JPH02213763A - Method for measuring concentration of gaseous carbon dioxide - Google Patents

Method for measuring concentration of gaseous carbon dioxide

Info

Publication number
JPH02213763A
JPH02213763A JP1034537A JP3453789A JPH02213763A JP H02213763 A JPH02213763 A JP H02213763A JP 1034537 A JP1034537 A JP 1034537A JP 3453789 A JP3453789 A JP 3453789A JP H02213763 A JPH02213763 A JP H02213763A
Authority
JP
Japan
Prior art keywords
carbon dioxide
oxygen
gas
concentration
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034537A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1034537A priority Critical patent/JPH02213763A/en
Publication of JPH02213763A publication Critical patent/JPH02213763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of gaseous carbon dioxide at high response speed even when the concn. of oxygen in the gas to be measured differs from the concn. of oxygen in reference gas by utilizing both electromotive force of a concentration cell formed of oxygen and gaseous carbon dioxide and the concn. of oxygen separately measured by an oxygen sensor and calculating the concn. of gaseous carbon dioxide by a specified formula. CONSTITUTION:A concentration cell formed of oxygen and gaseous carbon dioxide is constituted of a reference electrode part 1 and a measuring electrode part 2. The electrode part 1 is constituted of a high-purity alumina pipe 3, the inlet and outlet 4, 5 of reference gas, a reference electrode 6 made of a gold wire, a packing part 7 of alumina fiber and a pinhole 8. The electrode part 2 is constituted of a cell vessel 9 made of high-purity alumina, an electrolyte layer 10 of two component based molten salt of sodium carbonate and potassium carbonate and a measuring electrode 11 made of the gold wire. A gaseous standard mixture of 30% oxygen and 70% gaseous carbon dioxide is supplied as reference gas through the inlet 4 thereof. A gaseous mixture of oxygen, gaseous carbon dioxide and nitrogen having various concns. is supplied as standard gas through the inlet 12 of the gas to be measured. In this case, potential difference between the reference electrode 6 and the measuring electrode 11 is measured. This measured potential difference is substituted together with the value measured by a galvanic cell-type oxygen sensor into a formula. The concn. of gaseous carbon dioxide is obtained by calculation.

Description

【発明の詳細な説明】 発明の利用分野 本発明は炭酸ガス濃度を測定する方法、さらに詳しくは
、酸素と炭酸ガスを含む雰囲気気体中の炭酸ガス濃度を
電気化学的手法を用いて測定する方法に関するものであ
る。
[Detailed Description of the Invention] Field of Application of the Invention The present invention relates to a method for measuring carbon dioxide concentration, more specifically, a method for measuring carbon dioxide concentration in an atmospheric gas containing oxygen and carbon dioxide using an electrochemical method. It is related to.

従来の技術 近年、バイオテクノロジー、植物工場あるいは呼吸ガス
の分析等の公費で、炭酸ガス濃度を測定するための簡便
で経済的な方法および、そのための機器の出現が待望さ
れている。
BACKGROUND OF THE INVENTION In recent years, there has been a long-awaited emergence of a simple and economical method for measuring carbon dioxide concentration and an apparatus therefor at public expense, such as in biotechnology, plant factories, or respiratory gas analysis.

従来、炭酸ガス濃度の測定方法としては、赤外線吸収法
、炭酸カリウムを固体電解質とする濃淡電池法(14,
Ganthler and A、Chasberlan
d、”J、ElectracheIM、Sac、 VO
L 124.(1G) P1579−15831197
7))、ヒドロキシアパタイトのインピーダンス変化を
測定する方法(特開昭63−193054号)などが実
用に供されなり、提案されている。
Conventionally, methods for measuring carbon dioxide concentration include infrared absorption method and concentration cell method using potassium carbonate as a solid electrolyte (14,
Ganthler and A, Chasberlan
d,”J,ElectracheIM,Sac,VO
L 124. (1G) P1579-15831197
7)), a method of measuring impedance change of hydroxyapatite (Japanese Patent Application Laid-Open No. 193054/1983), etc. have been put into practical use and have been proposed.

