the catalyst is 10 to 70% by weight.
(6)触媒中の酸化ナトリウムの濃度を40〜60重量
%とする特許請求の範囲第4項記載の製法。
(6) The method according to claim 4, wherein the concentration of sodium oxide in the catalyst is 40 to 60% by weight.
(7)プロピレンによるトルエンのアルキル化に使用す
るための特許請求の範囲第1項記載の触媒。
(7) The catalyst according to claim 1 for use in the alkylation of toluene with propylene.
(8)触媒中の酸化ナトリウム濃度が10〜70%であ
る特許請求の範囲第7項記載の触媒。
(8) The catalyst according to claim 7, wherein the sodium oxide concentration in the catalyst is 10 to 70%.
(9)触媒中の酸化ナトリウム濃度が40〜60%であ
る特許請求の範囲第7項記載の触媒。
(9) The catalyst according to claim 7, wherein the sodium oxide concentration in the catalyst is 40 to 60%.
JP1028532A 1989-02-07 1989-02-07 Toluene alkylation catalyst and process for producing the same Expired - Lifetime JPH0639421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028532A JPH0639421B2 (en) 1989-02-07 1989-02-07 Toluene alkylation catalyst and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028532A JPH0639421B2 (en) 1989-02-07 1989-02-07 Toluene alkylation catalyst and process for producing the same

Publications (2)

Publication Number Publication Date
JPH02215732A true JPH02215732A (en) 1990-08-28
JPH0639421B2 JPH0639421B2 (en) 1994-05-25

Family

ID=12251279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028532A Expired - Lifetime JPH0639421B2 (en) 1989-02-07 1989-02-07 Toluene alkylation catalyst and process for producing the same

Country Status (1)

Country Link
JP (1) JPH0639421B2 (en)

Also Published As

Publication number Publication date
JPH0639421B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
RU2291743C2 (en) Catalyst consisting of transition metal deposited on high-purity silicon dioxide for metathesis of olefin(s)
CA1259298A (en) Dimerization process and catalysts therefor
JPH04354539A (en) Catalytic activity gel
JPS6081188A (en) Manufacture of dimethyldichlorosilane
US3931348A (en) Process for preparing dimethyl naphthalene
JPH01501771A (en) Selective alkylation catalyst and alkylation method for toluene
BE1000896A3 (en) Catalyst system and method with selective toluene alkylation propylene.
JPH02215732A (en) Alkylation catalyst of toluene and preparation thereof
US5432142A (en) Catalyst for alkene dimerization
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same
EP0374315B1 (en) Catalyst system, process for preparing it, and process for alkylating toluene
US2951885A (en) Alkylation of benzene and catalysts therefor
US4914251A (en) Catalyst system for alkylating alkyl aromatics with olefins, procedure for preparing the catalyst, and procedure for carrying out the alkylating
NZ230964A (en) Preparation and use of a cogel catalyst
JP2772139B2 (en) Method for synthesizing alkyl aromatic hydrocarbons
JPS61207346A (en) Manufacture of ethane and ethylene
EP0524522A1 (en) Catalyst for metathetic reactions of olefins
US4977125A (en) Process for the preparation of silicon oxynitride-containing products
US6143265A (en) Conversion of metal oxide to metal phosphate
US2995610A (en) Isobutylbenzene preparation
JPH01319431A (en) Production of terpinolene
JPH0840944A (en) Production of inner olefin
EP0664277B1 (en) Process for producing a monoalkenyl aromatic hydrocarbon compound
US2387794A (en) Preparation of p-cymene from a monocyclic terpene
JPH02138228A (en) Preparation of inner olefin