JPH02215203A - Magnetostatic wave - Google Patents

Magnetostatic wave

Info

Publication number
JPH02215203A
JPH02215203A JP3695689A JP3695689A JPH02215203A JP H02215203 A JPH02215203 A JP H02215203A JP 3695689 A JP3695689 A JP 3695689A JP 3695689 A JP3695689 A JP 3695689A JP H02215203 A JPH02215203 A JP H02215203A
Authority
JP
Japan
Prior art keywords
magnetic film
film
transducer
magnetostatic wave
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3695689A
Other languages
Japanese (ja)
Other versions
JP2638181B2 (en
Inventor
Osamu Igata
理 伊形
Keiichi Betsui
圭一 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1036956A priority Critical patent/JP2638181B2/en
Publication of JPH02215203A publication Critical patent/JPH02215203A/en
Application granted granted Critical
Publication of JP2638181B2 publication Critical patent/JP2638181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To control the pass band of a frequency without changing a transducer by arranging a metallic film with a size to cover the magnetic film in parallel to a face of the magnetic film opposite to the face with respect to the transducer. CONSTITUTION:A transducer 3 comprising microstrip lines 3a, 3b (electrode) is formed on a ceramic base 1 mounted on a brass block 2 and a magnetic film 5 is formed on the transducer 3 via a spacer 4. A spacer 6 with a size able to cover the entire face of the film 5 is provided on the film 6 and a metallic film 7 is formed on the spacer 6. The frequency pass band width is changed by varying an interval (t) between the spacer 6, i.e., the magnetic film 8 and the metallic film 7.

Description

【発明の詳細な説明】 〔概 要〕 マイクロ波帯の共振器やフィルタ等に使用する静磁波デ
バイスに関し、 トランスデユーサを変えることなく周波数の通過帯域幅
を制御可能としたことを目的とし、誘電体基板上に形成
したトランスデユーサ上の磁性膜に外部磁界を与えなが
ら該トランスデユーサからマイクロ波信号を印加したと
き、該磁性膜で発生し且つ該磁性膜中を伝播する静磁波
を利用する静磁波デバイスであって、上記磁性膜のトラ
ンスデユーサに対する面の反対面側に、該磁性膜をカバ
ーするに足る大きさの金属膜を該磁性膜と平行に配置し
て構成する。
[Detailed Description of the Invention] [Summary] The present invention aims to make it possible to control the frequency passband width without changing the transducer in magnetostatic wave devices used in microwave band resonators, filters, etc. When a microwave signal is applied from the transducer while applying an external magnetic field to the magnetic film on the transducer formed on the dielectric substrate, the magnetostatic waves generated in the magnetic film and propagating in the magnetic film are The magnetostatic wave device to be utilized is constructed by arranging a metal film large enough to cover the magnetic film in parallel with the magnetic film on the side opposite to the surface of the magnetic film facing the transducer.

〔産業上の利用分野〕[Industrial application field]

本発明はマイクロ波帯の共振器やフィルタ等に使用する
高周波発振器に係り、特にトランスデユーサ′を変える
ことなく周波数の通過帯域幅を制御可能として生産性の
向上を図った静磁波デバイスに関する。
The present invention relates to a high-frequency oscillator used in a microwave band resonator, filter, etc., and particularly to a magnetostatic wave device that can control the frequency passband width without changing the transducer and improves productivity.

近年のデータ伝送の大容量化や高速化に伴って、GHz
帯の共振器やフィルタ、遅延線等の開発が急ピッチで進
んでいるが、特に発振器としての静磁波デバイスはGH
z帯で良好な特性を示すと共に外部磁界を変化させるこ
とによって極めて広い範囲で周波数や遅延時間等が変え
られる特徴があるため多く使用されている。
With the increase in capacity and speed of data transmission in recent years, GHz
Development of GH band resonators, filters, delay lines, etc. is progressing at a rapid pace, but magnetostatic wave devices used as oscillators in particular are
It is widely used because it shows good characteristics in the z-band and has the feature that the frequency, delay time, etc. can be changed over an extremely wide range by changing the external magnetic field.

〔従来の技術〕[Conventional technology]

゛第3図は従来の静磁波デバイスの一例を示す図であり
、第4図は第3図における通過域幅を示す図である。
3 is a diagram showing an example of a conventional magnetostatic wave device, and FIG. 4 is a diagram showing the passband width in FIG. 3.

