JPH0221531B2 - - Google Patents

Info

Publication number
JPH0221531B2
JPH0221531B2 JP55097470A JP9747080A JPH0221531B2 JP H0221531 B2 JPH0221531 B2 JP H0221531B2 JP 55097470 A JP55097470 A JP 55097470A JP 9747080 A JP9747080 A JP 9747080A JP H0221531 B2 JPH0221531 B2 JP H0221531B2
Authority
JP
Japan
Prior art keywords
circuit
signal
vortex
peak hold
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55097470A
Other languages
Japanese (ja)
Other versions
JPS5723820A (en
Inventor
Teruki Fukami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP9747080A priority Critical patent/JPS5723820A/en
Publication of JPS5723820A publication Critical patent/JPS5723820A/en
Publication of JPH0221531B2 publication Critical patent/JPH0221531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Description

【発明の詳細な説明】 この発明は検査中の渦流量計から得られる渦信
号の最大振幅と最小振幅の振幅比が所定の範囲内
にあるか否かを常に監視できるようにした渦流量
検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an eddy flow rate inspection method that enables constant monitoring of whether the amplitude ratio between the maximum amplitude and the minimum amplitude of the eddy signal obtained from the vortex flowmeter under inspection is within a predetermined range. Regarding equipment.

渦流量計の検査装置としては例えば基準湿式ガ
スメーター等の基準器を被検査渦流量計と同一流
路の途中に配設し流体を流通したときに被検査渦
流量計から得られる渦信号の周波数等を測定して
基準路の規定の流量値との比較から器差を求める
ものが一般的である。しかしながら渦流量計から
得られる渦信号は様々な要因により時間の経過に
伴なつて多少の振幅変動を有する場合がある。た
とえば製造上の欠陥、或いは検査装置に装着する
際の取付け不備等により異常に大きな振幅変動を
伴なうことがある。したがつて、この振幅変動が
大きいときは正常な検査状態でないか或いは被検
査渦流量計が不良品であるか等の場合であり、ま
た振幅変動が大きすぎるために最小振幅が測定器
のしきい値以下になると検査の際にミスカウント
を起こして誤つた検査結果を生ずることになる。
As a testing device for a vortex flowmeter, for example, a reference device such as a reference wet gas meter is placed in the same flow path as the vortex flowmeter to be tested, and the frequency of the vortex signal obtained from the vortex flowmeter to be tested is measured when fluid flows through the vortex flowmeter. Generally, the instrumental error is determined by measuring the flow rate of the flow rate, etc., and comparing it with the specified flow rate value of the reference path. However, the vortex signal obtained from the vortex flowmeter may have some amplitude fluctuation over time due to various factors. For example, abnormally large amplitude fluctuations may occur due to manufacturing defects or improper installation when mounting on an inspection device. Therefore, when this amplitude fluctuation is large, it means that the inspection condition is not normal or that the vortex flowmeter to be tested is defective. Also, because the amplitude fluctuation is too large, the minimum amplitude is beyond the capability of the measuring instrument. If it falls below the threshold, a miscount will occur during testing, resulting in erroneous test results.

このため従来は、検査の際にはたとえばオシロ
スコープなどを用いて検査時間中常に渦信号の振
幅変動を監視していた。
For this reason, conventionally, during inspection, amplitude fluctuations of the vortex signal have been constantly monitored using, for example, an oscilloscope during the inspection period.

しかしながら、振動変動の中には突発的に短時
間振幅が小さくなるような場合もあるので、人の
監視能力には限界があり、オシロスコープ等によ
つてこのような振幅変動を完全に視査する事は先
ず不可能である事から検査結果に誤差が含まれる
のを皆無にすることはできないばかりでなく、検
査者の労力は極めて大きく、またオシロスコープ
等の大型計器が検査の際に必要不可欠であるため
に検査装置全体の構成も大きくなつてしまう不都
合があつた。
However, as vibration fluctuations may suddenly decrease in amplitude for a short period of time, there are limits to human monitoring ability, and it is difficult to completely visually inspect such amplitude fluctuations using an oscilloscope, etc. Not only is it impossible to completely eliminate errors in the test results, but the labor required by the tester is extremely large, and large instruments such as oscilloscopes are indispensable for the test. Therefore, there was a problem that the overall configuration of the inspection device became large.

この発明は上述の不都合を解消するために成さ
れたもので、検査の際にオシロスコープ等の計器
を必要としない振幅変動監視回路を備えた渦流量
計検査装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned disadvantages, and an object of the present invention is to provide a vortex flowmeter inspection device equipped with an amplitude fluctuation monitoring circuit that does not require a measuring instrument such as an oscilloscope during inspection.

またこの発明の他の目的は検査時間中の渦信号
の振幅変動に対して検査者を介さず電気的に完全
な監視を行なうことにより誤差のない検査結果を
得ると共に検査者の負担を軽くして作業能率を向
上させることのできる渦流量計検査装置を提供す
ることである。
Another object of the present invention is to obtain error-free test results and lighten the burden on the tester by completely monitoring the amplitude fluctuations of the vortex signal during the test time without involving the tester. An object of the present invention is to provide a vortex flow meter inspection device that can improve work efficiency.

以下にこの発明の一実施例を図面と共に説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は一定流量を得るために音速ノズルを用
いた場合の渦流量計検査装置の全体構成を示すブ
ロツク図である。図中1は流路中に配置した被検
査渦流量計であり、この上流側にはエアフイルタ
ー2が設けてある。3は正確な一定の流量を得る
ことのできる基準流量部であり、たとえばそれぞ
れ異なる流量値を有する音速ノズル4が複数備え
てあり、必要に応じて選択できるようになつてい
る。5は真空ポンプを示し、前記エアフイルター
2、被検査渦流量計1および基準流量部3と同一
流路の下流側に配置されてこの流路内に流体を流
通させることができるようになつている。
FIG. 1 is a block diagram showing the overall configuration of a vortex flowmeter inspection device in which a sonic nozzle is used to obtain a constant flow rate. In the figure, reference numeral 1 denotes a vortex flowmeter to be inspected placed in the flow path, and an air filter 2 is provided on the upstream side of the vortex flowmeter. Reference numeral 3 denotes a reference flow rate section capable of obtaining an accurate constant flow rate, and includes, for example, a plurality of sonic nozzles 4 each having a different flow rate value, which can be selected as required. Reference numeral 5 denotes a vacuum pump, which is disposed on the downstream side of the same flow path as the air filter 2, the vortex flowmeter to be inspected 1, and the reference flow section 3, so that the fluid can flow through the flow path. There is.

7は制御部、8は渦信号を受けて流量値を計測
検査する検査部である。9はこの発明に於いて特
徴とする振幅変動監視部であり、検査時間中常に
該渦信号の振幅変動が所望の設定値を越えるか否
かを監視できるようになつている。
Reference numeral 7 indicates a control section, and 8 indicates an inspection section that receives the vortex signal and measures and inspects the flow rate value. Reference numeral 9 denotes an amplitude fluctuation monitoring section, which is a feature of the present invention, and is capable of constantly monitoring whether the amplitude fluctuation of the vortex signal exceeds a desired set value during the inspection period.

この振幅変動監視部9の具体的な構成の一例を
第2図に示す。図中10は全波整流回路であり
正、負に変化する交流渦信号の絶対値を出力する
ものである。11および12はそれぞれ第1およ
び第2のピークホールド回路でありセツト入力端
子11a,12aとセツト入力端子11b,12
bを備えている。13は第1のピークホールド回
路11の出力信号を所望の値に変換する変換回
路、14は所望の設定時間でセツト入力端子11
aに信号を出力するタイマー回路、15は渦信号
の振幅がゼロになつた時にリセツト入力端子12
bにリセツト信号を発生するゼロレベル検出回
路、16および17はそれぞれ第1および第2の
比較回路(コンパレータ)、18はAND回路、1
9はフリツプフロツプ回路である。
An example of a specific configuration of this amplitude fluctuation monitoring section 9 is shown in FIG. In the figure, numeral 10 is a full-wave rectifier circuit that outputs the absolute value of an alternating current vortex signal that changes from positive to negative. 11 and 12 are first and second peak hold circuits, respectively, and have set input terminals 11a, 12a and set input terminals 11b, 12.
It is equipped with b. 13 is a conversion circuit that converts the output signal of the first peak hold circuit 11 into a desired value, and 14 is a set input terminal 11 at a desired setting time.
15 is a timer circuit that outputs a signal to a, and 15 is a reset input terminal 12 when the amplitude of the vortex signal becomes zero.
b is a zero level detection circuit that generates a reset signal; 16 and 17 are first and second comparison circuits (comparators), respectively; 18 is an AND circuit;
9 is a flip-flop circuit.

上記振幅変動監視部9の作用を第3図および第
4図に示すタイムチヤートに基づき説明する。
The operation of the amplitude fluctuation monitoring section 9 will be explained based on the time charts shown in FIGS. 3 and 4.

入力した渦信号Aは全波整流回路10により整
流されて絶対値信号Bになる。検査を開始すると
リセツト信号Cがリセツト入力端子11bに加わ
り、それと同時にタイマー14が動作を開始す
る。このとき第1のピークホールド回路11の出
力信号Dは絶対値信号Bの波高値の変化に伴なつ
て、順次と最大の波高値に更新されていく。ここ
でタイマー14の作動後所定の時間t(例えば2
秒)経過すると、該出力信号Dは所定時間t内で
の最大の波高値VMに保持される。
The input vortex signal A is rectified by the full-wave rectifier circuit 10 and becomes an absolute value signal B. When the test is started, a reset signal C is applied to the reset input terminal 11b, and at the same time, the timer 14 starts operating. At this time, the output signal D of the first peak hold circuit 11 is sequentially updated to the maximum peak value as the peak value of the absolute value signal B changes. Here, a predetermined time t (for example, 2
seconds), the output signal D is maintained at the maximum peak value V M within the predetermined time t.

Eは第1のピークホールド回路の出力信号Dを
変換回路13に通して得られる比較信号であり、
許容できる最小と最大の渦信号の振幅比をRO
なわちVmin/Vmax=ROとするとき、VMO=VM
×ROのレベルに設定される。Fは第2のピーク
ホールド回路の出力信号であり、第1の比較回路
16の出力信号Gでセツトされ、ゼロレベル検出
回路15の出力信号Hでリセツトされて、その他
の時間中つまりリセツトが解除されてからセツト
されるまでの期間は絶対値信号Bに追従するため
図のような波形となる。Jは第2の比較回路17
の出力信号、KはAND回路18の出力信号、L
はフリツプフロツプ回路19の出力信号である。
E is a comparison signal obtained by passing the output signal D of the first peak hold circuit through the conversion circuit 13,
If the amplitude ratio of the minimum and maximum allowable vortex signals is R O , that is, Vmin/Vmax = R O , then V MO = V M
×R O level is set. F is the output signal of the second peak hold circuit, which is set by the output signal G of the first comparison circuit 16, reset by the output signal H of the zero level detection circuit 15, and is reset during other times, that is, the reset is released. During the period from when it is set to when it is set, it follows the absolute value signal B, so it has a waveform as shown in the figure. J is the second comparison circuit 17
, K is the output signal of the AND circuit 18, and L is the output signal of the AND circuit 18.
is the output signal of the flip-flop circuit 19.

ここでVMOは最大の波高値VMに対して許容で
きる最小の波高値であるから絶対値信号Bの各周
期に於ける波高値VMOよりも小さければ渦信号A
の振幅変動が異常であることになる。
Here, V MO is the minimum allowable peak value with respect to the maximum peak value V M , so if it is smaller than the peak value V MO in each period of the absolute value signal B, the vortex signal A
This means that the amplitude fluctuation is abnormal.

第4図において、第1の比較回路の出力信号G
は第2のピークホールド回路の出力信号Fが絶体
値信号Bの波高値を保持している期間を示し、ま
た第2の比較回路17の出力信号Jは、第2のピ
ークホールド回路の出力信号Fのレベルが比較信
号EのレベルVMOより低いことを示すから、第1
の比較回路の出力信号Gと第2の比較回路の出力
信号Jとを入力せしめるAND回路18の出力信
号Kは渦信号Aの振幅変動が異常であることを示
すのがわかる。またフリツプフロツプ回路の出力
信号Lは異常があつた場合に状態が変化すると共
にこれを記憶保持するものである。
In FIG. 4, the output signal G of the first comparison circuit
indicates the period during which the output signal F of the second peak hold circuit holds the peak value of the absolute value signal B, and the output signal J of the second comparison circuit 17 is the output signal F of the second peak hold circuit. Since the level of the signal F is lower than the level V MO of the comparison signal E, the first
It can be seen that the output signal K of the AND circuit 18 inputting the output signal G of the second comparison circuit and the output signal J of the second comparison circuit indicates that the amplitude fluctuation of the vortex signal A is abnormal. Further, the output signal L of the flip-flop circuit changes its state when an abnormality occurs and also stores and holds this state.

したがつて検査装置全体の作用としては、基準
流量部3の音速ノズル4のうち所望のものを選択
して流路を開き、真空ポンプ5で流路中に飽和状
態の流速で流体を通過させれば、このときの流量
は音速ノズルによつて定まり、正確な流量を知る
ことができるから、この流量を基準として検査を
行なうことができる。被検査渦流量計1からの渦
信号は検査部8で前記基準値と比較される。この
とき渦信号Aは振幅変動監視部9にも加えてある
ので、前述したように検査中は常に渦信号の振幅
変動が監視されている。
Therefore, the overall operation of the inspection device is to select a desired one of the sonic nozzles 4 of the reference flow section 3 to open the flow path, and to cause the fluid to pass through the flow path at a saturated flow rate using the vacuum pump 5. If so, the flow rate at this time is determined by the sonic nozzle, and since the accurate flow rate can be known, inspection can be performed using this flow rate as a reference. The vortex signal from the vortex flow meter 1 to be tested is compared with the reference value in the inspection section 8. At this time, since the vortex signal A is also added to the amplitude fluctuation monitoring section 9, the amplitude fluctuation of the vortex signal is constantly monitored during the inspection, as described above.

尚、上記実施例においては全波整流回路10を
設けてあるが、これを設けない構成とすることも
ある。また、第1のピークホールド回路の出力信
号が所定の時間内における最大の波高値を保持す
るように構成してあるが、タイマー回路14を設
けずに検査中はいつでもこれを更新できるような
構成としてもよい。さらにまた、ゼロレベル検出
回路15の入力には絶対値信号Bを加えてあるが
渦信号Aを直接入力してもよい。
Although the full-wave rectifier circuit 10 is provided in the above embodiment, a configuration may be adopted in which this is not provided. Further, although the output signal of the first peak hold circuit is configured to hold the maximum peak value within a predetermined time, the configuration is such that this can be updated at any time during the inspection without providing the timer circuit 14. You can also use it as Furthermore, although the absolute value signal B is added to the input of the zero level detection circuit 15, the vortex signal A may be directly input.

この発明によれば振幅変動監視回路を備えて渦
信号の振幅変動を自動的にモニターできるように
したので、オシロスコープを必要とせず、その分
場所をとらず検査装置を小型化できると共に、オ
シロスコープのような複雑な操作やブラウン管を
注視する作業が不必要となるから検査者の負担は
極めて軽い。また電気的に確実に渦信号の振幅変
動を監視できるようにしてあるのでミスカウント
による誤差の発生がないと共に、検査時の被検査
渦流量計の取付け不備等による誤操作を完全に防
止することができる。
According to this invention, since the amplitude fluctuation monitoring circuit is provided to automatically monitor the amplitude fluctuation of the eddy signal, an oscilloscope is not required, and the inspection equipment can be made smaller without taking up space. The burden on the examiner is extremely light because such complicated operations and the work of gazing at the cathode ray tube are no longer necessary. In addition, since the amplitude fluctuation of the vortex signal can be electrically monitored reliably, there is no error caused by miscounting, and it is possible to completely prevent erroneous operation due to improper installation of the vortex flowmeter to be inspected during inspection. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる渦流量計検査装置の
一実施例の全体構成を示すブロツク図、第2図は
振幅変動監視回路の具体的構成を示すブロツク
図、第3図および第4図は振幅変動監視回路の動
作を説明するためのタイムチヤートである。 1……被検査渦流量計、4……音速ノズル、5
……真空ポンプ、9……振幅変動監視部、11…
…第1のピークホールド回路、12……第2のピ
ークホールド回路、13……変換回路、16……
第1の比較回路、17……第2の比較回路。
FIG. 1 is a block diagram showing the overall configuration of an embodiment of the vortex flow meter inspection device according to the present invention, FIG. 2 is a block diagram showing the specific configuration of an amplitude fluctuation monitoring circuit, and FIGS. 3 and 4 are 3 is a time chart for explaining the operation of the amplitude fluctuation monitoring circuit. 1...Vortex flow meter to be inspected, 4...Sonic nozzle, 5
...Vacuum pump, 9...Amplitude fluctuation monitoring section, 11...
...First peak hold circuit, 12... Second peak hold circuit, 13... Conversion circuit, 16...
1st comparison circuit, 17... second comparison circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 基準流量で流通する気体流量を計測し、該計
測値と基準流量とを比較する渦流量計において、
該渦流量計から発信される渦信号を全波整流する
全波整流手段と、該全波整流信号の監視時間を定
めるタイマ回路と、該監視時間以内で全波整流信
号の最大値を保持する第1ピークホールド回路
と、該第1ピークホールド回路の記憶値に対し全
波整流信号の最小値の限界を定める変換回路と、
前記全波整流信号の半波信号毎に最大振幅値を保
持する第2ピークホールド回路と、該第2ピーク
ホールド回路の出力と全波整流信号とを比較し前
記第2ピークホールド回路をリセツトするリセツ
ト信号を発信する第1比較回路と、前記第2ピー
クホールド回路の出力と前記変換回路の出力とを
比較する第2比較回路と、該第2比較回路の出力
と前記第2ピークホールドの出力とが一致したと
き渦信号が異常であるという警報を発するフリツ
プフロツプ回路とで構成したことを特徴とする渦
流量計検査装置。
1. In a vortex flowmeter that measures the flow rate of gas flowing at a standard flow rate and compares the measured value with the standard flow rate,
full-wave rectifier means for full-wave rectifying the vortex signal transmitted from the vortex flowmeter; a timer circuit that determines a monitoring time for the full-wave rectified signal; and a timer circuit that maintains the maximum value of the full-wave rectified signal within the monitoring time. a first peak hold circuit; a conversion circuit that determines a minimum value limit of the full-wave rectified signal with respect to a stored value of the first peak hold circuit;
a second peak hold circuit that holds a maximum amplitude value for each half-wave signal of the full-wave rectified signal, and the output of the second peak hold circuit and the full-wave rectified signal are compared and the second peak hold circuit is reset. a first comparison circuit that transmits a reset signal; a second comparison circuit that compares the output of the second peak hold circuit with the output of the conversion circuit; and the output of the second comparison circuit and the output of the second peak hold. 1. A vortex flowmeter inspection device comprising a flip-flop circuit that issues an alarm that the vortex signal is abnormal when the vortex signals match.
JP9747080A 1980-07-18 1980-07-18 Testing device for vortex flow meter Granted JPS5723820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747080A JPS5723820A (en) 1980-07-18 1980-07-18 Testing device for vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9747080A JPS5723820A (en) 1980-07-18 1980-07-18 Testing device for vortex flow meter

Publications (2)

Publication Number Publication Date
JPS5723820A JPS5723820A (en) 1982-02-08
JPH0221531B2 true JPH0221531B2 (en) 1990-05-15

Family

ID=14193187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747080A Granted JPS5723820A (en) 1980-07-18 1980-07-18 Testing device for vortex flow meter

Country Status (1)

Country Link
JP (1) JPS5723820A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641781B2 (en) * 1985-10-08 1994-06-01 日産自動車株式会社 V-belt manufacturing method
US4910994A (en) * 1989-01-13 1990-03-27 Lew Hyok S Impulse sensor with calibration means
US5022257A (en) * 1989-01-13 1991-06-11 Lew Hyok S Impulse sensor with amplitude calibration means
US5215505A (en) * 1991-07-12 1993-06-01 Tsubakimoto Chain Co. Endless belt for variable ratio power transmission
JP2540908Y2 (en) * 1991-09-10 1997-07-09 株式会社椿本チエイン Friction transmission chain
JP3406283B2 (en) 2000-08-11 2003-05-12 本田技研工業株式会社 Belt for continuously variable transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255558A (en) * 1975-10-30 1977-05-07 Hokushin Electric Works Apparatus for compensating pulse signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255558A (en) * 1975-10-30 1977-05-07 Hokushin Electric Works Apparatus for compensating pulse signal

Also Published As

Publication number Publication date
JPS5723820A (en) 1982-02-08

Similar Documents

Publication Publication Date Title
US7478010B2 (en) Condition monitoring of electrical cables as installed in industrial processes
US6973413B2 (en) Instrument and process performance and reliability verification system
AU2013378754B2 (en) Process temperature transmitter with improved sensor diagnostics
JP4519463B2 (en) Diagnosis of piezoelectric sensors
WO1994011721A1 (en) System and method for testing the integrity of porous elements
JPH0221531B2 (en)
JPH07280603A (en) Abnormality decision method for machine
JP3169006B2 (en) Integrated circuit failure inspection apparatus, inspection method therefor, and recording medium recording control program therefor
JPH01131467A (en) Discrimination device for external noise in partial discharging measurement
JPS6272134A (en) Detection of needle track
JPH05133959A (en) Automatic continuous analyzer with alarm emitting function
JPS5899745A (en) Ion density measuring appatatus
SU1045178A1 (en) Integrated circuit contacting checking device
JPS58123472A (en) Semiconductor characteristics measuring apparatus
JPH04249335A (en) Probe inspection system
SU1129565A1 (en) Device for quantitative evaluation of variable resistor contacting quality
GB2212927A (en) Testing coils
JPS6057947A (en) Measuring apparatus for semiconductor
JPH0273166A (en) Electronic watt-hour meter
JPH04177855A (en) Method for inspecting integrated circuit device
JPS6228871B2 (en)
JPH03148070A (en) Apparatus for inspecting operating state of sensor
JPH04217117A (en) Method for diagnosing deterioration of proximity switch
JPH04268467A (en) Semiconductor inspector
JPS6093973A (en) Inspection apparatus of semiconductor testing apparatus