発明が解決しようとする課題 しかるに、赤外線吸収法は、一般に機器が大がかりにな
るという問題がある。 Ganthier等の提案した
炭酸カリウムを固体電解質とする濃淡電池法は、もとも
と、亜硫酸ガス濃度を測定する方法を炭酸ガス濃度の測
定に適用したものである。すなわち、Ganthier
等は硫酸カリウムを固体電解質とする、次のような濃淡
電池 302.02 、Pt /に2 SOa /Pt、 S
Oi、0iを形成すると共に、 (但し、E:起電力、 R:丸木定数、T:絶対温度、
F;ファラデ一定数) なるネルンストの式にもとすいて、既知濃度のPsoi
から未知濃度のpso2を求める方法を提案している。
Problems to be Solved by the Invention However, the infrared absorption method generally has a problem in that the equipment is large-scale. The concentration cell method using potassium carbonate as a solid electrolyte proposed by Ganthier et al. originally applied a method for measuring sulfur dioxide gas concentration to measurement of carbon dioxide gas concentration. That is, Ganthier
etc. are the following concentration cells using potassium sulfate as a solid electrolyte: 302.02 Pt/2 SOa/Pt, S
While forming Oi and Oi, (where E: electromotive force, R: Maruki constant, T: absolute temperature,
F; Faraday's constant) Based on Nernst's equation, the known concentration Psoi
We have proposed a method to obtain the unknown concentration pso2 from .

しかし、ここで、Ganthier等は空気中の亜硫酸
ガス濃度を測定することのみを考慮に入れ、PQ乏とP
O2とは同一と見なし、(2)式をと簡略化してしまっ
ている。換言すると、酸素濃度が参照気体(Pof)と
測定対象雰囲気気体(PQ)とで異なっている場合には
Ganthier等の方法はそのまま使うことができな
いという問題がある。  aanthter等はまた、
電解質として硫酸カリウムの代りに固体の炭酸カリウム
を用いて、亜硫酸ガスの場合と同様の原理により炭酸ガ
スの濃度を測定できる旨の発表をしているが、この場合
も、酸素の濃度を一定にしている点では同様の問題が残
る。また、炭酸カリウムからなる固体電解質は一般に、
完全に非多孔性にならず、どうしても孔が残るので参照
気体と測定対象気体とが混合してしまうおそれがある。
However, here, Ganthier et al. only took into consideration the measurement of sulfur dioxide gas concentration in the air, and
Equation (2) is simplified as O2 and O2 are considered to be the same. In other words, if the oxygen concentration is different between the reference gas (Pof) and the atmospheric gas to be measured (PQ), there is a problem in that the method of Ganthier et al. cannot be used as is. aanthter et al.
They announced that the concentration of carbon dioxide gas can be measured using the same principle as for sulfur dioxide gas by using solid potassium carbonate instead of potassium sulfate as an electrolyte, but in this case as well, the concentration of oxygen can be kept constant. The same problem remains in that respect. In addition, solid electrolytes made of potassium carbonate are generally
Since it is not completely non-porous and pores inevitably remain, there is a risk that the reference gas and the gas to be measured may mix.

一方、ヒドロキシアパタイトを用いる方法の場合、応答
速度が遅く、約1時間もかかるという点に難点がある。
On the other hand, the method using hydroxyapatite has a drawback in that the response speed is slow and it takes about one hour.

課題を解決するための手段 本発明は溶融炭酸アルカリ金属塩を電解質として、M素
と1!!酸ガスの濃淡電池を形成し、その起電力と、別
途に用意した#索センサによって測定された酸素濃度と
を用いて炭酸ガス濃度を計算によって求める点に特徴を
有し、参照気体と測定対象気体とで酸素濃度が異なって
も炭酸ガス濃度の測定を可能ならしめると共に、炭酸カ
リウム固体電解質を用いた濃淡電池法の場合の参照気体
と測定対象気体との混合のrt!J題および、ヒドロキ
シアパタイトを用いる方法の場合の応答速度が遅いとい
う問題を解決せんとするものである。
Means for Solving the Problems The present invention uses a molten alkali metal carbonate as an electrolyte, M element and 1! ! It is characterized by forming an acid gas concentration cell and calculating the carbon dioxide concentration using its electromotive force and the oxygen concentration measured by a separately prepared # cable sensor. This makes it possible to measure the carbon dioxide concentration even if the oxygen concentration differs between the gases and the rt! The present invention aims to solve the problem of slow response speed in the method using hydroxyapatite.

作用 本発明の基本原理は上述のGanthier等が提案し
たものと同一ということができる。すなわち、02  
、  CO2、All / Li2CO3−に2 CO
3/^UCO# 、Off             
 ・・・・・・(4)なる電気化学系を形成すると、全
反応として02 +2 CO2+2 CO3−一   
・・・・・・(5)なる反応が起こり、上記電気化学系
は酸素と炭酸ガスの濃淡電池となる。
Operation The basic principle of the present invention can be said to be the same as that proposed by Ganthier et al. mentioned above. That is, 02
, CO2, All/Li2CO3-2 CO
3/^UCO# , Off
・・・・・・(4) When the electrochemical system is formed, the total reaction is 02 +2 CO2+2 CO3-1
The reaction (5) occurs, and the electrochemical system becomes a concentration cell of oxygen and carbon dioxide gas.

この濃淡電池の起電力は次のようなネルンストの式で与
えられる。
The electromotive force of this concentration cell is given by the following Nernst equation.

または したがって、上記濃淡電池の一方の1[=(参照電極)
に既知濃度の酸素(濃度: Po cn )と炭酸ガス
(濃度5Pocoz)とを含む気体(参照気体)を供給
し、他方の電極(測定電@)に測定の対象となる未知濃
度の酸素(濃度: P 02 )と炭酸ガス(濃度:p
co2)を含む測定対象気体を供給し、起電力Eを測定
すると共に、別途に用意した酸素センサでPo2を測定
し、その値を(6)式もしくは(7)式に代入すれば、
計算によって未知の炭酸ガス濃度pco2を求めること
ができる。なお、このような計算はマイクロコンピュー
タを使えばいとも簡単にできる。また、ここで、気体の
濃度は%で表した場合と分圧で表した場合とでは厳密に
は違うが、ここでは同一として扱うことにする。
or, therefore, one [= (reference electrode) of the above concentration cell
A gas (reference gas) containing a known concentration of oxygen (concentration: Pocn) and carbon dioxide (concentration: 5Pocz) is supplied to the electrode, and an unknown concentration of oxygen (concentration: : P 02 ) and carbon dioxide gas (concentration: p
By supplying a gas to be measured containing CO2), measuring the electromotive force E, and measuring Po2 with a separately prepared oxygen sensor, and substituting the value into equation (6) or equation (7),
The unknown carbon dioxide concentration pco2 can be determined by calculation. Note that such calculations can be easily performed using a microcomputer. Furthermore, although strictly speaking the gas concentration is different when expressed in % and in partial pressure, it will be treated as the same here.

上述の(4)式の電気化学系は、具体的には炭酸リチウ
ム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭
酸塩の二元もしくは三元系溶融塩からなる電解質と、金
、酸化ニッケル、酸化クロムなどの材料からなる二つの
f4[1とから構成され、作動温度は600〜750°
Cである。また、この電気化学セルとしては、二つの溶
融炭酸塩電解質室を用意し、ピンホールを通じて互いの
電解質の移動イオンであるCO3が通過できるようにし
ておいて、それぞれの電解質室の中に金線からなる1c
[lを浸漬させ、一方の電解質室に参照気体を、他方の
電解質室に測定対象気体をバブリングさせるという構造
のもので、いわゆる溶融炭酸塩型燃料電池で採用されて
いるように、溶融炭酸塩電解質をアルミン酸リチウムの
シートに含浸させたり、両者の混合物をホットプレスし
たりさせた電解質マトリックスを中央に配し、その両面
に多孔性電極を配設し、その電極の背面から参照気体あ
るいは測定対象気体を供給するような構造のものが有効
である。
Specifically, the electrochemical system of formula (4) above includes an electrolyte consisting of a binary or ternary molten salt of an alkali metal carbonate such as lithium carbonate, sodium carbonate, or potassium carbonate, and gold, nickel oxide, or oxidized salt. It is composed of two f4[1 made of materials such as chromium, and the operating temperature is 600 to 750°.
It is C. In addition, this electrochemical cell has two molten carbonate electrolyte chambers that allow CO3, which is the mobile ion of each electrolyte, to pass through a pinhole, and a gold wire inside each electrolyte chamber. 1c consisting of
[It has a structure in which the reference gas is bubbled into one electrolyte chamber and the measurement target gas is bubbled into the other electrolyte chamber.As used in so-called molten carbonate fuel cells, An electrolyte matrix made by impregnating a sheet of lithium aluminate with electrolyte or hot-pressing a mixture of the two is placed in the center, and porous electrodes are placed on both sides of the matrix. A structure that supplies the target gas is effective.

いずれにしても、溶融炭酸塩電解質は作動状態では液体
であるため、Ganthier等が採用したような固体
電解質の場合のような気体の混合という不具合は起こら
ない。
In any case, since the molten carbonate electrolyte is liquid in its operating state, it does not suffer from the problems of gas mixing that occur with solid electrolytes such as those employed by Ganthier et al.

実施例1 第1図に本発明の一実施例にかかる酸素−炭酸ガス濃淡
電池の断面構造を示す。
Example 1 FIG. 1 shows a cross-sectional structure of an oxygen-carbon dioxide gas concentration battery according to an example of the present invention.

酸素−炭酸ガス濃淡電池は、大別すると参照電極部1と
測定電極部2とで構成されている。参照電極部1は高純
度アルミナ管3、参照気体人口4、参照気体出口5、金
線からなる参照電極6、アルミナ95%、シリカ5%の
組成のアルミナ繊維充填部7およびピンホール8から構
成されている。
The oxygen-carbon dioxide gas concentration battery is roughly divided into a reference electrode section 1 and a measurement electrode section 2. The reference electrode part 1 is composed of a high purity alumina tube 3, a reference gas population 4, a reference gas outlet 5, a reference electrode 6 made of gold wire, an alumina fiber filling part 7 having a composition of 95% alumina and 5% silica, and a pinhole 8. has been done.

アルミナ繊維充填部7には炭酸ソーダと炭酸カリウムの
二成分系溶融塩(モル%比50 : 50)が含浸され
ている。
The alumina fiber filling portion 7 is impregnated with a two-component molten salt of soda carbonate and potassium carbonate (mol% ratio 50:50).

測定電極部2は高純度アルミナ製のセル容器9、炭酸ソ
ーダと炭酸カリウムの二成分系溶融塩電解質層10、金
線からなる測定電極11および測定対象気体人口12か
ら構成されている。
The measurement electrode section 2 is composed of a cell container 9 made of high-purity alumina, a binary molten salt electrolyte layer 10 of sodium carbonate and potassium carbonate, a measurement electrode 11 made of a gold wire, and a gas population 12 to be measured.

このような濃淡電池をヒータで加熱して750℃にし、
参照気体として0.33気圧の酸素と0667気圧の炭
酸ガスからなる混合気体を参照気体人口4から供給し、
各種分圧の酸素と炭酸ガスを含む混合気体(標準ガス)
を測定対象気体人口12から供給し、電解質層10中で
バブリングさせた際の参照電極6と測定型f111との
間の電位差(濃淡電池の起電力)の推移を測定したとこ
ろ、第2図に示すような結果が得られた。すなわち、濃
淡電池の起電力は理論値に対し、約3%の精度をもって
いること、応答速度は約30分であることがわかる。
Such a concentration battery is heated to 750°C with a heater,
A mixed gas consisting of oxygen at 0.33 atm and carbon dioxide at 0667 atm is supplied as a reference gas from reference gas population 4,
Mixed gas containing oxygen and carbon dioxide at various partial pressures (standard gas)
The transition of the potential difference (electromotive force of the concentration cell) between the reference electrode 6 and the measurement type f111 when the gas to be measured was supplied from the gas population 12 and bubbled in the electrolyte layer 10 was measured, as shown in Fig. 2. The results shown are obtained. That is, it can be seen that the electromotive force of the concentration battery has an accuracy of about 3% with respect to the theoretical value, and the response speed is about 30 minutes.

実施例2 第3図に本発明のもう一つの実施例にかかる酸素−炭酸
ガス濃淡電池の断面補遺を示す。
Embodiment 2 FIG. 3 shows an additional cross-sectional view of an oxygen-carbon dioxide concentration battery according to another embodiment of the present invention.

この濃淡電池は多孔性ニッケルの表面を酸化し、酸化ニ
ッケル層とし、さらにリチウムをドープした参照電極2
1.γ−アルミン酸リチウム(40重量%)と炭酸リチ
ウム(28重量%)と炭酸カリウム(32重量%)の混
合物をホットプレスして得られる溶融炭酸塩電解質マト
リックス22゜参照電極21と同一の材料と構成からな
る測定電極23.参照電極端子24.測定電極端子25
参照気体人口26.参照気体出口27.測定対象気体入
口28、測定対象気体出口29およびセルフレーム30
から構成される。
This concentration battery oxidizes the surface of porous nickel to form a nickel oxide layer, and a reference electrode 2 doped with lithium.
1. A molten carbonate electrolyte matrix 22° obtained by hot pressing a mixture of γ-lithium aluminate (40% by weight), lithium carbonate (28% by weight) and potassium carbonate (32% by weight), the same material as the reference electrode 21 Measuring electrode 23 consisting of: Reference electrode terminal 24. Measuring electrode terminal 25
Reference gas population 26. Reference gas outlet 27. Measurement target gas inlet 28, measurement target gas outlet 29, and cell frame 30
It consists of

このような濃淡電池の参照気体人口26から酸素分圧0
.33.炭酸ガス分圧0.67の標準ガスを参照気体と
して供給するとともに、各種分圧の酸素と炭酸ガスと窒
素との混合気体(標準ガス)を測定気体入口28から供
給した際の、参照電極端子24と測定を極端子25との
間の電位差(濃淡電池の起電力)を実測し、その実測値
と酸素濃度を市販のガルバニ電池式Ml#センサで測定
した際の測定値を、前述の(7)式に代入し、計算によ
って得られた炭酸ガス濃度などを次表に示す。
From the reference gas population 26 of such a concentration cell, the oxygen partial pressure 0
.. 33. Reference electrode terminal when a standard gas with a carbon dioxide partial pressure of 0.67 is supplied as a reference gas and a mixed gas (standard gas) of oxygen, carbon dioxide, and nitrogen with various partial pressures is supplied from the measurement gas inlet 28. 24 and the measurement electrode terminal 25 (electromotive force of the concentration cell) was actually measured, and the measured value and the oxygen concentration were measured using a commercially available galvanic cell type Ml# sensor. 7) Substituting into the formula, the carbon dioxide concentration etc. obtained by calculation are shown in the following table.

なお、上記濃淡電池の作動温度は650℃とした。Note that the operating temperature of the concentration cell was 650°C.

上表の結巣から、本発明方法によって、酸素と炭酸ガス
を含む雰囲気気体中の炭酸ガス濃度をかなり高い精度で
測定できることがわかる。尚、上述の濃淡電池の応答速
度は約10分であった。
From the results in the table above, it can be seen that by the method of the present invention, the concentration of carbon dioxide in an atmospheric gas containing oxygen and carbon dioxide can be measured with considerably high accuracy. Incidentally, the response speed of the above-mentioned concentration cell was about 10 minutes.

発明の効果 以上詳述した如く、本発明は測定気体の酸素濃度が参照
気体と興なる場合にも、炭酸ガス濃度が測定でき、しか
も、辷ドロキシアパタイトのインピーダンスを測定する
方法に比較して応答速度が高いという点で優れた方法で
あり、その工業的価値は極めて大である。
Effects of the Invention As detailed above, the present invention enables the measurement of carbon dioxide concentration even when the oxygen concentration of the measurement gas is different from that of the reference gas, and is moreover superior to the method of measuring the impedance of linoxapatite. This is an excellent method in terms of high response speed, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる酸素−炭酸ガス濃淡
電池の断面構造を示す。 1・・・・・・参照電極部 2・・・・・・測定″@電
極部・・・・・・参照型4[l  7・・・・・・アル
ミナ繊維充填部10・・・・・・二成分系溶融塩電解質
層11・・・・・・測定を極 第2図は第1図に示す濃淡電池に各種分圧の酸素と炭酸
ガスを含む混合気体を供給した場合の起電力の推移を示
す。 第3図は本発明のもう一つの実施例にかかる酸素−炭酸
ガス濃淡電池の断面構造を示す。 21・・・・・・参照電極 22・・・・・・溶融炭酸塩電解質マトリックス23・
・・・・・測定電極  26・・・・・・参照気体出口
28・・・・・・測定対象気体出口 傳 1 図 工:命W!、@腸ゲ l:測yL乾極部 6 :傳W!、覧」旨 7 : アルミ士−1宴充填部 16:二廐分歪藷渫位解能普 ll:測延像柚 ケ ア 因 咋 間 λ 図 Zl : 塵11歇黛 z2 : ンU咄渉ツpガl乾〜いσマドノックスz3 : 齋)免畳する n : 参見黴悼入口 2s: 測免坤婁気体入口
FIG. 1 shows a cross-sectional structure of an oxygen-carbon dioxide gas concentration battery according to an embodiment of the present invention. 1...Reference electrode part 2...Measurement"@electrode part...Reference type 4[l 7...Alumina fiber filled part 10...・Two-component molten salt electrolyte layer 11... Figure 2 shows the electromotive force when a mixed gas containing various partial pressures of oxygen and carbon dioxide is supplied to the concentration cell shown in Figure 1. Figure 3 shows a cross-sectional structure of an oxygen-carbon dioxide concentration battery according to another embodiment of the present invention. 21... Reference electrode 22... Molten carbonate electrolyte Matrix 23・
...Measuring electrode 26...Reference gas outlet 28...Measurement target gas outlet 1 Artwork: Life W! , @ Intestinal Gel: Measuring yL Dry Pole Part 6: Den W! , see' 7: Aluminum master-1 banquet filling part 16: 2nd division distorted lineage resolution function 11: measurement of image Yuzu care Inkui between λ Figure Zl: dust 11 intermittent Mayuzuzz 2: N U 咄 exchange p gal dry~iσ madnox z3: sai) non-containing n: visiting the funeral entrance 2s: surveying the gas entrance

Claims (1)

【特許請求の範囲】 酸素と炭酸ガスを含む雰囲気気体中の炭酸ガス濃度を測
定する方法であって、電解質としての溶融炭酸アルカリ
金属塩と参照電極と測定電極とから構成される電気化学
セルの参照電極に、既知濃度の酸素と炭酸ガスを含む参
照気体を供給し、測定電極に測定の対象となる未知濃度
の酸素と炭酸ガスを含む測定対象気体を供給することに
よって、酸素と炭酸ガスの濃淡電池を形成せしめ、上記
電気化学セルの起電力と別途に用意した酸素センサによ
って測定された上記測定対象気体中の酸素濃度と参照気
体中の酸素濃度および炭酸ガス濃度をE=(RT/4F
)ln[(P_O_2)・P_C_O_2^2]/[(
P_o_O_2・P_o_C_O_2^2]但し、 E:濃淡電池の起電力 R:気体定数 T:絶対温度 F:ファラデー定数 P_o_O_2:参照気体中の既知酸素濃度 P_o_C_O_2:参照気体中の既知炭酸ガス濃度 P_O_2:測定対象気体中の酸素濃度 P_C_O_2:測定対象気体中の炭酸ガス濃度で与え
られる式に代入し、測定対象気体中の炭酸ガス濃度(P
_C_O_2)を計算によつて求めることを特徴とする
炭酸ガス濃度を測定する方法。
[Claims] A method for measuring the concentration of carbon dioxide in an atmospheric gas containing oxygen and carbon dioxide, the method comprising an electrochemical cell comprising a molten alkali metal carbonate as an electrolyte, a reference electrode, and a measuring electrode. By supplying a reference gas containing known concentrations of oxygen and carbon dioxide to the reference electrode and supplying a measurement target gas containing unknown concentrations of oxygen and carbon dioxide to the measurement electrode, the concentration of oxygen and carbon dioxide can be determined. A concentration cell is formed, and the electromotive force of the electrochemical cell, the oxygen concentration in the target gas measured by a separately prepared oxygen sensor, the oxygen concentration and carbon dioxide concentration in the reference gas are calculated as follows: E=(RT/4F)
)ln[(P_O_2)・P_C_O_2^2]/[(
P_o_O_2・P_o_C_O_2^2] However, E: Electromotive force of concentration cell R: Gas constant T: Absolute temperature F: Faraday constant P_o_O_2: Known oxygen concentration in reference gas P_o_C_O_2: Known carbon dioxide concentration in reference gas P_O_2: Measurement target Oxygen concentration in the gas P_C_O_2: Substitute into the formula given by the carbon dioxide concentration in the gas to be measured, and calculate the concentration of carbon dioxide in the gas to be measured (P
_C_O_2) is determined by calculation. A method for measuring carbon dioxide concentration.
JP1034537A 1989-02-14 1989-02-14 Method for measuring concentration of gaseous carbon dioxide Pending JPH02213763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034537A JPH02213763A (en) 1989-02-14 1989-02-14 Method for measuring concentration of gaseous carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034537A JPH02213763A (en) 1989-02-14 1989-02-14 Method for measuring concentration of gaseous carbon dioxide

Publications (1)

Publication Number Publication Date
JPH02213763A true JPH02213763A (en) 1990-08-24

Family

ID=12417036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034537A Pending JPH02213763A (en) 1989-02-14 1989-02-14 Method for measuring concentration of gaseous carbon dioxide

Country Status (1)

Country Link
JP (1) JPH02213763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942144B2 (en) * 2013-08-13 2021-03-09 Cameron International Corporation CO2 concentration measurement in dry gas mixtures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942144B2 (en) * 2013-08-13 2021-03-09 Cameron International Corporation CO2 concentration measurement in dry gas mixtures

Similar Documents

Publication Publication Date Title
Iwahara et al. Galvanic cell-type humidity sensor using high temperature-type proton conductive solid electrolyte
Vayenas et al. Chemistry at catalytic surfaces: The SO2 oxidation on noble metals
Maier et al. Fast potentiometric CO2 sensors with open reference electrodes
Gauthier et al. Solid‐State Detectors for the Potentiometric Determination of Gaseous Oxides: II. Measurements in Oxygen‐Variable Gases in the, System
Itoh et al. Solid reference electrode of SO2 sensor using β-alumina solid electrolyte
JPS60256043A (en) Gas sensor
US20180328881A1 (en) Sensor and measurement method for measuring hydrogen content in metal melt
US4218297A (en) Electrochemical gauge for oxygen having an internal reference and solid electrolyte
Uchida et al. Gas electrode reactions in molten carbonate media: Part III. Temperature dependence of oxygen reduction kinetics in (Li+ K) CO3 eutectic
US4622105A (en) Method for measuring gaseous sulfur dioxide
JPH0212053A (en) Monolithic dual gas sensor
JPH02213763A (en) Method for measuring concentration of gaseous carbon dioxide
JP3622977B2 (en) A potentiometric CO bottom 2 sensor with an open reference electrode based on titanate and stannate
Kitazawa et al. Use of stabilized ZrO2 to measure O2 permeation
Jiang et al. A nitrite sodalite-based NO2 gas sensor
JPS59225347A (en) Liquid electrolyte containing powder for electrochemical sensors
Hürland et al. A new potentiometric NO sensor based on a NO+ cation conducting ceramic membrane
Espelund et al. Thermodynamic Investigation of the Reaction: by Electromotive Force Measurements
Denzumi et al. A new basicity scale based on redox potential of Cr6+/Cr3+ in alkali silicate melts
JPS6111376B2 (en)
JPS6052763A (en) Sensor for measuring concentration of oxygen in molten metal
JP3010376B2 (en) Solid oxygen sensor
SU741132A1 (en) Primary transducer of electrochemical gas analyzer
Etz et al. Dissociation constant of protonated tris (hydroxymethyl) aminomethane in N-methylpropionamide and related thermodynamic quantities from 10 to 55° C
Kumar Devices based on interfacing two or more solid electrolytes