静磁波デバイスの斜視断面を示す第3図で、1は例えば
真鍮ブロック2上に装着されているアルミナの如きセラ
ミック基板であり、3は該基板1の表面に形成されてい
るトランスデユーサを示している。
In FIG. 3 showing a perspective cross section of a magnetostatic wave device, 1 is a ceramic substrate such as alumina mounted on a brass block 2, and 3 is a transducer formed on the surface of the substrate 1. ing.

特に該トランスデユーサ3は厚さ数μm程度の金(Au
)薄膜よりなる50Ωマイクロストリツプライン3a、
3b  (電極)で構成されており、例えば図の場合に
は3aを信号入力側とし、3bを信号出力側としている
In particular, the transducer 3 is made of gold (Au) with a thickness of several μm.
) 50Ω microstrip line 3a made of thin film,
3b (electrodes); for example, in the case of the figure, 3a is the signal input side and 3b is the signal output side.

また、厚さ300 B ta程度のガラスからなるスペ
ーサ4を介して上記トランスデユーサ3上に配設したバ
ルク状の磁性膜5は、イツトリウム・鉄・ガーネット(
Y I G)からなるものである。
Further, the bulk magnetic film 5 disposed on the transducer 3 via a spacer 4 made of glass with a thickness of about 300 Bta is made of yttrium, iron, garnet (
Y I G).

ここで上記マイクロストリップライン電極3aから周波
数がGHz帯のマイクロ波信号を投入すると共に外部磁
界を付与すると、該電極3aに電流が流れて磁界が励起
され、更に上記磁性膜5の内部でスピンの歳差運動のゆ
らぎが発生して図示矢印Aの如くマイクロストリップラ
イン電極3bに向かう方向に静磁波が伝播する。
Here, when a microwave signal having a frequency in the GHz band is inputted from the microstrip line electrode 3a and an external magnetic field is applied, a current flows through the electrode 3a, a magnetic field is excited, and further spins are generated inside the magnetic film 5. Precessional fluctuations occur, and a static magnetic wave propagates in a direction toward the microstrip line electrode 3b as shown by arrow A in the figure.

かかる構成になる静磁波デバイスでは、共振周波数は外
部磁界のかける方向等を変えることによって変化させる
ことができるが、該磁性膜5の内部をバスする周波数帯
域は磁性膜5の種類や上記トランスデユーサ3の設計条
件によって決定されるものであるため該静磁波デバイス
が完成した後には周波数通過域幅を所要に合わせて拡大
することができない。
In a magnetostatic wave device having such a configuration, the resonant frequency can be changed by changing the direction of applying an external magnetic field, etc., but the frequency band that busses inside the magnetic film 5 depends on the type of the magnetic film 5 and the above-mentioned transducer. Since it is determined by the design conditions of the user 3, the frequency passband width cannot be expanded as required after the magnetostatic wave device is completed.

第4図は、中心周波数10.5 GHzのマイクロ波信
号を投入したときの上記パス・バンドの実験例を示した
ものであり、横軸を周波数GH2でまた縦軸を挿入損失
dBでそれぞれ表わしている。
Figure 4 shows an experimental example of the above pass band when a microwave signal with a center frequency of 10.5 GHz is input, with the horizontal axis representing the frequency GH2 and the vertical axis representing the insertion loss dB. ing.

図では、ピーク点pから3dBダウンした位置すなわち
約7dB位置での通過域幅Wがほぼ30MHzであるこ
とを示している。
The figure shows that the passband width W at a position 3 dB down from the peak point p, that is, at a position of about 7 dB, is approximately 30 MHz.

一方、静磁波デバイスを使用する場合に上記の通過域幅
Wを拡げたい場合がある。
On the other hand, when using a magnetostatic wave device, there are cases where it is desired to widen the above-mentioned passband width W.

