JPH0221399A - Synchronizing system for measuring information in different spots - Google Patents

Synchronizing system for measuring information in different spots

Info

Publication number
JPH0221399A
JPH0221399A JP17235088A JP17235088A JPH0221399A JP H0221399 A JPH0221399 A JP H0221399A JP 17235088 A JP17235088 A JP 17235088A JP 17235088 A JP17235088 A JP 17235088A JP H0221399 A JPH0221399 A JP H0221399A
Authority
JP
Japan
Prior art keywords
terminal
branch
voltage
phase
synchronization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17235088A
Other languages
Japanese (ja)
Other versions
JPH0727599B2 (en
Inventor
Shigeru Narita
茂 成田
Mitsuo Saito
斉藤 満雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP17235088A priority Critical patent/JPH0727599B2/en
Publication of JPH0221399A publication Critical patent/JPH0221399A/en
Publication of JPH0727599B2 publication Critical patent/JPH0727599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To make hardware such as a synchronizing signal transmitting and receiving circuit and a phase difference correcting circuit unnecessary by obtaining a synchronization by an operation using only collected data instead of obtaining the synchronization by the hardware. CONSTITUTION:When the voltage of a branch P is respectively obtained from respective terminals A-C using each amount of voltage drop per unit length of the transmission system between each of the respective terminals A-C and a branch P, the voltage values of the respective terminals A-C, and distances LA-LC between the respective terminals A-C and the branch P, the phases of the respectively obtained voltages are to be equal. Thereupon, the synchronization can be obtained by obtaining the respective phase differences between the respective voltages and using the phase differences. Thus, the synchronizing signal transmitting and receiving circuit and the phase correcting circuit for sampling data can be made unnecessary.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は異地点で独立に計測さた各情報を同期をとって
現象解析や特性把握の処理に利用するための異地点計測
情報の同期方式に関する。
The present invention relates to a method for synchronizing information measured at different points for synchronizing each piece of information independently measured at different points and using the information for analyzing phenomena and understanding characteristics.

【従来の技術】[Conventional technology]

電力系統の状態を監視したり、保護制御のためには異地
点で計測した複数の計測情報が利用される。この計測情
報は対象系統に故障等が発生した場合に変化を生ずるが
、変化したときの計測情報ばかりでなく、変化後の計測
情報も必要とされることがある。例えば、故障点標定で
は計測情報として故障継続中の値が使用される。このた
めに、従来は異地点でそれぞれ計測された計測情報を1
箇所に収集して現象解析や特性把握の処理に利用してい
る。
Multiple pieces of measurement information measured at different locations are used to monitor the status of power systems and for protection control. This measurement information changes when a failure or the like occurs in the target system, but not only the measurement information at the time of the change, but also the measurement information after the change is sometimes required. For example, when locating a failure point, values during a continuing failure are used as measurement information. For this purpose, conventionally, measurement information measured at different points was
It is collected at certain locations and used for processing phenomena analysis and characterizing.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、このような方法によれば、各々のサンプリング
のスタート位相が異なるために各地点の計測情報に同期
がとれておらず、したがって現象解析や特性把握の精度
に問題があった。特に故障点標定においては、系統の各
端子で測定された計測情報がベクトル量であるため、ベ
クトル演算を行なう際に各地点の計測情報の同期が必要
とされる。 計測情報間に同時性を図るために同期サンプリング方式
を使用した場合には同期信号送受信回路を必要とし、ま
た非同期サンプリング方式では瞬時故障検出によるサン
プリングデータの位相補正回路を必要としているため、
ハードウェアが増大し、コストアップになるという欠点
があった。 本発明は上記に鑑み、特に異境点における各計測値を1
カ所あるいは複数の異なるところに集合して利用すると
き、それぞれの関係を時間的に同一、すなわち同期計測
されたものと同等の扱いができるようにした異境点計測
情報の同期方式を提供することを課題とする。
However, according to this method, since the starting phase of each sampling is different, the measurement information at each point is not synchronized, and therefore there is a problem in the accuracy of phenomenon analysis and characteristic understanding. Particularly in fault point location, since the measurement information measured at each terminal of the system is a vector quantity, it is necessary to synchronize the measurement information at each point when performing vector calculations. When using the synchronous sampling method to ensure simultaneity between measurement information, a synchronous signal transmission/reception circuit is required, while the asynchronous sampling method requires a phase correction circuit for sampled data by detecting instantaneous failures.
The drawback is that the hardware increases, which increases costs. In view of the above, the present invention has developed a system in which each measurement value at a particular point is
To provide a method for synchronizing measurement information at different points, which makes it possible to treat each relationship as being the same in time, that is, equivalent to synchronous measurement, when the information is collected at one location or at multiple different locations. Take it as a challenge.

【課題を解決するための手段】[Means to solve the problem]

3以上の複数端子により構成された送電系統の各端子に
それぞれ端末装置を設置し、各端末装置において非同期
にて一定周期で自端子の電圧値、電流値を測定し、これ
らの電圧値、電流値を1カ所に伝送して系統の現象解析
や特性把握の処理等を行なうものにおいて、各端子と分
岐との間の送電系統の単位長さ当たりの電圧降下分と、
各端子の電圧値と、各端子と分岐との間の距離とを用い
て各端子からみた分岐の電圧をそれぞれ求め、この求め
られた分岐の各電圧の位相差を求めて、該位相差を用い
て各端末装置にて測定された電圧値、電流値の同期をと
る。
A terminal device is installed at each terminal of a power transmission system composed of multiple terminals of three or more, and each terminal device measures the voltage and current values of its own terminal asynchronously and at regular intervals, and calculates these voltage values and current. In systems where values are transmitted to one location for processing such as system phenomenon analysis and characteristic understanding, the voltage drop per unit length of the power transmission system between each terminal and branch,
Using the voltage value of each terminal and the distance between each terminal and the branch, find the voltage of the branch as seen from each terminal, find the phase difference of each voltage of the found branch, and calculate the phase difference. synchronize the voltage and current values measured by each terminal device.

【作 用】[For use]

各端子と分岐との間の送電系統の単位長さ当たりの電圧
降下分と、各端子の電圧値と、各端子と分岐との間の距
離とを用いて各端子からみた分岐の電圧をそれぞれ求め
た場合、それぞれの電圧の位相は等しいはずであるので
、各電圧の位相差を求めることによりこの位相差を用い
て同期をとることができる。
Using the voltage drop per unit length of the power transmission system between each terminal and branch, the voltage value of each terminal, and the distance between each terminal and branch, calculate the voltage of the branch as seen from each terminal. When determined, the phases of the respective voltages should be equal, so by determining the phase difference between the respective voltages, synchronization can be achieved using this phase difference.

【発明の実施例】[Embodiments of the invention]

第2図は3端子系1回線にお・ける非対称三相回路の各
相の単位長さ当たりの等価回路を示しており、Z、□ 
Z bb*  zccは単位長さ当たりの各相自己イン
ピーダンス、Z mb+  Z bt+  Z c@は
ab相間。 bc相間、ca相間の単位長さ当たり9回線内相互イン
ピーダンスを示している。ここで、A端子。 B端子、C端子で計測されるa、b、c相に流れる電流
を■、^Ab”AC^+ 1 m”+ I k”+ I
 cl+ I lIC+IbC,I。Cとすると、各電
流によるA端子、B端子およびC端子から故障点までの
各相の単位長さ当たりの各電圧降下分はそれぞれ次のよ
うに表わすことができる。 ここで、a相l線地絡故障を想定し、故障点抵抗をR2
とすると、その時の等価回路図は第1図に示すようにな
る。但し、A端子〜分岐P間の距離をL^、B端子〜分
岐P間の距離をL”、C端子〜分岐P間の距離をLCと
し、故障点はA端子と分岐Pとの間であり、A端子より
αL^の距離(但し0くα<1)としている。 a相について考えた場合に、各端子から見た分岐Pの電
位v、′は次のように表わされる。 (A端子から)V、P−V、A−LAV、−−−−−(
4)(B端子から)■1デーV 、 ” −L ” V
 1.” −−−−−(5)(C端子から)V、’=V
、C−LcV、、c−−−−(6)故障がない健全時に
は(4)式=(5)式=(6)式となる。 これに対して、第1図に示すように区間APにおいて故
障が発生した場合は、この故障がa相1線地絡故障であ
るので(4)式≠(5)式=(6)式となり、B、C端
子からみた分岐Pの電位は等しくなる。 以上の計算に用いられた電圧値、電流値、インピーダン
ス値はベクトル量であるので、(4)〜(6)式の電位
V、Pもベクトル値となり大きさと位相をもつ、各端子
から見た分岐Pの電位vIの大きさと位相を、 とすると、(5)式=(6)式より、 V、” l = I V、Pcl  −・−・(8)θ
、″=θ、PC・−・−(9) がそれぞれ成立する。しかし、各端子間のデータにはサ
ンプリングの同期がとられていないので、実際に演算さ
れるデータについては、 V、” l = l V、rcl  −−−−−0ωθ
1■キθ、PC−・−・・・01) となる、ここで、位相に着目すると、サンプリングに同
期がとられていないことによる位相差Δθ、ICは、 Δθ1IIC=et、Pa−θ、PC、、−、−,02
)により表わされる。したがって、このΔθ1■を用い
てB端子とC端子の同期を合わせることができる0例え
ば、分岐点Pから故障点Fに流れ込む電流値をl、Pと
すると、l、PはB端子から流れ込む電流!、′とC端
子から流れ込む電流I−のベクトル和で表わされるので
、位相差Δθ、Icを用いてB、C端子の電流値の同期
を合わせると、次のようになる。 121くφ、’=li、”l<φm’+1I−1く(φ
J+Δθ、′C)−・−・・−031但し、0式におい
てφ、′、φ−は各電流値の計測位相を示している。 したがって、B端子を基準にして考えると、分岐点の電
圧、電流値は(5)、 Q:1式により表わすことがで
きる。 同様にしてB相、C相故障および2線短絡、2線地絡時
も各故障相に着目して健全区間の同期をとることができ
る。 また、この様にして3端子系を2端子系に帰着すること
ができ(分岐P点の電圧、電流値を求めることができる
)、これにより本願と同日付出願の「故障点標定演算に
おける同期方式」を用いて2端子間の同期合わせが行な
えるので、必要ならば3端子全ての同期を合わせること
ができる。 さらに、3線短絡以外で健全相が存在する場合に、故障
相ではなく健全相を用いて同様なことが行なえるのは明
らかである。 このように、収集した端子間非同期データを1ケ所に集
めて演算を行なうことで同期をあわせることができる。 以上の説明では3端子系1回線について述べたが、3端
子系平行2回線においても同様に取扱うことができる。 第3図は3端子系平行2回線における非対称三相回線の
a相に関する単位長さ当たりの等価回路図を示している
。図においてZ ma、Z bb+  Z ECは11
回線の単位長さ当たりの各相自己インピーダンス、Za
b+ZCmは11回線のab相間、ca相間の単位長さ
当たりの相互インピーダンス、Z amZ ah ’ 
+  Z CIR′は11回線のa相と2L回線の各相
との回線間インピーダンスを示している。なお、ここで
は11回線のa相故障について説明するため他の相の相
互インピーダンス、回線間相互インピーダンスは省略さ
れている。 ここで、A、B、C端子で測定される11回線。 2L回線のa、b、C相に流れる電流をそれぞれ、1 
、A+ I k”+ I C^+ F”+ 1b”+ 
rc”1 tm’l lb + IC12m’+ I 
!に’+ I zc^* I !I”+ r tk”+
 I IC”+  I 2ac+1 tbc+ I I
C”とすると各電流によるA端子、B端子およびC端子
から故障点FまでのIL回線a相の単位長さ当たりの電
圧降下分V am ′”+  V aa ′8Van’
′はそれぞれ次のように表わすことができる。 なお、他相についても同様に表わすことができる。 ここで、区間AP間のa相1線地絡故障を想定し、故障
点抵抗をRrとすると、前述の3端子系1回線と同様に
して同期合わせを行なうことができる。
Figure 2 shows the equivalent circuit per unit length of each phase of an asymmetric three-phase circuit in one line of a three-terminal system.
Z bb * zcc is the self-impedance of each phase per unit length, and Z mb+ Z bt+ Z c@ is the ab phase interval. 9 intra-line mutual impedances per unit length between bc and ca phases are shown. Here, the A terminal. The current flowing in the a, b, and c phases measured at the B and C terminals is ^Ab”AC^+ 1 m”+ I k”+ I
cl+I IC+IbC,I. Assuming that C, each voltage drop per unit length of each phase from the A terminal, B terminal, and C terminal to the failure point due to each current can be expressed as follows. Here, assuming an A-phase L-line ground fault, the fault point resistance is R2
Then, the equivalent circuit diagram at that time is as shown in FIG. However, the distance between A terminal and branch P is L^, the distance between B terminal and branch P is L", the distance between C terminal and branch P is LC, and the failure point is between A terminal and branch P. The distance is αL^ from the A terminal (however, α<1). When considering the a phase, the potential v,' of the branch P seen from each terminal is expressed as follows. (A From terminal) V, PV, A-LAV, -------(
4) (From B terminal) ■1 day V, "-L" V
1. ” −−−−−(5) (from C terminal) V, '=V
, C-LcV, , c---(6) When there is no failure and in good condition, equation (4) = equation (5) = equation (6). On the other hand, if a fault occurs in section AP as shown in Figure 1, this fault is an a-phase 1-wire ground fault, so equation (4) ≠ equation (5) = equation (6). , B, and C terminals become equal. Since the voltage value, current value, and impedance value used in the above calculations are vector quantities, the potentials V and P in equations (4) to (6) are also vector values, and have magnitude and phase, as seen from each terminal. If the magnitude and phase of the potential vI of the branch P are, then from equation (5) = equation (6), V, "l = I V, Pcl - - (8) θ
, ``=θ, PC・−・−(9) are established respectively. However, since the data between each terminal is not synchronized in sampling, the data actually calculated is V, ” l = l V, rcl −−−−−0ωθ
1 ■ Ki θ, PC--...01) Here, if we focus on the phase, the phase difference Δθ, IC due to the lack of synchronization in sampling is Δθ1IIC=et, Pa-θ, PC,,-,-,02
). Therefore, using this Δθ1■, the B terminal and C terminal can be synchronized.0For example, if the current values flowing from the branch point P to the fault point F are l and P, then l and P are the currents flowing from the B terminal. ! , ', and the vector sum of the current I- flowing from the C terminal, so if the phase difference Δθ, Ic is used to synchronize the current values of the B and C terminals, the following is obtained. 121kuφ,'=li,"l<φm'+1I-1ku(φ
J+Δθ,'C)−・−・・−031 However, in equation 0, φ, ′, and φ− indicate the measurement phase of each current value. Therefore, considering the B terminal as a reference, the voltage and current values at the branch point can be expressed by equation (5), Q:1. Similarly, in the event of a B-phase or C-phase failure, 2-wire short circuit, or 2-wire ground fault, it is possible to synchronize the healthy sections by focusing on each failed phase. In addition, in this way, a three-terminal system can be reduced to a two-terminal system (the voltage and current values at the branch point P can be determined), and this allows for the "synchronization in fault point location calculation" filed on the same date as the present application. Since the synchronization between two terminals can be performed using the "method", all three terminals can be synchronized if necessary. Furthermore, it is clear that if a healthy phase exists other than a three-wire short circuit, the same thing can be done using the healthy phase instead of the faulty phase. In this way, synchronization can be achieved by collecting the collected terminal-to-terminal asynchronous data in one place and performing calculations. In the above explanation, a three-terminal system with one line has been described, but a three-terminal system with two parallel lines can also be handled in the same way. FIG. 3 shows an equivalent circuit diagram per unit length regarding the a-phase of an asymmetric three-phase line in a three-terminal parallel two-line line. In the figure, Z ma, Z bb + Z EC is 11
Self-impedance of each phase per unit length of line, Za
b+ZCm is the mutual impedance per unit length between the ab and ca phases of the 11 lines, Z amZ ah '
+Z CIR' indicates the line impedance between the a phase of the 11 lines and each phase of the 2L line. Note that in order to explain the a-phase failure of 11 lines, mutual impedances of other phases and mutual impedances between lines are omitted here. Here, 11 lines measured at A, B, and C terminals. The currents flowing in the a, b, and c phases of the 2L line are each 1
, A+ I k”+ I C^+ F”+ 1b”+
rc"1 tm'l lb + IC12m'+ I
! ni'+ I zc^* I! I”+ r tk”+
I IC”+ I 2ac+1 tbc+ I I
C", the voltage drop per unit length of the IL line a phase from the A terminal, B terminal, and C terminal to the failure point F due to each current V am '" + V aa '8Van'
′ can be expressed as follows. Note that other phases can be similarly expressed. Here, assuming an a-phase one-line ground fault between sections AP, and assuming that the fault point resistance is Rr, synchronization can be performed in the same manner as in the three-terminal system one line described above.

【発明の効果】【Effect of the invention】

本発明によれば、ハードウェアによる同期ではなく、収
集したデータのみを用いて演算による同期合せを行なう
ようにしたので、同期信号送受信回路や位相差補正回路
等のハードウェアが不要となり、コストを低減すること
ができる。
According to the present invention, synchronization is not performed by hardware, but by calculation using only the collected data, which eliminates the need for hardware such as a synchronization signal transmission/reception circuit or a phase difference correction circuit, reducing costs. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はa相l線地絡故障時の等価回路図、第2図は3
端子系1回線における非対称三相回路の各相の単位長さ
当たりの等価回路図、第3図は3端子系子行2回線にお
ける非対称三相回路の各相の単位長さ当たりの等価回路
図 Z m□Z bb+ Z ee  ”−’自己インピー
ダンス、Z a b *ZbelzCM−・−回線内相
互インピーダンス、Z□Z ah ’ + zca ”
−回線間相互インピーダンス、l、AA端端子分分岐2
間距離L”−8端子〜分岐P間距離、LC・・−C端子
〜分岐P間距離。
Figure 1 is an equivalent circuit diagram at the time of an A-phase l line ground fault, and Figure 2 is a 3
The equivalent circuit diagram per unit length of each phase of an asymmetric three-phase circuit in one terminal system circuit. Figure 3 is the equivalent circuit diagram per unit length of each phase of an asymmetric three-phase circuit in two child lines of a three terminal system. Z m□Z bb+ Z ee ”-'Self impedance, Z a b *ZbelzCM-・-Intra-line mutual impedance, Z□Z ah ' + zca ”
- Mutual impedance between lines, l, AA end terminal branch 2
Distance L'' - Distance between terminal 8 and branch P, LC... Distance between terminal C and branch P.

Claims (1)

【特許請求の範囲】[Claims] 1)3以上の複数端子により構成された送電系統の各端
子にそれぞれ端末装置を設置し、各端末装置において非
同期にて一定周期で自端子の電圧値、電流値を測定し、
これらの電圧値、電流値を1ヵ所に伝送して系統の現象
解析や特性把握の処理等を行なうものにおいて、各端子
と分岐との間の送電系統の単位長さ当たりの電圧降下分
と、各端子の電圧値と、各端子と分岐との間の距離とを
用いて各端子からみた分岐の電圧をそれぞれ求め、この
求められた分岐の各電圧の位相差を求めて、該位相差を
用いて各端末装置にて測定された電圧値、電流値の同期
をとることを特徴とする異地点計測情報の同期方式。
1) A terminal device is installed at each terminal of a power transmission system composed of multiple terminals of three or more, and each terminal device measures the voltage and current values of its own terminal asynchronously and at regular intervals,
In systems where these voltage and current values are transmitted to one location for processing such as system phenomenon analysis and characterizing, the voltage drop per unit length of the power transmission system between each terminal and branch, Using the voltage value of each terminal and the distance between each terminal and the branch, find the voltage of the branch as seen from each terminal, find the phase difference of each voltage of the found branch, and calculate the phase difference. A method for synchronizing measurement information at different points, characterized by synchronizing voltage values and current values measured by each terminal device.
JP17235088A 1988-07-11 1988-07-11 Synchronous method of measurement information at different points Expired - Lifetime JPH0727599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17235088A JPH0727599B2 (en) 1988-07-11 1988-07-11 Synchronous method of measurement information at different points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17235088A JPH0727599B2 (en) 1988-07-11 1988-07-11 Synchronous method of measurement information at different points

Publications (2)

Publication Number Publication Date
JPH0221399A true JPH0221399A (en) 1990-01-24
JPH0727599B2 JPH0727599B2 (en) 1995-03-29

Family

ID=15940273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17235088A Expired - Lifetime JPH0727599B2 (en) 1988-07-11 1988-07-11 Synchronous method of measurement information at different points

Country Status (1)

Country Link
JP (1) JPH0727599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158622A (en) * 1998-02-12 2000-12-12 Nihon Kim Co., Ltd. Closure to be attached to a container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158622A (en) * 1998-02-12 2000-12-12 Nihon Kim Co., Ltd. Closure to be attached to a container

Also Published As

Publication number Publication date
JPH0727599B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Izykowski et al. Accurate noniterative fault-location algorithm utilizing two-end unsynchronized measurements
US6845333B2 (en) Protective relay with synchronized phasor measurement capability for use in electric power systems
US8791730B2 (en) Synchronization method for current differential protection
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
Benmouyal et al. A combined directional and faulted phase selector element based on incremental quantities
CN105372616B (en) A kind of CVT states Online Transaction Processing and online evaluation method
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
US4261038A (en) Protection of electrical power supply systems
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
JPH0221399A (en) Synchronizing system for measuring information in different spots
JP6804358B2 (en) Single point of failure indicator
Voloh et al. Fault locator based on line current differential relays synchronized measurements
JPS58208675A (en) Fault point locating system
JP4316103B2 (en) Fault location system
JPS63221266A (en) Fault point location system for three-terminal power transmission system
JPS62249078A (en) Fault point locating system
JPS58219463A (en) Fault point location system for 4 terminal transmission line
JPS58174863A (en) Fault locating system
Kasztenny et al. A new multiterminal fault location algorithm embedded in line current differential relays
JPH0373825B2 (en)
JPH10132890A (en) Method and device for locating failure point
Rosolowski et al. Measurement of fault-loop impedance in three-terminal line using signals of current differential relays
JPH03245069A (en) Apparatus for locating fault point
JPS62249077A (en) Synchronized measuring system for different spot information
JPS638690B2 (en)