JPH02214158A - Infrared image sensor device - Google Patents

Infrared image sensor device

Info

Publication number
JPH02214158A
JPH02214158A JP1035424A JP3542489A JPH02214158A JP H02214158 A JPH02214158 A JP H02214158A JP 1035424 A JP1035424 A JP 1035424A JP 3542489 A JP3542489 A JP 3542489A JP H02214158 A JPH02214158 A JP H02214158A
Authority
JP
Japan
Prior art keywords
dewar
semiconductor substrate
image sensor
infrared image
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1035424A
Other languages
Japanese (ja)
Other versions
JP2629942B2 (en
Inventor
Masaaki Kimata
雅章 木股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1035424A priority Critical patent/JP2629942B2/en
Publication of JPH02214158A publication Critical patent/JPH02214158A/en
Application granted granted Critical
Publication of JP2629942B2 publication Critical patent/JP2629942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance a cooling efficiency by a method wherein a coefficient of thermal expansion at least at a heat-conducting part of a Dewar wall and that at a semiconductor substrate are made mutually close values and the heat- conducting part and the semiconductor substrate are fixed and bonded directly. CONSTITUTION:A material for a tube part 1a of a Dewar 1 whose coefficient of linear expansion as a coefficient of thermal expansion is close to a value of the coefficient of linear expansion of a semiconductor substrate 6 is selected; a first main face 6a of the semiconductor substrate 6 is fixed and bonded directly to the inside at the U-shaped upper end of the tube part 1a of the Dewar 1. Accordingly, heat generated from an infrared image sensor 5 is conducted directly to a contact face, i.e., a heat-conducting part 14, at the U-shaped upper end of the tube part 1a of the Dewar 1 from the first main face 6a of the semiconductor substrate 6; the heat is dissipated from a cooling head 3; a heat resistance between the infrared image sensor 5 and a cooling head 3 is reduced; a contact area between the semiconductor substrate 6 and the Dewar 1 is increased. Thereby, a cooling efficiency of the infrared image sensor 5 can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデユワ内に収容された赤外線イメージセンサ
の発熱を上記デユワの外部から冷却する方式の赤外線イ
メージセンサ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared image sensor device in which heat generated by an infrared image sensor housed in a deyuwa is cooled from the outside of the deyuwa.

〔従来の技術〕[Conventional technology]

赤外線イメージセンサのうち、例えばショットキバリア
光検出素子を用いたものなどは、その半導体基板が赤外
線を透過させるので、この性質を利用して受光素子等が
形成された半導体基板の表面側とは反対の裏面側から赤
外線を入射するタイプのものがある。第3図はこの種、
従来の裏面入射形の赤外線イメージセンサ装置の内部構
造を示す断面図である0図において、(1)は内部を真
空に保持したデユワで、管部(!a)とその上端に形成
され赤外線(2)を入射させるための窓部(1b)とか
らなり、この管部(Ia)にはガラス等種々な材料が採
用され、窓部(Ib)は赤外線(21が透過可能なGe
(ゲルマニウム)等で製作される。そして、管部(la
)の四部には液化窒素冷却器、ジュール・トムソン冷却
器、またはスターリングサイクル冷却器等の冷却tll
楕としての冷却ヘッド(31が挿入され、後述するイメ
ージセンサの冷却を担っている。に)はベース部(4a
)とこのベース部(4a)と一体になった支持部(4b
)とからなるセラミックパッケージで、例えばアルミナ
材が使用され、そのベース部(4a)がデユワ(1)の
管部(1a)の凹部上端の内面に固着されている。(5
)はその周縁がセラミックパッケージは)の支持部(4
b)に固着されてデユワ(1)内に取付けられた赤外線
イメージセンサで、(6)はその半導体基板である。 
<6a)は半導体基板(6)の表面側である第1主面で
、ここに赤外線受光素子とこの赤外線受光素子からの信
号を読み出す読み出し機構く例えばCCD (Char
ge Coupled Device))が形成されて
いる。そi〜て、(6b)は半導体基板(6)の裏面側
である第2主面で、赤外線(2)は先ず窓部(lb)を
透過してデユワ(17内に入り、更に、この第2主面(
6b)に入射して半導体基板(6)を透過し第1主面(
6a)に形成された赤外線受光素子等に到達する訳であ
る。
Among infrared image sensors, for example, those using a Schottky barrier photodetection element, the semiconductor substrate transmits infrared rays, so this property is used to make a sensor that is opposite to the front side of the semiconductor substrate on which the light receiving element etc. are formed. There is a type that allows infrared rays to enter from the back side. Figure 3 shows this species.
In Figure 0, which is a cross-sectional view showing the internal structure of a conventional back-illuminated infrared image sensor device, (1) is a dewar whose interior is kept in a vacuum, and is formed at the tube part (!a) and its upper end to emit infrared light (! The tube part (Ia) is made of various materials such as glass, and the window part (Ib) is made of Ge, which can transmit infrared rays (21).
(germanium) etc. And the pipe part (la
) is a cooling unit such as a liquefied nitrogen cooler, Joule-Thomson cooler, or Stirling cycle cooler.
The cooling head as an ellipse (31 is inserted and is responsible for cooling the image sensor described later) is attached to the base part (4a).
) and a support part (4b) integrated with this base part (4a).
), for example, alumina material is used, and the base portion (4a) thereof is fixed to the inner surface of the upper end of the concave portion of the tube portion (1a) of the dewar (1). (5
) is the support part (4) of the ceramic package whose periphery is
b) is an infrared image sensor fixedly attached in the dewar (1), and (6) is its semiconductor substrate.
<6a) is the first main surface which is the front side of the semiconductor substrate (6), and there is an infrared light receiving element and a readout mechanism for reading out signals from the infrared light receiving element, for example, a CCD (Char
ge Coupled Device)) is formed. Then, (6b) is the second main surface which is the back side of the semiconductor substrate (6), and the infrared rays (2) first pass through the window (lb), enter the dewar (17), and then enter this Second principal surface (
6b), passes through the semiconductor substrate (6), and enters the first principal surface (
The light reaches the infrared light receiving element formed in 6a).

(7)はセラミックパッケージ(4)の内面側に形成さ
れた内部金属リードで、金属配線(8)によって赤外線
イメージセンサ((5)に形成された回路と電気的に接
続されている。(9)は赤外線イメージセンサ(5)か
らの出力を引出すなめセラミックパッケージ(4)の外
面側に形成された外部金属リード、00)は管部(la
)の内面に固着された中継用金属リード、(11)はデ
ユワ(1)内のイメージセンサ(5)の出力信号を大気
中へ取出すための電極、(+2) (13)は上記各金
属り一ドT91 QOIおよび電極(11)相互間を電
気的に接続する金属配線である。
(7) is an internal metal lead formed on the inner surface of the ceramic package (4), and is electrically connected to the circuit formed on the infrared image sensor ((5)) via metal wiring (8). (9) ) is an external metal lead formed on the outer surface of the ceramic package (4) for drawing out the output from the infrared image sensor (5), and 00) is the tube part (la
), (11) is an electrode for extracting the output signal of the image sensor (5) in the dewar (1) into the atmosphere, (+2) (13) is the metal lead for each of the above. T91 is a metal wiring that electrically connects the QOI and the electrode (11).

なお、第3図に示すように、赤外線イメージセンサ(5
)をセラミックパッケージ(/11を介してデユワ(1
)の管部(1a)に固定するようにしたのは、管部(I
a)の材料が種々異なることを考慮し、温度昇降のピー
l−サイクルによる赤外線イメージセンサ(5)に発生
する機械的ストレスを一段的に抑制してその信頼性の向
上を図るためである。従って、赤外線イメージセンサ(
51からの発熱はセラミックパッケージ(4)を経°〔
そのベース部(4a)からデユワ(1)の管部(1a)
の凹部の底を熱伝導で伝わり、上記四部に挿入された冷
却ヘッド(3)によりデユワ(1)外へ放散されること
になる。
In addition, as shown in Fig. 3, an infrared image sensor (5
) via a ceramic package (/11)
) is fixed to the pipe part (1a) of the pipe part (I).
This is to further suppress the mechanical stress generated in the infrared image sensor (5) due to the peel cycle of temperature rise and fall, and to improve its reliability, taking into account that the materials in a) are different. Therefore, the infrared image sensor (
The heat generated from 51 passes through the ceramic package (4) [
From the base part (4a) to the pipe part (1a) of the deyuwa (1)
The heat is transmitted through the bottom of the concave part by conduction, and is radiated out of the dewar (1) by the cooling head (3) inserted in the four parts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の赤外線イメージセンサ装置は以上のように構成さ
れているめで、赤外線イメージセンサ((5)からの発
熱はセラミックパッケージ(4)およびデユワ(1)の
壁を経て冷却ヘッド(3)に至るので、それだけ熱抵抗
が大きくなり、また、半導体基板(6)の周縁のみを支
持部(4b)に固着しているので、この点からも温度勾
配が増大し、赤外線イメージセンサ((5)の効率のよ
い冷却を実現する上で問題があった。
The conventional infrared image sensor device is configured as described above, and the heat generated from the infrared image sensor (5) reaches the cooling head (3) through the walls of the ceramic package (4) and dewar (1). , the thermal resistance increases accordingly, and since only the peripheral edge of the semiconductor substrate (6) is fixed to the support part (4b), the temperature gradient also increases from this point, which reduces the efficiency of the infrared image sensor ((5). There was a problem in achieving good cooling.

この発明は以上にような問題点を解消するためになされ
たもので、赤外線イメージセンサ(5]の機械的ス1ヘ
レスを増大させることなく、赤外線イメージセンサ(5
1とデユワ(1)外の冷却ヘッド(3)との間の熱抵抗
を低減して赤外線イメージセンサ(5]の効率的な冷却
が可能となる赤外線イメージセンサ装置を得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and it is possible to improve the infrared image sensor (5) without increasing the mechanical stress of the infrared image sensor (5).
An object of the present invention is to obtain an infrared image sensor device that can efficiently cool an infrared image sensor (5) by reducing the thermal resistance between the cooling head (3) outside the dewar (1) and the cooling head (3) outside the dewar (1).

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る赤外線イメージセンサ装置は、デユワ壁
の少なくとも冷却機構への熱流路となる熱伝導部分を、
半導体基板の熱膨張係数に近い熱膨張係数を有する材料
で構成するとともに、上記半導体基板の表面と上記デユ
ワ壁の熱伝導部分とを固着したものである。
The infrared image sensor device according to the present invention includes at least a heat conductive portion of the dewar wall that serves as a heat flow path to the cooling mechanism.
It is constructed of a material having a coefficient of thermal expansion close to that of the semiconductor substrate, and the surface of the semiconductor substrate and the thermally conductive portion of the dewar wall are fixed to each other.

また、今一つの発明のものは、半導体基板とデユワ壁の
熱伝導部分との間に両者の熱膨張係数の中間の熱膨張係
数を有する材料からなるバッファ材料を介在させて、上
記半導体基板の表面と」二記デユワ壁の熱伝導部分とを
固着したものである。
Further, in another aspect of the invention, a buffer material made of a material having a thermal expansion coefficient intermediate between the thermal expansion coefficients of the semiconductor substrate and the thermally conductive portion of the dewar wall is interposed between the semiconductor substrate and the thermally conductive portion of the dewar wall. and the heat conductive portion of the dewar wall.

〔作  用〕[For production]

赤外線イメージセンサで発生した熱は、その半導体基板
から直接デユワ壁に伝わり、そこから冷却機構を経てデ
ユワ外へ放散されるので、この間の熱抵抗が低減する。
Heat generated by the infrared image sensor is transmitted directly from the semiconductor substrate to the dewar wall, and is then dissipated to the outside of the dewar through the cooling mechanism, reducing thermal resistance during this time.

ヒー)・サイクルに対しても半導体基板とデユワ壁の熱
伝導部分との熱膨張係数が近い値であるので、イメージ
センサの機械的ストレスが抑制される。
Since the thermal expansion coefficients of the semiconductor substrate and the thermally conductive portion of the dewar wall are close to each other even during the heat cycle, mechanical stress on the image sensor is suppressed.

また、半導体基板とデユワ壁の熱伝導部分との間に所定
のバッファ材料を介在させたものでは、ヒートサイクル
によるイメージセンナの機械的ストレスが一層低く抑制
される。
Further, in the case where a predetermined buffer material is interposed between the semiconductor substrate and the thermally conductive portion of the dewar wall, the mechanical stress of the image sensor due to the heat cycle can be further suppressed.

〔実 施 例〕〔Example〕

第1図はこの発明の一実施例における裏面入射形の赤外
線イメージセンサ装置の内部構造を示す断面図である0
図において、(1)ないしく13)は従来と同一または
相当部分を示す、但し、デユワ(1)の管部(la)の
材料は、コバールやガラス等、熱膨張係数としての線膨
張率(室温付近での値で示す。
FIG. 1 is a sectional view showing the internal structure of a back-illuminated infrared image sensor device according to an embodiment of the present invention.
In the figure, (1) to 13) indicate the same or equivalent parts as before. However, the material of the tube part (la) of the deyuwa (1) is Kovar, glass, etc., and the linear expansion coefficient (thermal expansion coefficient) Shown as values near room temperature.

以下同じ)が5〜7XlO−6X℃と、シリコンからな
る半導体基板(6)の線膨張率2〜3 X to−’/
’Cに近い値のものが選択されている。そして、半導体
基板(6)の第1主面(6a)が直接デユワ(1)の管
部(Ia)の凹部上端の内面に固着されている。従って
、セラミックパッケージ(4)は従来の支持部(4b)
に相当する部分のみからなっており、従来のベース部(
4a)は使用されていない。
The same applies hereinafter) is 5 to 7XlO-6X℃, and the linear expansion coefficient of the semiconductor substrate (6) made of silicon is 2 to 3
'A value close to C is selected. The first principal surface (6a) of the semiconductor substrate (6) is directly fixed to the inner surface of the upper end of the concave portion of the tube portion (Ia) of the dewar (1). Therefore, the ceramic package (4) has a conventional support part (4b).
It consists only of the part corresponding to the conventional base part (
4a) is not used.

この結果、赤外線イメージセンサ(5)からの発熱は、
その半導体基板(6)の第1主面(6a)から直接デユ
ワ(1)の管部(la)凹部上端の接触面即ち熱伝導部
分く14)に伝わり、冷却ヘッド(31から放散される
ので、赤外線イメージセンサ(5)と冷却ヘッド(3)
との間の熱抵抗が大幅に低減され、半導体基板(6)と
デユワ(1)との接触面積も増大し、赤外線イメージセ
ンサ(5)の冷却効率が大幅に向上する。また、デユワ
(1)の管部(!a)の材料も、その線膨張率が半導体
基板(6)の線膨張率に近い値のものに限定されている
ので、ヒートサイクルによる機械的ストレスも許容値内
に抑制される。
As a result, the heat generated from the infrared image sensor (5) is
The heat is transmitted directly from the first principal surface (6a) of the semiconductor substrate (6) to the contact surface of the upper end of the concave portion (la) of the dewar (1), that is, the heat conduction portion (14), and is radiated from the cooling head (31). , infrared image sensor (5) and cooling head (3)
The thermal resistance between the semiconductor substrate (6) and the dewar (1) is also increased, and the cooling efficiency of the infrared image sensor (5) is greatly improved. In addition, the material for the tube part (!a) of the deyuwa (1) is limited to a material whose linear expansion coefficient is close to that of the semiconductor substrate (6), so mechanical stress due to heat cycles is reduced. Suppressed within tolerance.

なお、上記実施例ではデユワ(1)の管部(la)を均
一な材料のもので構成したが、その熱伝導部分(14)
のみを半導体基板(6)の線膨張率に近い値のもので構
成するようにしてもよい。
In the above embodiment, the tube part (la) of the dewar (1) was made of a uniform material, but the heat conductive part (14)
It is also possible to configure only the material having a coefficient of linear expansion close to that of the semiconductor substrate (6).

第2図は他の実施例を示すもので、第1図と異なるのは
、半導体基板(6)とデユワ(1)の熱伝導部分(14
)とを、その間にバッファ材料(15)を介在させて固
着している点である。なお、同図ではこのバッファ材料
(15)をやや誇張して描いている。
Fig. 2 shows another embodiment, and the difference from Fig. 1 is that the semiconductor substrate (6) and the thermally conductive portion (14) of the dewar
) are fixed with a buffer material (15) interposed therebetween. In addition, in the figure, this buffer material (15) is drawn in a slightly exaggerated manner.

ここで、バッファ材料(15)としては、例えば、5i
C(炭化珪素)やAIN (窒化アルミニウム)等が使
用され、その線膨張率は前者が3.6X 10−’/”
C1後者が3.9X 10−’/’Cである。即ち、こ
のバッファ材料(15)の線膨張率は、半導体基板(6
)とデユワ(1)の熱伝導部分(14)との両者の線膨
張率の中間の値になる。従って、第1図の実施例のもの
に比較して、このバッファ材料(15)の分だけ熱抵抗
は増加するが、ヒートサイクルによる機械的ストレスは
より小さく抑制され信頼性が向上する。
Here, as the buffer material (15), for example, 5i
C (silicon carbide) and AIN (aluminum nitride) are used, and the linear expansion coefficient of the former is 3.6X 10-'/”
C1 latter is 3.9X 10-'/'C. That is, the coefficient of linear expansion of this buffer material (15) is the same as that of the semiconductor substrate (6).
) and the thermally conductive portion (14) of the dewar (1). Therefore, compared to the embodiment shown in FIG. 1, the thermal resistance increases by the amount of the buffer material (15), but the mechanical stress caused by heat cycles is suppressed to a smaller level and reliability is improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明では、デユワ壁の少なくとも熱
伝導部分と半導体基板との熱膨張係数を相互に近い値の
ものとし、両者を直接固着するようにしたので、赤外線
イメージセンサの冷却効率が向上する。
As described above, in this invention, the thermal expansion coefficients of at least the heat conductive portion of the dewar wall and the semiconductor substrate are set to values close to each other, and the two are directly fixed, so that the cooling efficiency of the infrared image sensor is improved. improves.

また、今一つのものでは、デユワ壁の熱伝導部分と半導
体基板との間に所定のバッファ材料を介在させたので、
赤外線イメージセンサの冷却効率が良好であるとともに
、ヒートサイクルによる機械的ストレスが一層抑制され
信頼性が向上する。
In another method, a predetermined buffer material is interposed between the thermally conductive portion of the dewar wall and the semiconductor substrate.
The cooling efficiency of the infrared image sensor is good, and mechanical stress caused by heat cycles is further suppressed, improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における裏面入射形の赤外
線イメージセンサ装置の内部構造を示す断面図、第2図
は関連する他の発明の一実施例におけるものを示す同様
の断面図、第3図が従来のものを示す同様の断面図であ
る。 図において、(1)はデユワ、(2)は赤外線、(3)
は冷却機構としての冷却ヘッド、(51は赤外線イメー
ジセンサ、(6)は半導体基板、(6a)および(6b
)は半導体基板(6)のそれぞれ表面側および裏面側と
しての第1主面および第2主面、(14)はデユワ壁の
熱伝導部分、(15)はバッファ材料である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士  大 岩 増 雄 第1図 冒冒2 1:デュ7 Z :赤9F線 J:沖去?ヘッド 6Q:第1主面 tb:@2−土面 14:デ≧フ4!の然イ云導4p# 第3図 第2図 1j:バッ7ア材す斗 手続補正書(自発)
FIG. 1 is a sectional view showing the internal structure of a back-illuminated infrared image sensor device according to an embodiment of the present invention, FIG. 2 is a similar sectional view showing an embodiment of another related invention, and FIG. FIG. 3 is a similar sectional view showing a conventional one. In the figure, (1) is deyuwa, (2) is infrared, and (3)
(6) is a cooling head as a cooling mechanism, (51 is an infrared image sensor, (6) is a semiconductor substrate, (6a) and (6b)
) are the first and second main surfaces as the front side and the back side, respectively, of the semiconductor substrate (6), (14) is a thermally conductive portion of the dewar wall, and (15) is a buffer material. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa Figure 1 Expedition 2 1: Du 7 Z: Red 9F Line J: Off the coast? Head 6Q: 1st principal surface tb: @2-Soil surface 14: Def≧F4! Nonen-i-yun-dou 4p # Figure 3 Figure 2 Figure 1j: Written amendment to the procedures for the 7-A material (spontaneous)

Claims (2)

【特許請求の範囲】[Claims] (1)赤外線を透過可能なデュワ、このデュワの内部に
収容され、半導体基板の表面側に赤外線受光素子をこの
赤外線受光素子からの信号を読み出す読み出し機構とを
形成し、上記デュワ内に透過した赤外線を上記半導体基
板の裏面側から入射して作動する赤外線イメージセンサ
、および上記デュワの外部に配置され、上記赤外線イメ
ージセンサからの発熱を上記デュワの壁を経た熱伝導に
より取出し放散する冷却機構を備えたものにおいて、上
記デュワ壁の少なくとも上記熱伝導部分を、上記半導体
基板の熱膨張係数に近い熱膨張係数を有する材料で構成
するとともに、上記半導体基板の表面と上記デュワ壁の
熱伝導部分とを固着したことを特徴とする赤外線イメー
ジセンサ装置。
(1) A dewar capable of transmitting infrared rays, which is housed inside the dewar, and has an infrared receiving element formed on the surface side of the semiconductor substrate and a readout mechanism for reading out signals from the infrared receiving element, and a dewar that transmits infrared rays. an infrared image sensor that operates by injecting infrared rays from the back side of the semiconductor substrate; and a cooling mechanism that is disposed outside the dewar and extracts and radiates heat generated from the infrared image sensor by heat conduction through the walls of the dewar. At least the thermally conductive portion of the dewar wall is made of a material having a thermal expansion coefficient close to that of the semiconductor substrate, and the surface of the semiconductor substrate and the thermally conductive portion of the dewar wall are An infrared image sensor device characterized in that:
(2)半導体基板とデュワ壁の熱伝導部分との間に両者
の熱膨張係数の中間の熱膨張係数を有する材料からなる
バッファ材料を介在させて、上記半導体基板の表面と上
記デュワ壁の熱伝導部分とを固着したことを特徴とする
請求項1記載の赤外線イメージセンサ装置。
(2) A buffer material made of a material having a thermal expansion coefficient intermediate between the thermal expansion coefficients of the semiconductor substrate and the dewar wall is interposed between the semiconductor substrate and the thermally conductive portion of the dewar wall, so that the surface of the semiconductor substrate and the dewar wall are heated. 2. The infrared image sensor device according to claim 1, wherein the conductive portion is fixed to the conductive portion.
JP1035424A 1989-02-15 1989-02-15 Infrared image sensor device Expired - Fee Related JP2629942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1035424A JP2629942B2 (en) 1989-02-15 1989-02-15 Infrared image sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1035424A JP2629942B2 (en) 1989-02-15 1989-02-15 Infrared image sensor device

Publications (2)

Publication Number Publication Date
JPH02214158A true JPH02214158A (en) 1990-08-27
JP2629942B2 JP2629942B2 (en) 1997-07-16

Family

ID=12441488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1035424A Expired - Fee Related JP2629942B2 (en) 1989-02-15 1989-02-15 Infrared image sensor device

Country Status (1)

Country Link
JP (1) JP2629942B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296710A (en) * 1991-06-11 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Infrared radiation detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793161U (en) * 1980-11-28 1982-06-08
JPS5976465A (en) * 1982-10-25 1984-05-01 Fujitsu Ltd Manufacture of semiconductor element
JPS63195745U (en) * 1987-06-05 1988-12-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793161U (en) * 1980-11-28 1982-06-08
JPS5976465A (en) * 1982-10-25 1984-05-01 Fujitsu Ltd Manufacture of semiconductor element
JPS63195745U (en) * 1987-06-05 1988-12-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296710A (en) * 1991-06-11 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Infrared radiation detector

Also Published As

Publication number Publication date
JP2629942B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
US4926227A (en) Sensor devices with internal packaged coolers
CN108692813B (en) Radiation shield for near-infrared detector
JPH01295449A (en) Cooling type solid-state image sensing device
US5179283A (en) Infrared detector focal plane
JPH02214158A (en) Infrared image sensor device
JPH01303745A (en) Package for solid-state image sensing element
EP0518026B1 (en) Infrared radiation detector including a cooling device
JPH05326988A (en) Infrared detector
JP2817744B2 (en) Infrared image sensor device
JP2827631B2 (en) Infrared detector
JPH09162379A (en) Cooled ccd camera apparatus
JPH0514857U (en) Infrared detector
JPH06235657A (en) Infrared ray detector
JP3270785B2 (en) Optical package
JPH02187058A (en) Semiconductor device package
JPH05136303A (en) Heat sink for electronic device
JP3511463B2 (en) Solid-state imaging device and large-area solid-state imaging device
JPH04152228A (en) Cooling vessel for infrared ray sensor
JPH0666629A (en) Infrared detector
JPH0545531U (en) Infrared detector
JPH0547972A (en) Packaging structure of semiconductor device
JPH05240702A (en) Semiconductor photodetector
SU1716409A1 (en) Sensor for x-ray radiometric analyzer with semiconductor detector
JPH0523065U (en) Dewa for infrared detector
JP2007013365A (en) Ccd image sensor cooling mechanism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees