JPH02214009A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH02214009A
JPH02214009A JP1033564A JP3356489A JPH02214009A JP H02214009 A JPH02214009 A JP H02214009A JP 1033564 A JP1033564 A JP 1033564A JP 3356489 A JP3356489 A JP 3356489A JP H02214009 A JPH02214009 A JP H02214009A
Authority
JP
Japan
Prior art keywords
ions
magnetoresistive
current
magnetoresistive element
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1033564A
Other languages
Japanese (ja)
Inventor
Koji Takano
公史 高野
Naoki Koyama
直樹 小山
Kazuo Shiiki
椎木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1033564A priority Critical patent/JPH02214009A/en
Publication of JPH02214009A publication Critical patent/JPH02214009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain the head which does not decrease reproduced output when a track width is narrowed by increasing the specific resistance in a magneto- resistance effect element larger the farther from a sliding surface and setting the taper of current wire only partly near the sliding surface. CONSTITUTION:The specific resistance in the part of the magneto-resistance effect element 1 irradiated with inert gaseous ions, such as Ar ions or metal ions, etc., is increased without changing the magnetic resistance of this part when the above-mentioned element is partly irradiated with the above-mentioned ions. The current density of the detecting current I flowing in the magneto- resistance effect element 1 is increased nearer the sliding surface without changing the electric resistance over the entire part of the magneto-resistance effect element 1 so much by controlling the region to be irradiated with the ions. The flow of the detecting current to the boundary region of the electric resistance effect element 1 of the magneto-resistance effect element 1 and the current wires 2 is possible as well by providing the taper to a part of the current wires 2 and, therefore, the effective track width as the head is narrowed to the spacing between a pair of the current wires.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度磁気記録を達成するための磁気抵抗効
果型ヘッドに係り、特にトラック幅が1μm前後と非常
に狭い磁気抵抗効果型ヘッドに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetoresistive head for achieving high-density magnetic recording, and particularly to a magnetoresistive head with a very narrow track width of around 1 μm. Regarding.

〔従来の技術〕[Conventional technology]

従来の磁気抵抗効果型ヘッドの斜視図を第2図に示す、
このような磁気抵抗効果素子11に検出電流Iを供給す
るための一対の電流線22にテーパをもたせることによ
り、媒体に近接する領域での電流密度を増大させるとい
った磁気抵抗効果型ヘッドの公知例は1例えば特開昭6
0−234213号に記載されている。
A perspective view of a conventional magnetoresistive head is shown in FIG.
A known example of a magnetoresistive head in which the pair of current lines 22 for supplying the detection current I to the magnetoresistive element 11 is tapered to increase the current density in a region close to the medium. is 1, for example, JP-A-6
No. 0-234213.

〔発明が解決しようとする7111M)しかし磁気抵抗
効果素子高さ全域にわたり電流線にテーパが設けられて
いる上記公知例では、信号検出部すなわち一対の電流線
にはさまれている磁気抵抗効果素子の電気抵抗Rが大き
くなる。磁気抵抗効果型ヘッドの再生出力は、信号が印
加された際の抵抗変化をΔRとするとΔR/Hに比例す
るので、この場合抵抗変化ΔRを大きくしてもkもまた
大きくなるため再生出力を向上させることはできない、
また公知例に示されている磁気抵抗効果型ヘッドは、ト
ラック幅が狭小化するとΔR/Rが小さくなる傾向にあ
るため、本質的に狭トラツクヘツドに向いていない。
[7111M to be Solved by the Invention] However, in the above-mentioned known example in which the current line is tapered over the entire height of the magnetoresistive element, the signal detection section, that is, the magnetoresistive element sandwiched between the pair of current lines. The electrical resistance R increases. The reproduction output of a magnetoresistive head is proportional to ΔR/H, where ΔR is the resistance change when a signal is applied, so in this case, even if the resistance change ΔR is increased, k also increases, so the reproduction output is cannot be improved,
Further, the magnetoresistive head shown in the known example is essentially not suitable for narrow track heads because ΔR/R tends to decrease as the track width becomes narrower.

本発明の目的は、トラック幅を狭小化した際に再生出力
の低下をもたらさない磁気抵抗効果型ヘッドを提供する
ことにある。
An object of the present invention is to provide a magnetoresistive head that does not cause a decrease in reproduction output when the track width is narrowed.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、磁気抵抗効果素子内の比抵抗を、摺動面か
ら離れるにしたがい大きくすること、および/または、
電流線のテーパを摺動面近傍の一部分にのみ設けること
で達成される。
The above purpose is to increase the specific resistance within the magnetoresistive element as it moves away from the sliding surface, and/or
This is achieved by providing the current line with a taper only in a portion near the sliding surface.

〔作用〕[Effect]

磁気抵抗効果素子の一部にArイオン等の不活性イオン
ガス、あるいは金属イオン等を照射すると、照射した部
分の磁気抵抗を変化させずに比抵抗を大きくすることが
可能となる。このイオンを照射する領域を制御すること
で、磁気抵抗効果素子全体の電気抵抗をあまり変化させ
ずに、磁気抵抗効果素子内に流れる検出電流の電流密度
を摺動面に近づくにつれて高めることが可能となる。
By irradiating a part of the magnetoresistive element with an inert ion gas such as Ar ions, or metal ions, it is possible to increase the specific resistance without changing the magnetoresistance of the irradiated part. By controlling the area to which these ions are irradiated, it is possible to increase the current density of the detection current flowing within the magnetoresistive element as it approaches the sliding surface, without significantly changing the electrical resistance of the entire magnetoresistive element. becomes.

また電流線の一部分(摺動面近傍)にテーパを設けるこ
とにより、磁気抵抗効果素子の電気抵抗を大きくするこ
となく信号検出領域のエツジ部分。
In addition, by providing a taper in a portion of the current line (near the sliding surface), the edge portion of the signal detection area can be removed without increasing the electrical resistance of the magnetoresistive element.

すなわち摺動面における磁気抵抗効果素子と電流線との
境界領域にも検出電流を流すことが可能となるため、ヘ
ッドとしての実効的なトラック幅を一対の電流線間隔ま
で狭めることが可能となる。
In other words, it is possible to flow the detection current even in the boundary area between the magnetoresistive element and the current line on the sliding surface, making it possible to narrow the effective track width of the head to the distance between a pair of current lines. .

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。まず第1図に本発明の
実施例である磁気抵抗効果型ヘッドの斜視図を示す、第
1図における磁気抵抗効果素子lは蒸気法により形成し
たパーマロイであり厚さ400人1幅100.um、高
さ5μmである。2は磁気抵抗効果素子1に検出電流を
供給するための電流線でありTiで形成している。なお
第1図は磁気抵抗効果素子にバイアス磁界を印加するた
めの電流線等は省略して示したものである。ここで電流
線にTiを用いた理由は、電流線が摺動面に露出するた
め耐食性に優れた材料を用いる必要があるからである。
The present invention will be explained in detail below. First, FIG. 1 shows a perspective view of a magnetoresistive head according to an embodiment of the present invention. The magnetoresistive element l in FIG. um, and the height is 5 μm. Reference numeral 2 denotes a current line for supplying a detection current to the magnetoresistive element 1, and is made of Ti. Note that in FIG. 1, current lines and the like for applying a bias magnetic field to the magnetoresistive element are omitted. The reason why Ti is used for the current wire is that since the current wire is exposed on the sliding surface, it is necessary to use a material with excellent corrosion resistance.

電流線2を摺動面に出さなければ、Cu、Mo等比抵抗
の小さな金属を利用することもできる。3は不活性イオ
ン、あるいは金属イオンを打ち込んだ領域を示している
If the current line 2 is not exposed to the sliding surface, metals with low resistivity such as Cu and Mo can also be used. 3 indicates a region into which inert ions or metal ions are implanted.

第3図は厚さ400人、幅10.0μm、高さ5μmの
磁気抵抗効果素子の一部にArイオンを打ち込むことに
より比抵抗を部分的に増大させたヘッドを試作し、再生
出力向上に対するイオン打ち込みの効果を検討した結果
である。ここで使用したヘッドのトラック幅1゛w、す
なわち一対の電流線間隔は10μmである。81!定に
は膜厚0.4μm保磁力4000eのγFezes塗布
媒体を用い、ヘッドとのスペーシングは0.2μmに設
定した。
Figure 3 shows a prototype head in which the resistivity was partially increased by implanting Ar ions into a part of the magnetoresistive element with a thickness of 400 mm, a width of 10.0 μm, and a height of 5 μm. This is the result of examining the effects of ion implantation. The track width of the head used here was 1'w, that is, the distance between the pair of current lines was 10 μm. 81! Specifically, a γFezes coating medium with a film thickness of 0.4 μm and a coercive force of 4000 e was used, and the spacing with the head was set to 0.2 μm.

なお記録にはトラック幅20μm、ギャップ長さ0.4
pmのMetal In Gapミルヘッドいた。Ar
イオンの打ち込み条件は加速電圧を15keV、ドース
量をI X 10 ”1ons/ m”とした、ココテ
用いた磁気抵抗効果素子であるパーマロイの比抵抗は2
0μΩ・■であるが、Arイオンを打ち込んだ領域の比
抵抗は60μΩ・lまで増加した。
For recording, track width is 20 μm, gap length is 0.4
There was a pm Metal In Gap mill head. Ar
The ion implantation conditions were an accelerating voltage of 15 keV, a dose of I x 10 "1 ons/m", and a specific resistance of permalloy, which is a magnetoresistive element using a cocote, of 2.
The specific resistance of the region into which Ar ions were implanted increased to 60 μΩ·l.

第3図の横軸は磁気抵抗効果素子高さyと摺動面からイ
オンを打ち込んだ領域までの距離yiの比yt/y、縦
軸は5 k F’ CIでの再生出力をピーク値で規格
化した値である。この結果から、摺動面から磁気抵抗効
果素子高さyの半分程度離れた領域にイオンを打ち込む
と再生出力が最大となり。
The horizontal axis in Figure 3 is the ratio yt/y of the magnetoresistive element height y and the distance yi from the sliding surface to the ion implanted area, and the vertical axis is the peak value of the reproduction output at 5 kF' CI. This is a standardized value. From this result, the reproduction output is maximized when ions are implanted in a region about half the height y of the magnetoresistive element from the sliding surface.

この値は打ち込まない場合(y+/y=1)の約1.7
倍となることがわかる。aI磁気抵抗効果素子一部に打
ち込むイオンはArイオンの他にHeイオン、あるいは
Niイオン、F” aイオン等の金属イオンを用いてほ
ぼ同様の効果の得られることを確かめている。
This value is approximately 1.7 when not entered (y+/y=1)
It can be seen that this is doubled. It has been confirmed that almost the same effect can be obtained by using metal ions such as He ions, Ni ions, F''a ions, etc. in addition to Ar ions as ions implanted into a part of the aI magnetoresistive element.

次にトラック幅を2μmまで狭めたヘッドを試作して再
生出力の変化を測定した結果を第4図に示す、ここで用
いた磁気抵抗効果素子形状は長さ1100u、高さ5μ
m、厚さ400人と第3図の測定に用いたものと同じで
ある。また、摺動面から磁気抵抗効果素子高さの半分以
上離れた領域にArイオンを打ち込んでいる。第4図の
縦軸は5kPCIにおける単位トラック幅当たりの再生
出力をピーク値で規格化した値、横軸はトラック幅、す
なわち一対の電流線間隔である。この結果から一対の電
流線が互いに平行であるヘッドでは。
Next, we produced a prototype head with a track width narrowed to 2 μm and measured the changes in the reproduction output. The results of the measurements are shown in Figure 4. The shape of the magnetoresistive effect element used here was 1100 μm in length and 5 μm in height.
m, thickness 400 people, the same as that used for the measurements in FIG. Further, Ar ions are implanted in a region more than half the height of the magnetoresistive element from the sliding surface. The vertical axis in FIG. 4 is the reproduction output per unit track width at 5 kPCI normalized by the peak value, and the horizontal axis is the track width, that is, the distance between a pair of current lines. This result shows that in a head where the pair of current lines are parallel to each other.

イオンを打ち込んで比抵抗を変化させた場合でもトラッ
ク幅を8μmより狭めると再生出方が序々に減少してし
まい、トラック幅に対する再生出力の変化はイオンを打
ち込んでいないヘッドと同様の傾向を示すことがわかる
。この原因は、fa磁気抵抗効果素子信号検出領域のエ
ツジ部分、すなわち摺動面における磁気抵抗効果素子と
電流線との境界領域に検出電流が流れにくくなっており
、トラック幅を狭めていくと、トラック幅に対するこの
領域の占める割合が増大で実効的なトラック幅が狭めら
れるためであると考えられる。
Even if the specific resistance is changed by implanting ions, the reproduction output gradually decreases when the track width is narrowed below 8 μm, and the change in reproduction output with respect to the track width shows the same tendency as a head without ion implantation. I understand that. The reason for this is that it is difficult for the detection current to flow in the edge part of the fa magnetoresistive element signal detection area, that is, in the boundary area between the magnetoresistive element and the current line on the sliding surface, and as the track width is narrowed, This is thought to be because the ratio of this area to the track width increases, thereby narrowing the effective track width.

次に電流線の一部にテーパを設けることによる再生出力
の向上効果を第5図に示す、この実験に使用した試作ヘ
ッドは長さ100μm、高さ5μm、厚さ400人の磁
気抵抗効果素子を用い、トラック幅Twを2μm、電流
線のテーパ角θを45°に設定したものである。また摺
動面から磁気抵抗効果素子高さの半分以上離れた領域に
イオンを打ち込んでいる第5図はテーパのつきはじまる
位置と再生出力との関係を測定した結果である。
Next, Figure 5 shows the effect of improving the reproduction output by providing a taper in a part of the current line.The prototype head used in this experiment had a length of 100 μm, a height of 5 μm, and a thickness of 400 mm. The track width Tw was set to 2 μm, and the taper angle θ of the current line was set to 45°. Further, FIG. 5, in which ions are implanted in a region more than half the height of the magnetoresistive element from the sliding surface, is the result of measuring the relationship between the position at which the taper begins and the reproduction output.

第5図の縦軸は5kPCIにおける再生出方をピーク値
で規格化した値、横軸は磁気抵抗効果素子高さyに対す
る摺動面から電流線にテーパがつき始める位置までの距
fily’の比y’ /yである。
The vertical axis in Figure 5 is the value normalized to the peak value of the reproduction output at 5kPCI, and the horizontal axis is the distance fily' from the sliding surface to the position where the current line starts to taper with respect to the magnetoresistive element height y. The ratio is y'/y.

この結果から、摺動面がら電流線にテーパがつき始める
位置までの距離y′を磁気抵抗効果素子高さの30%前
後とすることで再生出方が最大となり、電流線が平行で
ある場合(y/y’=o)の約2.5倍、磁気抵抗効果
素子高さ全体にねたりテーパがついている場合(y/y
’ =1)の約2倍となることが確かめられた。なお再
生出方が最大となるテーパのつきはじめる位置は、テー
パ角度あるいはトラック幅などによって異なるため、こ
れらの値を考慮した上で決定する必要がある。
From this result, the regeneration is maximized by setting the distance y' from the sliding surface to the point where the current line starts to taper to around 30% of the height of the magnetoresistive element, and when the current lines are parallel. Approximately 2.5 times (y/y'=o), if the entire height of the magnetoresistive element is curved or tapered (y/y
' = 1). Note that the position at which the taper starts at which the reproduction output is maximum varies depending on the taper angle, track width, etc., and therefore needs to be determined after taking these values into consideration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、トラック幅が1μm前後でも再生効率
の高い磁気抵抗効果型ヘッドが得られるので、特に記憶
容斌が大きくかつデータの高速度転送を必要とする磁気
ディスク装置用記録再生分離型ヘッドの再生ヘッドとし
て有効である。
According to the present invention, it is possible to obtain a magnetoresistive head with high playback efficiency even when the track width is around 1 μm, so it is possible to obtain a separate recording/playback head for magnetic disk drives that have a large storage capacity and require high-speed data transfer. It is effective as a playback head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例である磁気抵抗効果型ヘッド主
要部の斜視図、第2図は従来の磁気抵抗効果型ヘッド主
要部の斜視図である。第3図、第4図、第5図はそれぞ
れ異なるは本発明の実施例による再生出力の向上効果を
説明するための図である。 1.11・・・磁気抵抗効果素子、2.22・・・信号
検第 を洗織 第 幻 九り 第 の トラックや番Tw()A渭ジ
FIG. 1 is a perspective view of the main part of a magnetoresistive head according to an embodiment of the present invention, and FIG. 2 is a perspective view of the main part of a conventional magnetoresistive head. FIG. 3, FIG. 4, and FIG. 5 are diagrams for explaining the effect of improving reproduction output according to different embodiments of the present invention. 1.11...Magnetoresistive effect element, 2.22...Signal detection number, track and number Tw()Aweiji

Claims (1)

【特許請求の範囲】 1、磁気抵抗効果素子に信号検出用の電流を供給するた
めに設けられた一対の電流線の間隔でトラック幅を規定
する磁気抵抗効果型ヘッドにおいて、上記磁気抵抗効果
素子内の比抵抗が一様でなく、記録媒体との摺動面から
離れた領域の比抵抗が大きくなっていることを特徴とす
る磁気抵抗効果型ヘッド。 2、特許請求の範囲第1項記載の磁気抵抗効果型ヘッド
において、上記磁気抵抗効果素子の上記摺動面から離れ
た領域にArイオン、Heイオンなどの不活性ガスイオ
ンあるいはNiイオン、Feイオン等の金属イオンを打
ちこむことにより、この部分の磁気特性を変化させるこ
となく比抵抗を大きくしたことを特徴とする磁気抵抗効
果型ヘッド。 3、特許請求の範囲第2項記載の磁気抵抗効果型ヘッド
において、上記磁気抵抗効果素子の上記摺動面から上記
磁気抵抗効果素子の高さの半分以上離れた領域に上記イ
オンを打ち込むことを特徴とする磁気抵抗効果型ヘッド
。 4、特許請求の範囲第1項記載の磁気抵抗効果型ヘッド
において、一対の電流線の一部にテーパが設けられてい
ることを特徴とする磁気抵抗効果型ヘッド。 5、短冊状を程しその面を記録媒体面に概垂直かつその
長辺を記録媒体の進行方向に概垂直に配置される磁気抵
抗効果素子と、該磁気抵抗効果素子に信号検出用電流を
供給する一対の電流線を有する磁気抵抗効果型ヘッドに
おいて、上記電流線の端部の形状は該端部同志の間隔が
上記磁気抵抗効果素子の上記記録媒体側の長辺で最小と
なるように構成され、かつ上記磁気抵抗効果素子の上記
記録媒体と反対側の長辺から一定の距離までは上記端部
は上記記録媒体と垂直の辺を持ちその間隔が一定を保っ
ていることを特徴とする磁気抵抗効果型ヘッド。
[Claims] 1. In a magnetoresistive head in which a track width is defined by the interval between a pair of current lines provided for supplying current for signal detection to the magnetoresistive element, the magnetoresistive element described above A magnetoresistive head characterized in that the specific resistance within the head is not uniform, and that the specific resistance in a region away from the sliding surface with the recording medium is large. 2. In the magnetoresistive head according to claim 1, inert gas ions such as Ar ions and He ions, or Ni ions and Fe ions are provided in a region of the magnetoresistive element away from the sliding surface. A magnetoresistive head characterized by increasing the specific resistance without changing the magnetic properties of this part by implanting metal ions such as. 3. In the magnetoresistive head according to claim 2, the ions are implanted into a region that is more than half the height of the magnetoresistive element from the sliding surface of the magnetoresistive element. Features a magnetoresistive head. 4. A magnetoresistive head according to claim 1, wherein a portion of the pair of current lines is tapered. 5. A magnetoresistive element cut into a rectangular shape and arranged with its surface substantially perpendicular to the surface of the recording medium and its long side substantially perpendicular to the traveling direction of the recording medium, and a signal detection current applied to the magnetoresistive element. In a magnetoresistive head having a pair of current lines for supplying current, the ends of the current lines are shaped so that the distance between the ends is minimized on the long side of the magnetoresistive element on the recording medium side. and wherein the end portion has a side perpendicular to the recording medium and the spacing thereof remains constant up to a certain distance from the long side of the magnetoresistive element opposite to the recording medium. Magnetoresistive head.
JP1033564A 1989-02-15 1989-02-15 Magneto-resistance effect type head Pending JPH02214009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033564A JPH02214009A (en) 1989-02-15 1989-02-15 Magneto-resistance effect type head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033564A JPH02214009A (en) 1989-02-15 1989-02-15 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPH02214009A true JPH02214009A (en) 1990-08-27

Family

ID=12390042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033564A Pending JPH02214009A (en) 1989-02-15 1989-02-15 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPH02214009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906899B2 (en) 2002-09-26 2005-06-14 Hitachi Global Storage Technologies Netherlands B.V. GMR sensor with end portion magnetization of pinned layer modified to reduce side reading effects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906899B2 (en) 2002-09-26 2005-06-14 Hitachi Global Storage Technologies Netherlands B.V. GMR sensor with end portion magnetization of pinned layer modified to reduce side reading effects

Similar Documents

Publication Publication Date Title
JP2637911B2 (en) Method of manufacturing magnetic head, magnetic tape data storage device, thin film magnetic sensor assembly on substrate, and method of manufacturing magnetoresistive (MR) head
US7133253B1 (en) Pole tip with sides flared at media-facing surface
US6278578B1 (en) Narrow track thin film head having a focused ion beam etched air bearing surface
US7093347B2 (en) Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US6510025B2 (en) Thin film magnetic head including a protrusion structure and an insulation film in a magnetic core
JPH10228607A (en) Magnetic head and production therefor and magnetic storage
KR19990006488A (en) Spin Valve Type Thin Film Element
JPH0744827A (en) Magnetoresistance converter and magnetic storage system
US20020135947A1 (en) Magnetoresistive sensor capable of narrowing gap and track width
US5808843A (en) Magnetoresistance effect reproduction head
JPH02214009A (en) Magneto-resistance effect type head
US6477002B1 (en) Thin film magnetic head for high density recording, a method of manufacturing the same, and a magnetic recording apparatus comprising the same
JP3639603B2 (en) Magnetic disk unit
US6333840B1 (en) Magnetic recording apparatus
US7116534B2 (en) Magnetoresistive head
JPH048852B2 (en)
JPS61177616A (en) Thin film magnetic head
JPS5925282B2 (en) magnetoresistive head
JPH054088Y2 (en)
JPS59201211A (en) Magnetic head
JPS61243922A (en) Magneto resistance effect type magnetic head
US20070019326A1 (en) Thin film magnetic head for high density recording
JPH08138215A (en) Magneto-resistive head and magnetic recording and reproducing head using the same
JPS59231728A (en) Thin film magnetic head
JPS61253620A (en) Magneto-resistance effect head