しかしかかる場合には、上述の如く磁性膜5の種類やト
ランスデユーサ3の設計条件等まで変えなければならず
、結果的に該静磁波デバイスを設計し直すことになって
効率的な面から好ましくない。
However, in such a case, it is necessary to change the type of magnetic film 5, the design conditions of the transducer 3, etc. as described above, and as a result, the magnetostatic wave device has to be redesigned, which reduces efficiency. Undesirable.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

従来の構成になる静磁波デバイスでは、周波数通過域幅
の制御が容易でないと言う問題があった。
A conventional magnetostatic wave device has a problem in that it is not easy to control the frequency passband width.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、誘電体基板上に形成したトランスデユー
サ上の磁性膜に外部磁界を与えながら該トランスデユー
サからマイクロ波信号を印加したとき、該磁性膜で発生
し且つ該磁性膜中を伝播する静磁波を利用する静磁波デ
バイスであって、上記磁性膜のトランスデユーサに対す
る面の反対面側に、該磁性膜をカバーするに足る大きさ
の金属膜を該磁性膜と平行に配置してなる静磁波デバイ
スによって解決される。
The above problem occurs when a microwave signal is applied from a transducer while applying an external magnetic field to a magnetic film on a transducer formed on a dielectric substrate. A magnetostatic wave device that utilizes propagating magnetostatic waves, in which a metal film large enough to cover the magnetic film is arranged parallel to the magnetic film on the opposite side of the surface of the magnetic film facing the transducer. The problem is solved by a magnetostatic wave device.

〔作 用〕[For production]

磁性膜のトランスデユーサと反対側の全面に金属膜を設
けると、該静磁波デバイスの周波数通過域幅を拡大する
ことができると共に上記磁性膜と該金属膜間の間隔によ
って該通過域幅を制御することができる。
By providing a metal film on the entire surface of the magnetic film opposite to the transducer, the frequency passband width of the magnetostatic wave device can be expanded, and the passband width can be increased by the spacing between the magnetic film and the metal film. can be controlled.

本発明では磁性膜のトランスデユーサと反対側の面会面
に、直接またはスペーサを介して金属膜を設けるように
構成している。
In the present invention, a metal film is provided directly or via a spacer on the facing surface of the magnetic film on the side opposite to the transducer.

従って、磁性膜やトランスデユーサを変更することなく
周波数通過域幅の拡大に対処し、または該通過域幅が制
御できる静磁波デバイスを容易に得ることができる。
Therefore, it is possible to easily obtain a magnetostatic wave device in which the frequency passband width can be expanded or the passband width can be controlled without changing the magnetic film or the transducer.

〔実施例] 第1図は本発明になる静磁波デバイスの構成例を示す図
であり、第2図は通過域幅の変化を説明する図である。
[Example] FIG. 1 is a diagram showing a configuration example of a magnetostatic wave device according to the present invention, and FIG. 2 is a diagram illustrating changes in passband width.

第3図同様に静磁波デバイスの斜視断面を示す第1図で
、1が例えば真鍮ブロック2上に装着されたアルミナの
如きセラミック基板であり、3が該基板1上の50Ωマ
イクロストリツプライン3a、3b (電極)で構成さ
れたトランスデユーサを示し、またYIGからなるバル
ク状の磁性膜5が厚さ300μm程度のガラスからなる
スペーサ4上に配設されていることは第3図と同様であ
る。
FIG. 1 shows a perspective cross section of the magnetostatic wave device similarly to FIG. , 3b (electrodes), and the bulk magnetic film 5 made of YIG is disposed on the spacer 4 made of glass with a thickness of about 300 μm, which is the same as in FIG. 3. It is.

更に、6は該磁性膜5の全面をカバーする大きさで核部
に添着された厚さtμmのガラス等からなるスペーサを
示し、該スペーサ6の露出面には厚さ0.5μm程度の
金(Au)等よりなる金属膜7が形成されている。
Further, reference numeral 6 indicates a spacer made of glass or the like with a thickness of t μm and attached to the core portion with a size that covers the entire surface of the magnetic film 5. The exposed surface of the spacer 6 is made of gold with a thickness of about 0.5 μm. A metal film 7 made of (Au) or the like is formed.

かかる構成になる静磁波デバイスでは、上記スペーサ6
の厚さすなわち磁性膜5と金属膜7との間の間隔tによ
って周波数通過域幅を変化させることができる。
In a magnetostatic wave device having such a configuration, the spacer 6
The frequency pass band width can be changed depending on the thickness of the magnetic film 5, that is, the distance t between the magnetic film 5 and the metal film 7.

第2図は第4図の場合と同じ条件、すなわち中心周波数
10.5 GHzのマイクロ波信号を投入したときの実
験結果を示したもので、第4図同様に横軸は周波数を縦
軸は挿入損失を表わしている。
Figure 2 shows the experimental results under the same conditions as in Figure 4, that is, when a microwave signal with a center frequency of 10.5 GHz was input.As in Figure 4, the horizontal axis represents the frequency and the vertical axis represents the frequency. It represents insertion loss.

特に図で、(a)はスペーサ6の厚さすなわちCd性膜
5と金属膜7との間の間隔りが1000μmの場合を、
また(b)はtが500μmの場合を、更に(c)はt
が零すなわちスペーサ6を介することなく磁性膜5上に
直接金(Au)薄膜の金属膜7を形成した場合をそれぞ
れ示している。
In particular, in the figure, (a) shows the case where the thickness of the spacer 6, that is, the distance between the Cd film 5 and the metal film 7, is 1000 μm.
Also, (b) shows the case where t is 500 μm, and (c) shows the case where t
The figures show the case where the metal film 7 is zero, that is, the thin metal film 7 of gold (Au) is formed directly on the magnetic film 5 without using the spacer 6.

この場合、ピーク点から3dBダウンさせた位置すなわ
ち約7dB位置での3dB通過域幅Wは、(a)のとき
をW、 とした、とW +  = 50 M Ilzと
なり、(b)の場合をW2としたとWz =100 M
tlz、 (c)の場合でW3 =200 MHz程度
となり、該スペーサ6の厚さtによって上記通過域幅W
が制御できることが分かる。
In this case, the 3 dB passband width W at a position 3 dB down from the peak point, that is, at a position of about 7 dB, is W in case (a), and W + = 50 M Ilz, and in case (b), When set to W2, Wz = 100 M
In the case of tlz, (c), W3 = about 200 MHz, and the above-mentioned passband width W is determined by the thickness t of the spacer 6.
It turns out that it can be controlled.

逆に、所定の3dB通過域幅Wを知ることによって磁性
膜5と金属膜7との間の間隔すなわちスペーサ6の厚さ
tが決定される。
Conversely, by knowing the predetermined 3 dB passband width W, the distance between the magnetic film 5 and the metal film 7, that is, the thickness t of the spacer 6 is determined.

従って、上記の磁性膜5やトランスデユーサ3の如く設
計基本に関与する条件を変えることなく、周波数の通過
域幅Wを所定の値に制御できる静磁波デバイスを容易に
得ることができる。
Therefore, it is possible to easily obtain a magnetostatic wave device in which the frequency passband width W can be controlled to a predetermined value without changing the conditions related to the design basics such as the above-mentioned magnetic film 5 and transducer 3.

なお、上記の金(Au)Ft[膜の代わりにアルミニウ
ム(A2)よりなる金属膜7を使用しても同じ効果が得
られることを実験的にra認している。
It has been experimentally confirmed that the same effect can be obtained even if a metal film 7 made of aluminum (A2) is used instead of the gold (Au)Ft film described above.

第1図は本発明になる静磁波デバイスの構成例を示す図
、 第2図は通過域幅の変化を説明する図、第3図は従来の
静磁波デバイスの一例を示す図、第4図は第3図におけ
る通過域幅を示す図、である。図において、 1はセラミック基板、  2は真鍮ブロック、3はトラ
ンスデユーサ、 3a、3bはマイクロストリップライン、4.6はスペ
ーサ、   5は磁性膜、7は金属膜、 をそれぞれ表わす。
FIG. 1 is a diagram showing an example of the configuration of a magnetostatic wave device according to the present invention, FIG. 2 is a diagram explaining changes in pass band width, FIG. 3 is a diagram showing an example of a conventional magnetostatic wave device, and FIG. is a diagram showing the passband width in FIG. 3. In the figure, 1 is a ceramic substrate, 2 is a brass block, 3 is a transducer, 3a and 3b are microstrip lines, 4.6 is a spacer, 5 is a magnetic film, and 7 is a metal film.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明により、トランスデユーサを変えるこ
となく周波数の通過域幅が制御できる静磁波デバイスを
提供することができる。
As described above, according to the present invention, it is possible to provide a magnetostatic wave device whose frequency passband width can be controlled without changing the transducer.

【図面の簡単な説明】[Brief explanation of the drawing]

」波敢GHz ” Wave GHz

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体基板上に形成したトランスデューサ上の磁
性膜に外部磁界を与えながら該トランスデューサからマ
イクロ波信号を印加したとき、該磁性膜で発生し且つ該
磁性膜中を伝播する静磁波を利用する静磁波デバイスで
あって、 上記磁性膜のトランスデューサに対する面の反対面側に
、該磁性膜をカバーするに足る大きさの金属膜を該磁性
膜と平行に配置してなることを特徴とした静磁波デバイ
ス。
(1) When a microwave signal is applied from a magnetic film on a transducer formed on a dielectric substrate while applying an external magnetic field, the magnetostatic waves generated in the magnetic film and propagated in the magnetic film are used. A magnetostatic wave device, characterized in that a metal film having a size sufficient to cover the magnetic film is arranged parallel to the magnetic film on the side opposite to the surface of the magnetic film facing the transducer. Magnetostatic wave device.
(2)前記磁性膜と金属膜との間に、所定厚さのスペー
サを介在させてなることを特徴とした請求項1記載の静
磁波デバイス。
(2) The magnetostatic wave device according to claim 1, further comprising a spacer having a predetermined thickness interposed between the magnetic film and the metal film.
JP1036956A 1989-02-16 1989-02-16 Magnetostatic device Expired - Fee Related JP2638181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036956A JP2638181B2 (en) 1989-02-16 1989-02-16 Magnetostatic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036956A JP2638181B2 (en) 1989-02-16 1989-02-16 Magnetostatic device

Publications (2)

Publication Number Publication Date
JPH02215203A true JPH02215203A (en) 1990-08-28
JP2638181B2 JP2638181B2 (en) 1997-08-06

Family

ID=12484198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036956A Expired - Fee Related JP2638181B2 (en) 1989-02-16 1989-02-16 Magnetostatic device

Country Status (1)

Country Link
JP (1) JP2638181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382906U (en) * 1989-12-14 1991-08-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523661A (en) * 1978-08-09 1980-02-20 Univ Osaka Thin film magnetic substance multi-layer magnetic static wave delay element different in saturated magnetization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523661A (en) * 1978-08-09 1980-02-20 Univ Osaka Thin film magnetic substance multi-layer magnetic static wave delay element different in saturated magnetization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382906U (en) * 1989-12-14 1991-08-23

Also Published As

Publication number Publication date
JP2638181B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US6215375B1 (en) Bulk acoustic wave resonator with improved lateral mode suppression
JPS61191101A (en) Filter
JPH0435108A (en) Ultra thin plate multiple mode crystal filter element
JPH11340775A (en) Piezoelectric oscillator
JP2644855B2 (en) Elastic wave filter and antenna duplexer using the same
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPH01236724A (en) Chip for magnetostatic wave element and magnetostatic wave element
JPH02215203A (en) Magnetostatic wave
JPH0230208A (en) Magnetostatic wave band pass filter
US3544926A (en) Monolithic crystal filter having mass loading electrode pairs having at least one electrically nonconductive electrode
US4998080A (en) Microwave channelizer based on coupled YIG resonators
JPH10308611A (en) High frequency circuit element
US5189383A (en) Circuit element utilizing magnetostatic wave
JPH09238002A (en) Microstrip filter and its center frequency adjustment method
US5017896A (en) Mode trapped magnetostatic wave (MSW) filters and channelizer formed therefrom
RU210122U1 (en) SPACE-FREQUENCY FILTER ON MAGNETOSTATIC WAVES
US5057800A (en) Apparatus and method for diffracting MSW in a garnet film using SAW
JP2595716B2 (en) Magnetostatic device
JP2002368573A (en) Superthin sheet piezoelectric vibrator and production method therefor
JP3360961B2 (en) Surface acoustic wave device and its frequency characteristic adjusting method
JPH04115702A (en) Magnetostatic wave element
JPS59121903U (en) ultra high frequency filter
JPH05226910A (en) Magnetostatic wave resonator
JPH09148879A (en) Surface acoustic wave device
JPH0258401A (en) Ferrimagnetic substance thin film filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees