JPH02215392A - Production of galactooligosaccharide - Google Patents

Production of galactooligosaccharide

Info

Publication number
JPH02215392A
JPH02215392A JP1035997A JP3599789A JPH02215392A JP H02215392 A JPH02215392 A JP H02215392A JP 1035997 A JP1035997 A JP 1035997A JP 3599789 A JP3599789 A JP 3599789A JP H02215392 A JPH02215392 A JP H02215392A
Authority
JP
Japan
Prior art keywords
galactosidase
lactose
derived
enzyme treatment
galactooligosaccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1035997A
Other languages
Japanese (ja)
Other versions
JP2739335B2 (en
Inventor
Keisuke Matsumoto
圭介 松本
Yoichi Kobayashi
洋一 小林
Tatsuhiko Suga
辰彦 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP1035997A priority Critical patent/JP2739335B2/en
Publication of JPH02215392A publication Critical patent/JPH02215392A/en
Application granted granted Critical
Publication of JP2739335B2 publication Critical patent/JP2739335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To readily obtain a galactooligosaccharide in good yield and high purity by treating lactose with a prescribed beta-galactosidase, adding a beta- galactosidase different from that described above the the resultant treated solution and carrying out the second enzyme treatment. CONSTITUTION:A lactose-containing substance, such as lactose or whey, is dissolved in hot water so as to provide 10-90wt./vol.% lactose to afford a substrate solution. A beta-galactosidase derived from Bullera.singularis or Bacillus.circulans in an amount of 1-100 units/ml is added to the obtained substrate solution to carry out the first enzymic treatment at a desired pH an temperature. A beta-galactosidase derived from Streptococcus.thermophilus or Lactobacillus.bulgaricus is then added thereto to carry out the second enzymic treatment under the same conditions as those described above to produce a galactooligosaccharide expressed by the formula (Gal is galactose residue; Glc is glucose residue; n is 1-4).

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、ビフィドバクテリウム菌増殖促進作用を有す
るガラクトオリゴ糖を収率よく製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing galacto-oligosaccharide with good yield, which has an effect of promoting the growth of Bifidobacterium bacteria.

〔従来の技術〕[Conventional technology]

近年、ヒト腸内に生息する有用細菌であるビフィドバク
テリウム曹を腸内で積極的に増やすための手段として、
ヒトの消化酵素で分解されずに下情化管に達しビフィド
バクテリウム菌に選択的に利用される性質を備えたオリ
ゴ糖の投与が注目されている。このような性質を備えた
オリゴ糖の例としては、ガ2クトオリゴ糖、フラクトオ
リゴ糖、イソマルトオリゴ糖、ラフィノース、スタキオ
ースなどがある。この中で、一般弐G*1−(Gal)
*−Glc (但し式中G11はガラクトース残基、G
lcはグルコース、nは1〜4の整数)で示されるガラ
クトオリゴ糖は、全菌種のビフィドバクテリウム薗に利
用される一方、他の腸内細菌には利用されにくいという
有利な性質を備えているから、ビフィドバクテリウム菌
増殖促進能の最も高いオリゴ糖と考えられている。
In recent years, as a means to actively increase Bifidobacterium spp., a useful bacteria that lives in the human intestine,
The administration of oligosaccharides, which have the property of reaching the inferior tract without being degraded by human digestive enzymes and being selectively used by Bifidobacterium, is attracting attention. Examples of oligosaccharides with such properties include gacto-oligosaccharides, fructooligosaccharides, isomalto-oligosaccharides, raffinose, and stachyose. Among these, General 2G*1-(Gal)
*-Glc (However, in the formula, G11 is a galactose residue, G
Galactooligosaccharide (lc is glucose and n is an integer from 1 to 4) has the advantageous property that it is utilized by all species of Bifidobacterium but is difficult to be utilized by other intestinal bacteria. Therefore, it is considered to be the oligosaccharide with the highest ability to promote the growth of Bifidobacterium bacteria.

ガラクトオリゴ糖の代表的な製造法は、乳糖をアスペル
ギルス・オリゼのβ−ガラクトシダーゼで処理すること
によりβ−ガラクトシル転移反応を生じさせる方法(特
公昭5B−20266号公報)である。しかしながら、
この製造法によるときは、ガラクトオリゴ糖の生成率が
30%程度と低く、未反応の乳糖が多量に残るという問
題があった。
A typical method for producing galactooligosaccharides is a method in which lactose is treated with Aspergillus oryzae β-galactosidase to cause a β-galactosyl transfer reaction (Japanese Patent Publication No. 5B-20266). however,
When using this production method, there was a problem that the production rate of galactooligosaccharide was as low as about 30%, and a large amount of unreacted lactose remained.

多量の乳糖を含有する反応液をそのままガラクトオリゴ
糖製品として飲食物に利用することは、乳糖不耐症との
関係で好ましくなく、また、溶解性の点でも不都合を生
じる場合がある。一方、反応液からガラクトオリゴ糖を
分離精製して利用することは、複雑な工程を必要とし、
製品を、一般的な機能性食品としての利用が困難な高価
なものにしてしまう。
Utilizing a reaction solution containing a large amount of lactose as it is as a galacto-oligosaccharide product in foods and drinks is not preferable in relation to lactose intolerance, and may also cause problems in terms of solubility. On the other hand, separating and purifying galactooligosaccharides from the reaction solution and utilizing them requires complicated steps.
This makes the product expensive and difficult to use as a general functional food.

そこで、乳糖のβ−ガラクトシダーゼ処理によるガラク
トオリゴ糖収率を極力高くし、さらには未反応乳糖の少
ない反応液を得ることが、いずれにせよ有利であり望ま
しいことになる。このような観点からなされた発明の一
つは特開昭63−91092号公報に開示されており、
そこでは、由来の異なる2種以上のβ−ガラクトシダー
ゼを用いて乳糖を逐次処理する方法によって、単一の酵
素処理の場合よりも未反応乳糖の量を減らすことに成功
している。該発明の製法において使用可能なβ−ガラク
トシダーゼの具体例としては、下記の微生物により生産
されたものが例示されている。
Therefore, it is advantageous and desirable to increase the galactooligosaccharide yield as much as possible by treating lactose with β-galactosidase and to obtain a reaction solution containing less unreacted lactose. One of the inventions made from this point of view is disclosed in Japanese Patent Application Laid-Open No. 63-91092,
There, a method in which lactose is sequentially treated using two or more types of β-galactosidases of different origins has been successful in reducing the amount of unreacted lactose compared to a single enzyme treatment. Specific examples of β-galactosidase that can be used in the production method of the invention include those produced by the following microorganisms.

カビ:アスペルギルス・オリゼ、アスペルギルス・ニガ
ー、アスペルギルス・フラバス、ムコーループシルス 細菌:ストレプトコッカス・サーモフィルス、ストレプ
トコッカス・ラクチス、ラクトバチルス・ブルガリクス
、ラクトバチルス・サリバリウス、ラクトバチルス・ラ
イヒマニー、ラクトバチルス・ヘルベティクス、バチル
ス−ステアロサーモフィルス、バチルス・プレビス、サ
ームスψサーモフィルス、ビフィドバクテリウム・ビフ
ィダム、ビフィドバクテリウム・ロンガム、ビフィドバ
クテリウム・ブレーベ、ビフィドバクテリウム・アドレ
スセンチイス 酵母:クルイベ口マイセス−7ラジリス、タルイベロマ
イセス・ラクチス、カンジダ・シュードトロピカリス そして、一部の例においてはガラクトオリゴ糖収率も同
時に向上し、最高38%のガラクトオリゴ糖収率を達成
しているが、その理由は明らかにされていない。
Molds: Aspergillus oryzae, Aspergillus niger, Aspergillus flavus, Mucorupsils Bacteria: Streptococcus thermophilus, Streptococcus lactis, Lactobacillus bulgaricus, Lactobacillus salivarius, Lactobacillus leichmannii, Lactobacillus helveticus , Bacillus stearothermophilus, Bacillus plebis, Thermus ψ thermophilus, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium addressentiis Yeast: Kluibe mouth Myces-7 radiusis, Thalveromyces lactis, Candida pseudotropicalis. The reason has not been disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、乳糖のβ−ガラクトシダーゼ処理によ
るガラクトオリゴ糖の製造において上記従来の水準をこ
える高いガラクトオリゴ糖収率の達成を可能にすること
にある。
An object of the present invention is to make it possible to achieve a higher yield of galactooligosaccharide than the above-mentioned conventional level in the production of galactooligosaccharide by treating lactose with β-galactosidase.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記特開昭63−91092号の発明に
おいて試みられていなかった多くのβ−ガラクトシダー
ゼの組合わせによる逐次処理を子細に検討した結集、由
来の異なる2種類のβ−ガラクトシダーゼのある特定の
組合わせによる逐次処理においては50%に近い驚異的
な高収率でガラクトオリゴ糖が生成することを確認し、
本発明を完成するに至った。
The present inventors have carefully investigated sequential treatments using combinations of many β-galactosidases, which had not been attempted in the invention of JP-A No. 63-91092. It was confirmed that galacto-oligosaccharides were produced at an astonishingly high yield of nearly 50% in sequential processing using a certain specific combination.
The present invention has now been completed.

すなわち、本発明は、乳糖のβ−ガラクトシダーゼ処理
によりガラクトオリゴ糖を製造するに当たり、β−ガラ
クトシダーゼとしてストレプトコッカス・サーモフィル
ス由来のβ−ガラクトシダーゼ、ブレラ・シンギュラリ
ス由来のβ−ガラクトシダーゼ、ラクトバチルス・ブル
ガリクス由来のβ−ガラクトシダーゼ、およびバチルス
・サーキュランス由来のβ−ガラクトシダーゼからなる
群から選ばれたβ−ガラクトシダーゼを用いて乳糖に第
一の酵素処理を施し、次いで、上記第一の酵素処理で用
いたβ−ガラクトシダーゼとは異なるβ−ガラクトシダ
ーゼを上記β−ガラクトシダーゼ群から選んでこれによ
り上記第一の酵素処理の反応液に第二の酵素処理を施す
ことを特徴とするものである。
That is, in producing galactooligosaccharide by treating lactose with β-galactosidase, the present invention uses β-galactosidase derived from Streptococcus thermophilus, β-galactosidase derived from Brella singularis, and β-galactosidase derived from Lactobacillus bulgaricus as β-galactosidase. Lactose is subjected to a first enzyme treatment using β-galactosidase selected from the group consisting of β-galactosidase and β-galactosidase derived from Bacillus circulans, and then the β-galactosidase used in the first enzyme treatment is The method is characterized in that a β-galactosidase different from galactosidase is selected from the above β-galactosidase group, and the reaction solution of the first enzyme treatment is subjected to the second enzyme treatment using this β-galactosidase.

このガラクトオリゴ糖製造法において特に好ましいのは
、ブレラ・シンギュラリス由来のβ−ガラクトシダーゼ
またはバチルス・サーキュランス由来のβ−ガラクトシ
ダーゼを用いて第一の酵素処理を行い、ストレプトコッ
カス・サーモフィルス由来のβ−ガラクトシダーゼまた
はラクトバチルス・ブルガリクス由来のβ−ガラクトシ
ダーゼを用いて第二の酵素処理を行う方法である。
In this galactooligosaccharide production method, it is particularly preferred that the first enzyme treatment is performed using β-galactosidase derived from Brella singularis or β-galactosidase derived from Bacillus circulans, and β-galactosidase derived from Streptococcus thermophilus or This is a method in which a second enzyme treatment is performed using β-galactosidase derived from Lactobacillus bulgaricus.

上述のように、本発明の製造法においては乳糖または乳
糖含有物質に2段のβ−ガラクトシダーゼ処理を施すが
、各段酵素処理そのものは、基本的には従来の製法と同
様にして差支えない。すなわち、乳糖、ホエー等の乳糖
含有物質を、乳糖濃度lO〜90w/マ%、望ましくは
50〜80w/マ%、酵素濃度1〜100単位/mlで
、用いる酵素の至適pH付近および至適温度付近のPH
および温度において処理する。叉応が進むにつれてグル
コース、ガラクトース等の単糖とオリゴ糖がほぼ直線的
に増加するが、加水分解されるオリゴ糖も増えるため、
オリゴ糖はある時点から徐々に減少する傾向を示す。第
一の酵素処理の反応時間は、概ねその反応において最高
のオリゴ糖生成率に達する時間としてよいが、第二の酵
素処理を終わった時点での最終的なオリゴ糖収率が最高
になるよう、第二の酵素処理の内容も考慮して決定する
ことが望ましい。第一の酵素処理を打切った後は、反応
液を加熱して酵素を失活させてから別のβ−ガラクトシ
ダーゼを加え、反応を再開させる。この第二の酵素処理
においては、乳糖等の二糖類からガラクトオリゴ糖への
転移がさらに進行し、一方、ガラクトオリゴ糖の加水分
解は、単一のβ−ガラクトシダーゼを用いて反応時間を
延長した場合よりもずっと少なく、シたがって、反応液
中では二糖類が減少してオリゴ糖が増加する。しかしな
がら、この第二の酵素処理も平衡反応であることに変わ
りはなく、ガラクトオリゴ糖はある時点から減少し始め
るから、最大収率に達した段階で処理を打切る。
As mentioned above, in the production method of the present invention, lactose or a lactose-containing substance is subjected to two stages of β-galactosidase treatment, but each stage of enzyme treatment itself can be basically the same as in conventional production methods. That is, lactose-containing substances such as lactose and whey are mixed at a lactose concentration of 10 to 90 w/m%, preferably 50 to 80 w/m%, and an enzyme concentration of 1 to 100 units/ml, near the optimum pH of the enzyme used, and at the optimum pH. PH around temperature
and temperature. As the reaction progresses, monosaccharides and oligosaccharides such as glucose and galactose increase almost linearly, but the number of oligosaccharides that are hydrolyzed also increases.
Oligosaccharides tend to gradually decrease after a certain point. The reaction time for the first enzyme treatment may be approximately the time required to reach the highest oligosaccharide production rate in the reaction, but it should be set so that the final oligosaccharide yield at the end of the second enzyme treatment is the highest. It is desirable that the content of the second enzyme treatment is also taken into consideration when making a decision. After discontinuing the first enzyme treatment, the reaction solution is heated to inactivate the enzyme, and then another β-galactosidase is added to restart the reaction. In this second enzymatic treatment, the transfer from disaccharides such as lactose to galactooligosaccharides further progresses, while the hydrolysis of galactooligosaccharides is greater than when a single β-galactosidase is used and the reaction time is extended. is much less, and therefore, in the reaction solution, disaccharides decrease and oligosaccharides increase. However, this second enzyme treatment is still an equilibrium reaction, and since galactooligosaccharides begin to decrease at a certain point, the treatment is stopped when the maximum yield is reached.

〔発明の効果〕〔Effect of the invention〕

本発明の製造法によれば、約40〜50%という高率で
乳糖をガラクトオリゴ糖に変換することができる。
According to the production method of the present invention, lactose can be converted to galactooligosaccharides at a high rate of about 40 to 50%.

また、それにともない、製品中の他の糖類、特に乳糖の
含有率を従来よりも顕著に減少させることができる。
Additionally, the content of other sugars, especially lactose, in the product can be significantly reduced compared to conventional methods.

したがって、本発明の製造法による製品は乳糖や甘味の
強い単糖類の存在による不都合を招くことなしに多くの
用途においてそのまま利用することができる。勿論、必
要ならば適宜脱色処理、濃縮、乾燥、その他飲食物とす
るのに必要な加工を篇して利用することができ、さらに
これを精製ガラクトオリゴ糖の製造に利用することもで
きるが、分離困難な二糖類の含有率が低いため精製は容
易であり、容易に高純度の製品を得ることができる。
Therefore, the products produced by the production method of the present invention can be used as they are in many applications without causing any inconvenience due to the presence of lactose or sweet monosaccharides. Of course, if necessary, decolorization, concentration, drying, and other processing necessary for making food and drinks can be carried out and used, and this can also be used to produce purified galacto-oligosaccharides, but separation Since the content of difficult disaccharides is low, purification is easy and a highly pure product can be easily obtained.

(実施例〕 以下、実施例および比較例を示して本発明を説明する。(Example〕 The present invention will be described below with reference to Examples and Comparative Examples.

比較例 1 2.5Mの乳糖を4.95直の熱水に溶解し、IM−リ
ン酸カリウム緩衝液(pH6)50mlとブレラ・シン
ギュラリスのβ−ガラクトシダーゼ2200単位を加え
て50℃で反応させた。16時間経過してガラクトオリ
ゴ糖生成率が最高になったところで反応液を加熱して酵
素を失活させ、淡黄色の精液を得た。
Comparative Example 1 2.5M lactose was dissolved in 4.95℃ hot water, and 50ml of IM-potassium phosphate buffer (pH 6) and 2200 units of Brera singularis β-galactosidase were added and reacted at 50°C. . When the galactooligosaccharide production rate reached its maximum after 16 hours had passed, the reaction solution was heated to inactivate the enzyme and pale yellow semen was obtained.

実施例1 比較例1で得た糖液にストレプトコッカス・サーモフィ
ルスのβ−ガラクトシダーゼ5000単位および8.3
6%の塩化マグネシウム溶液51を加え、50℃で16
時間作用させた。
Example 1 5000 units of Streptococcus thermophilus β-galactosidase and 8.3
Add 51% of 6% magnesium chloride solution and heat at 50°C for 16
I let time work.

得られた精液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の精液を得た。
After the obtained semen was heat-treated, 50 g of activated carbon was added for decolorization treatment to obtain colorless and transparent semen.

実施例2 比較例1で得た糖液に、ラクトバチルス・ブルガリクス
のβ−ガラクトシダーゼ12000単位、および8.3
6%の塩化マグネシウム溶液51を加え、pHを7.0
に調整して50℃で4時間作用させた。
Example 2 To the sugar solution obtained in Comparative Example 1, 12,000 units of Lactobacillus bulgaricus β-galactosidase and 8.3
Add 6% magnesium chloride solution 51 to pH 7.0
The temperature was adjusted to 50°C for 4 hours.

得られた精液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の精液を得た。
After the obtained semen was heat-treated, 50 g of activated carbon was added for decolorization treatment to obtain colorless and transparent semen.

比較例2 2.5kgの乳糖を4.951の熱水に溶解し、IM−
リン酸カリウム緩衝液(pH7)so鳳lとバチルス・
サーキュランスのβ−ガラクトシダーゼ5500単位を
加えて、60℃で反応させた。5時間経過してガラクト
オリゴ糖生成率が最高になったところで糖液を加熱して
酵素を失活させ、黄色の糖液を得た。
Comparative Example 2 2.5 kg of lactose was dissolved in 4.951 g hot water, and IM-
Potassium phosphate buffer (pH 7) and Bacillus
5500 units of β-galactosidase from Circulans was added and reacted at 60°C. After 5 hours had passed and the galacto-oligosaccharide production rate reached its maximum, the sugar solution was heated to inactivate the enzyme and a yellow sugar solution was obtained.

実施例3 比較例2で得た精液に、ストレプトコッカス・サーモフ
ィルスを乳糖培地で培養することにより得られたβ−ガ
ラクトシダーゼ活性を有する菌体酵素5000単位およ
び8.36%の塩化マグネシウム溶液51を加え、50
℃で16時間作用させた。
Example 3 5000 units of a bacterial enzyme having β-galactosidase activity obtained by culturing Streptococcus thermophilus in a lactose medium and 8.36% magnesium chloride solution 51 were added to the semen obtained in Comparative Example 2. , 50
It was allowed to act for 16 hours at ℃.

得られた精液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の精液を得た。
After the obtained semen was heat-treated, 50 g of activated carbon was added for decolorization treatment to obtain colorless and transparent semen.

実施例4 比較例2で得た糖液に、ラクトバチルス・ブルガリクス
のβ−ガラクトシダーゼ12000単位、および8.3
6%の塩化マグネシウム溶液5mlを加え、50℃で4
時間作用させた。
Example 4 To the sugar solution obtained in Comparative Example 2, 12,000 units of Lactobacillus bulgaricus β-galactosidase and 8.3
Add 5 ml of 6% magnesium chloride solution and incubate at 50°C for 4 hours.
I let time work.

得られた精液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の精液を得た。
After the obtained semen was heat-treated, 50 g of activated carbon was added for decolorization treatment to obtain colorless and transparent semen.

比較例 3 2.5Mの乳糖を4.951の熱水に溶解し、IM−リ
ン酸カリウム緩衝液(PH6,5)50重11ストレプ
トコツカス・サーモフィルスのβ−ガラクトシダーゼ活
性を有する菌体酵素5000単位および8.36%の塩
化マグネシウム溶液5mlを加え、50℃で16時間作
用させた。
Comparative Example 3 2.5M lactose was dissolved in 4.951% hot water, and IM-potassium phosphate buffer (PH6,5) was added to 50 parts of 11 Streptococcus thermophilus bacterial cell enzyme having β-galactosidase activity. 5000 units and 5 ml of 8.36% magnesium chloride solution were added and allowed to act at 50° C. for 16 hours.

得られた精液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の精液を得た。
After the obtained semen was heat-treated, 50 g of activated carbon was added for decolorization treatment to obtain colorless and transparent semen.

比較例4 2.5kgの乳糖を4.951の熱水に溶解し、IM−
リン酸カリウム緩衝液(pH6,5)50ml、ラクト
バチルス・ブルガリクスのβ−ガラクトシダーゼ300
0単位および8.36%の塩化マグネシウム溶液51を
加え、50℃で4時間作用させた。
Comparative Example 4 2.5 kg of lactose was dissolved in 4.951 g hot water, and IM-
Potassium phosphate buffer (pH 6.5) 50ml, Lactobacillus bulgaricus β-galactosidase 300
0 units and 8.36% magnesium chloride solution 51 were added and allowed to act at 50° C. for 4 hours.

得られた糖液を熱処理後、50gの活性炭を加えて脱色
処理することにより、無色透明の糖液を得た。
The resulting sugar solution was heat-treated and then decolorized by adding 50 g of activated carbon to obtain a colorless and transparent sugar solution.

以上の各偶によって得られた糖液の糖組成は次のとおり
であった。
The sugar compositions of the sugar solutions obtained in each of the above cases were as follows.

比較例1 実施例1 実施例2 比較例2 実施例3 実施例4 比較例3 比較例4Comparative example 1 Example 1 Example 2 Comparative example 2 Example 3 Example 4 Comparative example 3 Comparative example 4

Claims (2)

【特許請求の範囲】[Claims] (1)乳糖をβ−ガラクトシダーゼで処理してβ−ガラ
クトシル転移反応を生じさせることにより一般式Gal
−(Gal)n−Glc(但し式中Galはガラクトー
ス残基、Glcはグルコース残基、nは1〜4の整数)
のガラクトオリゴ糖を製造するに当たり、β−ガラクト
シダーゼとしてストレプトコッカス・サーモフィルス由
来のβ−ガラクトシダーゼ、ブレラ・シンギュラリス由
来のβ−ガラクトシダーゼ、ラクトバチルス・ブルガリ
クス由来のβ−ガラクトシダーゼ、およびバチルス・サ
ーキュランス由来のβ−ガラクトシダーゼからなる群か
ら選ばれたβ−ガラクトシダーゼを用いて乳糖に第一の
酵素処理を施し、次いで、上記第一の酵素処理で用いた
β−ガラクトシダーゼとは異なるβ−ガラクトシダーゼ
を上記β−ガラクトシダーゼ群から選んでこれにより上
記第一の酵素処理の反応液に第二の酵素処理を施すこと
を特徴とするガラクトオリゴ糖の製造法。
(1) By treating lactose with β-galactosidase to cause a β-galactosyl transfer reaction, the general formula Gal
-(Gal)n-Glc (in the formula, Gal is a galactose residue, Glc is a glucose residue, and n is an integer from 1 to 4)
In producing galactooligosaccharides, β-galactosidase derived from Streptococcus thermophilus, β-galactosidase derived from Brera singularis, β-galactosidase derived from Lactobacillus bulgaricus, and β derived from Bacillus circulans are used. - subjecting lactose to a first enzyme treatment using a β-galactosidase selected from the group consisting of galactosidases, and then applying a β-galactosidase different from the β-galactosidase used in the first enzyme treatment to the β-galactosidase. A method for producing a galactooligosaccharide, which comprises selecting one from the group and subjecting the reaction solution of the first enzyme treatment to a second enzyme treatment.
(2)ブレラ・シンギュラリス由来のβ−ガラクトシダ
ーゼまたはバチルス・サーキュランス由来のβ−ガラク
トシダーゼを用いて第一の酵素処理を行い、ストレプト
コッカス・サーモフィルス由来のβ−ガラクトシダーゼ
またはラクトバチルス・ブルガリクス由来のβ−ガラク
トシダーゼを用いて第二の酵素処理を行う請求項1記載
の製造法。
(2) A first enzyme treatment is performed using β-galactosidase derived from Brella singularis or β-galactosidase derived from Bacillus circulans, and β-galactosidase derived from Streptococcus thermophilus or β derived from Lactobacillus bulgaricus is - The manufacturing method according to claim 1, wherein the second enzyme treatment is performed using galactosidase.
JP1035997A 1989-02-17 1989-02-17 Method for producing galactooligosaccharide Expired - Fee Related JP2739335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1035997A JP2739335B2 (en) 1989-02-17 1989-02-17 Method for producing galactooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035997A JP2739335B2 (en) 1989-02-17 1989-02-17 Method for producing galactooligosaccharide

Publications (2)

Publication Number Publication Date
JPH02215392A true JPH02215392A (en) 1990-08-28
JP2739335B2 JP2739335B2 (en) 1998-04-15

Family

ID=12457451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035997A Expired - Fee Related JP2739335B2 (en) 1989-02-17 1989-02-17 Method for producing galactooligosaccharide

Country Status (1)

Country Link
JP (1) JP2739335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245690A (en) * 2000-03-03 2001-09-11 Yakult Honsha Co Ltd Method for producing glycoside or oligosaccharide
KR100945306B1 (en) * 2007-12-31 2010-03-03 주식회사 삼양제넥스 A method of production for high purity galactooligosacchraide
JP2014221078A (en) * 2008-06-02 2014-11-27 クラフト・フーヅ・グループ・ブランヅ リミテッド ライアビリティ カンパニー Galacto-oligosaccharide containing cheese products having reduced lactose levels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344195B2 (en) 2018-04-05 2023-09-13 合同酒精株式会社 Enzyme capable of producing galactooligosaccharide derived from Paenibacillus pabuli, and method for producing galactooligosaccharide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391092A (en) * 1986-10-07 1988-04-21 Yakult Honsha Co Ltd Production of oligosaccharide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391092A (en) * 1986-10-07 1988-04-21 Yakult Honsha Co Ltd Production of oligosaccharide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001245690A (en) * 2000-03-03 2001-09-11 Yakult Honsha Co Ltd Method for producing glycoside or oligosaccharide
KR100945306B1 (en) * 2007-12-31 2010-03-03 주식회사 삼양제넥스 A method of production for high purity galactooligosacchraide
JP2014221078A (en) * 2008-06-02 2014-11-27 クラフト・フーヅ・グループ・ブランヅ リミテッド ライアビリティ カンパニー Galacto-oligosaccharide containing cheese products having reduced lactose levels

Also Published As

Publication number Publication date
JP2739335B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
EP0323201B1 (en) Method for producing processed milk containing galactooligosaccharide
KR100697762B1 (en) Process for Manufacturing of Tagatose
FR2723960A1 (en) Prodn. of Streptococcus thermophilus cultures rich in beta-galactosidase
US10624360B2 (en) Methods for reducing glycemic value of dairy compositions
EP0263700B2 (en) Method for producing oligosaccharides
Cruz et al. Production of transgalactosylated oligosaccharides (TOS) by galactosyltransferase activity from Penicillium simplicissimum
JP2023093593A (en) Method for producing galactooligosaccharide
JPH0522517B2 (en)
JPH02215392A (en) Production of galactooligosaccharide
KR20140012932A (en) Method for preparing galactooligosaccharide using lactobacillus extract and whey
JP3831075B2 (en) Method for modifying β-galactosidase
Ryabtseva et al. Biotechnology of lactulose production: progress, challenges, and prospects
RU2622078C1 (en) Method for combined enzyme beta-galactosidase production
JP2652049B2 (en) Method for producing galactooligosaccharide
WO2016190613A1 (en) Beta-galactosidase variant having high transglycosylation activity, and use thereof
JP2000041693A (en) Production of galactooligosaccharide
JPH07265066A (en) Peptone for culture medium for culturing microorganism
JP3556704B2 (en) β-galactosidase
JP3871371B2 (en) Method for producing sugar composition containing 3 'galactooligosaccharide
JPH0581235B2 (en)
JP2001292791A (en) Method for producing n-acetyllactosmine
JPH03216185A (en) Production of growth promoter of biffidobacterium
JPH02113867A (en) Preservation of sweetener
CN112980816A (en) Beta-galactosidase fermentation medium and preparation method and application thereof
JPS61289856A (en) Production of sweetener containing galacto-oligosaccharide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees