JPH02213452A - Low thermal expansion and high heat conductivity alloy - Google Patents

Low thermal expansion and high heat conductivity alloy

Info

Publication number
JPH02213452A
JPH02213452A JP3545989A JP3545989A JPH02213452A JP H02213452 A JPH02213452 A JP H02213452A JP 3545989 A JP3545989 A JP 3545989A JP 3545989 A JP3545989 A JP 3545989A JP H02213452 A JPH02213452 A JP H02213452A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
powder
thermal conductivity
heat conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3545989A
Other languages
Japanese (ja)
Inventor
Hideki Nakamura
秀樹 中村
Yoichi Mochida
洋一 持田
Rikizo Watanabe
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3545989A priority Critical patent/JPH02213452A/en
Publication of JPH02213452A publication Critical patent/JPH02213452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the alloy having a low thermal expansion characteristic, high heat conductivity and excellent workability by mixing the powders of the metals respectively having specified average thermal expansion coefficient and heat conductivity and binding the mixture into a specified state by sintering. CONSTITUTION:The powder of one or >=2 kinds among the metals and alloys having <=6X10<-6>/ deg.C average thermal expansion coefficient from 20 to 150 deg.C and <=60W/mK heat conductivity (1W/mK=0.24cal/sec.cm.deg) and the powder of one or >=2 kinds among the metals and alloys having >=11X10<-6>/ deg.C average thermal expansion coefficient from 20 to 150 deg.C and a 150W/mK heat conductivity are mixed. The mixture is then bound by sintering to obtain an alloy in which the respective powders have a fine alloyed mixed structure only at their interface and the powders of the metals and alloys having >=150W/mK heat conductivity have a continuous layer. By this method, the low thermal expansion and high heat conductivity alloy having 6-11X10<-6>/ deg.C average thermal expansion coefficient from 20 to 150 deg.C and 60-150W/mK heat conductivity is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超高集積回路等において用いられる低熱膨張
特性および高熱伝導特性を兼備する合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy that has both low thermal expansion properties and high thermal conductivity properties and is used in ultra-high integrated circuits and the like.

〔従来の技術〕[Conventional technology]

エレクトロニクス分野を中心として、従来存在しなかっ
たような新規な機能を有する新素材へのニーズが発生し
てきた。例えば低熱膨張特性と高熱伝導特性とを併せも
つ材料が超高集積回路用のハウジングやパッケージ材料
に求められている。
There has been a need for new materials with new functions that did not previously exist, mainly in the electronics field. For example, materials with both low thermal expansion and high thermal conductivity are required for housings and packaging materials for ultra-highly integrated circuits.

しかしながら、熱膨張係数と熱伝導率を示す第1図から
れかるように、本発明が得ようとする低熱膨張特性と高
熱伝導特性を共に満足する図中斜線部に該当する特性を
有する材料は見当らない。
However, as can be seen from FIG. 1 showing the coefficient of thermal expansion and thermal conductivity, there are materials with properties corresponding to the shaded area in the figure that satisfy both the low thermal expansion and high thermal conductivity properties that the present invention aims to obtain. I can't find it.

金属単体ではWやMoが、また合金系では前記WやMo
を基とする合金だけが要求特性に近い値を示しているに
すぎない。
W and Mo are used as single metals, and W and Mo are used as alloys.
Only alloys based on this show values close to the required properties.

これに対して、化合物の中ではSiC系、AIN系など
のセラミック物質が要求特性に近く、一部実用化されて
いるのが現状である。
On the other hand, among compounds, ceramic materials such as SiC-based and AIN-based materials have close to the required characteristics, and some of them are currently in practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前述のWやMOまたはこれらを基とする合金
は材料コストが極めて高いほか、塑性加工、溶接、接合
などが困難なうえ比重が大きく扱いにくい欠点があり、
工業用材料として使用し難い問題がある。
However, the above-mentioned W, MO, and alloys based on these have extremely high material costs, are difficult to plastic work, weld, and join, and have a large specific gravity that makes them difficult to handle.
There are problems that make it difficult to use as an industrial material.

また、金属系材料では複数の金属元素を溶製して合金化
させることによって所望する特性を得ようとする試みは
通常行なわれる手段であるが、物理的性質に関しては、
一般に全率固溶体を作るA。
In addition, in the case of metallic materials, attempts are usually made to obtain desired properties by melting and alloying multiple metal elements, but in terms of physical properties,
A that generally forms a total solid solution.

82種類の金属を合金化した場合、熱膨張係数は複合側
によって直線的に変化するが、熱伝導率は複合側より低
くなり、合金化でこの2種類の物理的特性を同時に満足
することはできず、従来の概念では前述の要求特性に合
致する実用合金は存在しないのが実情である。
When 82 types of metals are alloyed, the thermal expansion coefficient changes linearly depending on the composite side, but the thermal conductivity is lower than the composite side, and it is impossible to satisfy these two types of physical properties at the same time by alloying. The reality is that there is no practical alloy that meets the above-mentioned required properties based on the conventional concept.

これに対して、SiCやAINなどのセラミック物質は
被加工性、機械的性質の信頼度、コストの点などに問題
があり、必ずしも満足すべき材料とは言えない。
On the other hand, ceramic materials such as SiC and AIN have problems in processability, reliability of mechanical properties, cost, etc., and are not necessarily satisfactory materials.

本発明の目的は、高い信頼性が要求される半導体装置用
などの工業材料として、安価で加工性に優れ、しかも低
熱膨張性と高熱伝導性とを同時に満足する合金を提供す
ることにある。
An object of the present invention is to provide an alloy that is inexpensive, has excellent workability, and satisfies both low thermal expansion and high thermal conductivity as an industrial material for semiconductor devices that require high reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、これまでと発想を異にし、熱膨張率が低いグ
ループと熱伝導率が高いグループとの各グループから選
ばれた1種以上の金属粉末または合金粉末とが、それぞ
れ複合された界面においてのみ合金接合され、接合界面
以外は実質的に合金元素の拡散を生じていない合金で、
各々の低熱膨張特性と高熱伝導特性とを複合的に発揮せ
しめることによって、従来に存在しない低熱膨張率と高
熱伝導性を兼備した新しい機能合金である。
The present invention differs in concept from the past, and provides an interface in which one or more metal powders or alloy powders selected from each of a group with a low coefficient of thermal expansion and a group with a high thermal conductivity are combined. An alloy that is alloy-bonded only at the bonding interface, with virtually no diffusion of alloying elements other than the bonding interface.
This is a new functional alloy that combines low thermal expansion and high thermal conductivity, which have never existed before, by combining the low thermal expansion and high thermal conductivity characteristics of each.

本発明合金は、被加工性はもとより、優れた機械的性質
と経済性において、MOlW等の単独またはこれらを基
とする重合金やセラミック物質と比較して格段に優れた
工業性を有する金属材料である。
The alloy of the present invention is a metal material that has much superior industrial properties in terms of not only processability but also excellent mechanical properties and economic efficiency compared to heavy alloys and ceramic materials such as MOLW alone or based on them. It is.

すなわち、第1の発明は20℃から150℃までの平均
熱膨張係数が6〜11 X 10’ /’C1かつ熱伝
導率が60〜150W/mK (1W/mK = 0.
24cal/sec−an−deg)であることを特徴
とする低熱膨張高熱伝導性合金であり、第2の発明は、
20℃から150℃までの平均熱膨張係数が6XIO−
6/℃以下で、熱伝導率が60W/a+に以下の金属お
よび合金のうちの1種または2種以上の粉末と、20℃
から150℃までの平均熱膨張係数が11 X 10’
 /”C以上で、熱伝導率が150W/wK以上の金属
および合金のうちの1種または2種以上の粉末とを混合
した後、焼結により結合して、それぞれの粉末の界面に
おいてのみ合金接合されている微細な混合組織を有し、
さらに前記熱伝導率が150W/aK以上の金属および
合金のうちの1種または2種以上の粉末が連続層を有す
る第1の発明に記載の低熱膨張高熱伝導性合金であり、
さらに第3の発明は、熱伝導率が150W/mK以上の
金属がCuからなる第2の発明に記載の低熱膨張高熱伝
導性合金である。
That is, the first invention has an average coefficient of thermal expansion from 20°C to 150°C of 6 to 11 x 10'/'C1 and a thermal conductivity of 60 to 150 W/mK (1W/mK = 0.
24 cal/sec-an-deg), the second invention is a low thermal expansion and high thermal conductivity alloy, characterized by:
The average coefficient of thermal expansion from 20℃ to 150℃ is 6XIO-
Powder of one or more metals and alloys with a thermal conductivity of 60 W/a+ or less at 6/°C or less and 20°C
The average coefficient of thermal expansion from to 150℃ is 11 x 10'
/''C or higher and a thermal conductivity of 150 W/wK or higher and one or more powders of metals and alloys are mixed and then combined by sintering to form an alloy only at the interface of each powder. It has a fine mixed structure that is bonded,
Furthermore, the low thermal expansion and high thermal conductivity alloy according to the first invention has a continuous layer of powder of one or more of the metals and alloys having a thermal conductivity of 150 W/aK or more,
Furthermore, a third invention is the low thermal expansion and high thermal conductivity alloy according to the second invention, in which the metal having a thermal conductivity of 150 W/mK or more is Cu.

本発明において、使用する低熱膨張粉末には混層の低熱
膨張合金を用いることができる。例えば、インバーと称
される合金系は、20℃から150℃までの平均熱膨張
係数が6X10=/’C以下となるものであり、この合
金系を例示すれば、重量比で、(1)、Ni 34−3
8%、残部実質的にFeよりなるFe−Ni合金、 (2) (1) F e−N i合金のNiの一部をM
 n < 2 、0%、C<0.5%、Or < 2%
、Ti<2.5%、Cu < 4%の1種以上で置換し
た合金、 (3) N i 29−40%、 Co(12%、残部
実質的にFeよりなるFe−N1−Goo合金 (4)(3)項Fe−N1−Go合金のNi゛の一部を
M n < 2 、0%、 C<0.5%、Cr < 
2%、Ti(2,5%、Cu < 4%の1種以上で置
換した合金、 (5) Fe 34−38%、 Cr 8−11%、残
部実質的にGoよりなるCoo−Fe−Cr合金、 (6)(5)項F e−Cr−G o合金のFeの一部
をM n (2、0%、 C<0.5%、Ti(2,5
%、Cu<4%の1種以上で置換した合金等がこれに該
当する。
In the present invention, a mixed layer low thermal expansion alloy can be used as the low thermal expansion powder. For example, an alloy called Invar has an average thermal expansion coefficient of 6X10=/'C or less from 20°C to 150°C. , Ni 34-3
Fe-Ni alloy consisting of 8% and the remainder substantially Fe, (2) (1) Part of the Ni of Fe-Ni alloy is M
n < 2, 0%, C < 0.5%, Or < 2%
, Ti < 2.5%, Cu < 4%, (3) Fe-N1-Goo alloy consisting of Ni 29-40%, Co (12%, the balance substantially Fe) ( 4) Part of the Ni of the Fe-N1-Go alloy in item (3) is M n < 2, 0%, C < 0.5%, Cr <
(5) Coo-Fe-Cr consisting of 34-38% Fe, 8-11% Cr, and the remainder substantially Go. Alloy, (6) (5) Fe-Cr-G
%, and alloys substituted with one or more of Cu<4%.

また、高熱伝導合金では安価なCuなどを用いると効果
的である。例えば、熱伝導率が200〜400W/mK
である、 (7)電気銅、脱酸銅、無酸素銅でCuの純度が99%
以上の純Cu、 (8)CuにCd<2%、S i < 1%、Zr<1
%、AI<10%の1種以上を添加したCu合金、 等が該当する。
Furthermore, it is effective to use inexpensive Cu or the like as a high thermal conductivity alloy. For example, the thermal conductivity is 200 to 400 W/mK
(7) The purity of Cu is 99% with electrolytic copper, deoxidized copper, and oxygen-free copper.
or more pure Cu, (8) Cu with Cd<2%, Si<1%, Zr<1
%, Cu alloys to which one or more types of AI<10% are added, etc.

これらの低熱膨張性粉末と高熱伝導性粉末をそれぞれの
粉末の界面においてのみ合金接合させることで本発明の
低熱膨張高熱伝導性合金を具現することができる。言い
換えれば、それぞれの物性値が実質的に変化しない範囲
で各粉末の界面においてのみ合金接合せしめバルク化す
ることによって低熱膨張と高熱伝導の2種類の機能を兼
備させるのである。
The low thermal expansion and high thermal conductivity alloy of the present invention can be realized by alloy-bonding these low thermal expansion powders and high thermal conductivity powders only at the interfaces of the respective powders. In other words, the two types of functions of low thermal expansion and high thermal conductivity are achieved by alloying and bulking only at the interface of each powder within a range where the respective physical properties do not substantially change.

上記2種類の機能を効果的に兼備させるには、低熱膨張
粉末の粒子間隙を高、熱伝導材料で満たした金属組織を
有することが必要である。さらに、残余空隙率が5%以
下であることが望ましい。
In order to effectively combine the above two types of functions, it is necessary that the low thermal expansion powder has a metal structure in which the interparticle gaps are filled with a highly thermally conductive material. Furthermore, it is desirable that the residual porosity is 5% or less.

ここで、上述の各粉末をそれぞれの物性値が実質的に変
化しない範囲とは、それぞれ異なる2種類の粉末が接合
界面においてのみ合金接合された状態を意味し、接合界
面以外は相手粒子内に一方の金属元素が拡散しないこと
を指す。より詳しくは相互粒子の界面から10μmにお
ける異種粒子からの金属元素の拡散量が重量%で5%以
内であることが望ましい。特に上記の高熱伝導材料がC
uからなる場合、Cu相内に低熱膨張材料に含有するF
e、 Ni、Go等の合金元素が拡散固溶化すると熱伝
導率が急激に低下することが実験によって確認された。
Here, the above-mentioned range in which the physical property values of each powder do not substantially change means that two different types of powder are alloyed only at the bonding interface, and other than the bonding interface is in the other particle. This refers to the fact that one metal element does not diffuse. More specifically, it is desirable that the amount of diffusion of metal elements from different particles within 10 μm from the interface between the particles is within 5% by weight. In particular, the high thermal conductivity materials mentioned above are C
F contained in the low thermal expansion material in the Cu phase
Experiments have confirmed that when alloying elements such as e, Ni, and Go are diffused into a solid solution, the thermal conductivity decreases rapidly.

このように粉末相互間の金属元素の拡散は、所望する両
特性を著しく低下させる結果になるが、複合材料の機械
的性質を確保する上で各粉末の接合界面においてのみ合
金接合させることが有効である。
In this way, diffusion of metal elements between powders results in a significant decrease in both desired properties, but it is effective to perform alloy bonding only at the bonding interface of each powder in order to ensure the mechanical properties of the composite material. It is.

上述の各粉末の接合面においてのみ合金接合させるには
1例えばホットプレス、熱間静水圧ブレス(HI P)
によって焼結できるが、焼結条件は混合する粉末の種類
、配合量の他、粉末粒径や形状等に応じて決定される。
To achieve alloy bonding only on the bonding surfaces of the above-mentioned powders, 1. For example, hot press, hot isostatic pressing (HIP)
However, the sintering conditions are determined depending on the type and amount of powder to be mixed, as well as the powder particle size and shape.

なお、相互粒子間の元素の拡散を防止する方法として粉
末表面に酸化被膜または窒化被膜を形成させた後、焼結
すると有効であるが、必ずしもその必要はない。
Although it is effective to form an oxide film or a nitride film on the powder surface and then sinter it as a method for preventing the diffusion of elements between particles, this is not always necessary.

ところで、本願第1発明の両特性を同時に満足する複合
材料を得るためには、合金接合による両特性の低下分を
見越した出発原料を選択することが必要である。したが
って、本願第2発明は、それぞれの特性を溝たす粉末を
出発原料として選び、これらを混合した後焼結するので
ある。
By the way, in order to obtain a composite material that simultaneously satisfies both the properties of the first invention of the present application, it is necessary to select starting materials that take into account the reduction in both properties due to alloy joining. Therefore, in the second invention of the present application, powders satisfying each characteristic are selected as starting materials, and the powders are mixed and then sintered.

〔実施例〕〔Example〕

以下、実施例について具体的に述べる。 Examples will be described in detail below.

実施例1 まず、比較合金を製造した溶浸法の実施例について述べ
る。
Example 1 First, an example of the infiltration method used to produce a comparative alloy will be described.

重量比でNi32.3%、Go 5.5%、残部Feお
よび不可避的不純物よりなる通称スーパーインバー合金
の水アトマイズ粉末を作成した。−100mesh、平
均粒径52μlのこの粉末をそれぞれ3および4トン/
ゴの成形圧で圧密化した後、30誓X45LX10t(
M)の試験片を削出した。
A water atomized powder of a so-called super invar alloy consisting of 32.3% Ni, 5.5% Go, and the balance Fe and unavoidable impurities by weight was prepared. - 3 and 4 tons of this powder with 100 mesh and average particle size of 52 μl, respectively.
After compacting with the molding pressure of
A test piece of M) was cut out.

各試験片の空隙率は前者が48%、後者が27%であっ
た。この試験片と同一断面形状(30W X 45L)
に電解Cu粉末を成形した。この際、Cu粉末の使用量
は前記空隙をCuで澗たすのに必要なCuの重量比の1
.1倍とした。スーパーインバー合金成形体の上部にC
u成形体を積載し、乾燥H1雰囲気中で、1130℃X
40iinの溶浸を行なった。冷却後添加したCu重量
の99.2%以上がスーパーインバー合金成形体中に溶
浸されたことが確認された。各溶浸後の試験片から密度
、熱膨張、熱伝導、引張試験片を削出し、それぞれの項
目の物理的性質および機械的性質を測定した。結果につ
いては後続の実施例の結果と併せてまとめて後述する。
The porosity of each test piece was 48% for the former and 27% for the latter. Same cross-sectional shape as this test piece (30W x 45L)
The electrolytic Cu powder was molded. At this time, the amount of Cu powder used is 1 of the weight ratio of Cu required to fill the voids with Cu.
.. It was set to 1 times. C on the top of the super invar alloy molded body
U molded bodies are loaded and heated at 1130°C in a dry H1 atmosphere.
Infiltration was performed for 40 iin. It was confirmed that 99.2% or more of the weight of Cu added after cooling was infiltrated into the super invar alloy compact. Density, thermal expansion, thermal conductivity, and tensile test pieces were cut out from each infiltrated test piece, and the physical properties and mechanical properties of each item were measured. The results will be described below together with the results of subsequent examples.

次に本発明合金を製造したHIP法について述べる。Next, the HIP method for manufacturing the alloy of the present invention will be described.

重量比でNi32.1%、Go 5.6%、残部Feお
よび不可避的不純物よりなる低熱膨張合金のArガスア
トマイズ粉末を作成し、−20meshで分級した。
An Ar gas atomized powder of a low thermal expansion alloy consisting of 32.1% Ni, 5.6% Go, the remainder Fe and unavoidable impurities was prepared by weight, and classified using -20 mesh.

粉末の形状は実質的に球状であり、平均粒径は270μ
mであった。この粉末に平均粒径70μIのArガスア
トマイズ法による球状Cu粉末をそれぞれ27%、38
%、48%、58%の重量比で混合し、キャンニング後
、800℃、1000気圧、2HrのHIP処理を実施
した。各圧密体より各種試験片を削出し、前述のCu溶
漫材と比較試験を行なった。その結果を第1表に示す。
The shape of the powder is substantially spherical, with an average particle size of 270μ
It was m. To this powder, 27% and 38% of spherical Cu powder was added by Ar gas atomization with an average particle size of 70μI, respectively.
%, 48%, and 58% by weight, and after canning, HIP treatment was performed at 800° C., 1000 atm, and 2 hours. Various test pieces were cut out from each compacted body, and a comparison test with the above-mentioned Cu molten material was conducted. The results are shown in Table 1.

評価項目は密度比、20℃から150℃までの平均熱膨
張係数、熱伝導率(フラッシュ法で薄片状試料の表面を
キセノンランプで照射し、瞬間的に加熱し、試料裏面の
温度上昇率で算出)、合金拡散量の4項目である。ここ
で合金拡散量は、低熱膨張合金粉末とCu粉末の接合界
面より、それぞれ10μm粉末の内部に入った地点にお
けるCu、Feの重量比の測定結果を示した。すなわち
、低熱膨張合金粉末ではCuを、Cu粉末ではFeを分
析したものである。
The evaluation items are density ratio, average coefficient of thermal expansion from 20°C to 150°C, thermal conductivity (using the flash method, the surface of a flaky sample is irradiated with a xenon lamp to instantaneously heat it, and the rate of temperature rise on the back side of the sample is measured). calculation) and alloy diffusion amount. Here, the amount of alloy diffusion is the result of measuring the weight ratio of Cu and Fe at a point where each powder enters the inside of the powder by 10 μm from the bonding interface between the low thermal expansion alloy powder and the Cu powder. That is, low thermal expansion alloy powder was analyzed for Cu, and Cu powder was analyzed for Fe.

実施例1の結果を第1表に平均熱膨張係数と熱伝導率を
Cu含有量に対してプロットした結果を第2図に示した
。溶浸法とHIP法との比較では、それぞれのCu含有
量に対していずれもHIP法の方が良好な結果が得られ
た。すなわち、HIP法の方が各Cu含有量のレベルで
平均熱膨張係数は小さく、熱伝導率が大きい値が得られ
る。この傾向は、特に熱伝導率の値に顕著で溶浸法では
Cu量の増加に対し、熱伝導率の増量はほとんどなく1
期待した複合特性は得られなかった。
The results of Example 1 are shown in Table 1, and the results of plotting the average coefficient of thermal expansion and thermal conductivity against the Cu content are shown in FIG. In a comparison between the infiltration method and the HIP method, better results were obtained with the HIP method for each Cu content. That is, the HIP method provides a smaller average coefficient of thermal expansion and a larger value of thermal conductivity at each Cu content level. This tendency is particularly noticeable in the value of thermal conductivity; in the infiltration method, there is almost no increase in thermal conductivity as the amount of Cu increases.
The expected composite properties were not obtained.

これに対し、HIP法では平均熱膨張係数は複合側(そ
れぞれの添加量に対し比例関係)で変化し、熱伝導率は
複合側より予測される数字より低くなるが、高い熱伝導
率を保持することが可能である。
On the other hand, in the HIP method, the average coefficient of thermal expansion changes on the composite side (proportional to the amount of each addition), and the thermal conductivity is lower than the predicted value from the composite side, but maintains high thermal conductivity. It is possible to do so.

試料No、048では平均熱膨張係数が9.lXlO4
/℃、熱伝導率が83W/@にと在来の金属材料または
セラミックス物質では得られない物性値を保有する。
Sample No. 048 has an average coefficient of thermal expansion of 9. lXlO4
/°C, and has a thermal conductivity of 83 W/@, physical properties that cannot be obtained with conventional metal or ceramic materials.

溶浸法では、Cu中にNiが7%以上、スーパーインバ
ー合金相中にCuが21%以上も固溶し、これが熱伝導
率を低下、熱膨張を増大させる原因となっている。HI
F’法ではCu粉末の界面からlOμm内部に入ったC
u中のNiは3.5%以下であり、スーパーインバー粉
末中の界面から10μm位置でのCuも1.2%以下と
合金元素の相互拡散が極めて低い。
In the infiltration method, 7% or more of Ni is dissolved in Cu and 21% or more of Cu is dissolved in the super-invar alloy phase, which causes a decrease in thermal conductivity and an increase in thermal expansion. HI
In the F' method, C that has entered 10 μm from the interface of the Cu powder
Ni in u is 3.5% or less, and Cu at a position 10 μm from the interface in the super invar powder is also 1.2% or less, so interdiffusion of alloying elements is extremely low.

第1表からもわかるように、溶浸法による合金は、密度
比が十分でなく高熱伝導性のCu層が不連続層であるこ
と、および相互粒子間の拡散量が大きいことから十分な
特性が得られない。
As can be seen from Table 1, the alloy produced by the infiltration method has sufficient properties because the density ratio is insufficient, the highly thermally conductive Cu layer is a discontinuous layer, and the amount of diffusion between mutual particles is large. is not obtained.

なお、HIP焼結した試料No、G27の合金を金属組
織観察したところ、Cuが不連続層であることが確認さ
れた。これはスーパーインバー粉末の配合比がCu粉末
に比べて多いため、スーパーインバー粒子間隙を高熱伝
導材料のCuが十分溝たすことができず、所望する物性
値が得られなかったものである。
In addition, when the metallographic structure of the HIP-sintered alloys of sample No. G27 was observed, it was confirmed that Cu was a discontinuous layer. This is because the blending ratio of Super Invar powder was higher than that of Cu powder, so Cu, which is a highly thermally conductive material, could not sufficiently fill the gaps between Super Invar particles, and desired physical properties could not be obtained.

実施例2 重量比でNi32.8%、Co 5.5%、Ti 1.
2%よりなり、残部Feおよび不可避的不純物よりなる
平均粒径270ILIIlのN、ガスアトマイズ法によ
って球状の低熱膨張係数の粉末を作成した。アトマイズ
ままの粉末の表面をESCA分析した結果では表面に5
00A(オングストローム)以下のTIN粉末が生成し
ていることが確認された。同粉末に実施例1と同一のC
u粉末を重量比27%、38%、48%、58%でそれ
ぞれ混合し、実施例1と同一条件のHIP処理を施した
Example 2 Weight ratio: Ni 32.8%, Co 5.5%, Ti 1.
A spherical powder with a low coefficient of thermal expansion was prepared by gas atomization using N with an average particle diameter of 270 ILII, consisting of 2% Fe and unavoidable impurities. The results of ESCA analysis of the surface of the as-atomized powder show that there are 5
It was confirmed that TIN powder of 00A (Angstrom) or less was produced. The same C as in Example 1 was added to the same powder.
U powder was mixed at a weight ratio of 27%, 38%, 48%, and 58%, respectively, and subjected to HIP treatment under the same conditions as in Example 1.

評価結果を第2表に示す。スーパーインバー粉末表面に
TiNを形成させた第2表の結果と、TiNを形成しな
い第1表の結果とを同じ配合比で得られた合金について
比較すると、スーパーインバーの粉末表面にTiNを形
成させた合金の熱伝導率の方が約2割の上昇が認められ
た。これはスーパーインバーの粉末表面に形成されたT
iN層が粉末相互間の金属元素の拡散を防止させる効果
によるものと考えられる。
The evaluation results are shown in Table 2. Comparing the results in Table 2 where TiN is formed on the surface of Super Invar powder and the results in Table 1 where TiN is not formed for alloys obtained at the same blending ratio, it is found that TiN is formed on the surface of Super Invar powder. It was observed that the thermal conductivity of the alloy was increased by about 20%. This is the T formed on the surface of Super Invar powder.
This is thought to be due to the effect of the iN layer in preventing diffusion of metal elements between powders.

なお、HIP焼結した試料No、H27の合金は、実施
例1のNo、G27の合金と同様に金属組織観察したと
ころ、Cuが不連続層であることが確認され、所望する
物性値が得られなかった。
In addition, when the metallographic structure of the HIP-sintered sample No. H27 was observed in the same manner as the No. G27 alloy of Example 1, it was confirmed that Cu was a discontinuous layer, and the desired physical property values were obtained. I couldn't.

実施例3 実施例2で得られた30sφX300mmQの4種類の
材料を冷間スウェージングで10mmφX2700ae
Rまで加工を行なった。この材料について、第1表およ
び第2表の評価項目と合わせて、引張試験を行なった。
Example 3 Four types of materials of 30sφX300mmQ obtained in Example 2 were cold swaged to 10mmφX2700ae.
Processing was performed up to R. A tensile test was conducted on this material in conjunction with the evaluation items in Tables 1 and 2.

その結果を第3表に示す。冷間加工で30閤φから10
mmφに圧下することによりミクロ的に検出される空孔
は消失し、密度比は真密度に対して100%となり、こ
れに伴って平均熱膨張係数はわずかに低下し、熱伝導率
は約りO%上昇した。
The results are shown in Table 3. From 30mm diameter to 10mm by cold working
By reducing the pressure to mmφ, the microscopically detected pores disappear and the density ratio becomes 100% of the true density, the average coefficient of thermal expansion decreases slightly and the thermal conductivity decreases accordingly. It increased by 0%.

冷間加工ままの機械的性質は引張強さで32kg/s’
以上、伸び値で6%以上を示した。
Mechanical properties as cold worked are 32 kg/s' tensile strength
Above, the elongation value showed 6% or more.

なお、HIP焼結した試料No、C27の合金は冷間加
工を施しても、Cuがなお不連続層であることが確認さ
れ、所望する物性値が得られなかった。
It should be noted that even though the HIP-sintered alloy sample No. C27 was subjected to cold working, it was confirmed that Cu was still a discontinuous layer, and desired physical property values could not be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、20℃から150℃までの平均熱膨張
係数が6〜11 X 10” /’C1かつ熱伝導率が
60〜150W/mKである両特性を同時に満足し、し
かも安価で加工性に優れた金属材料を提供することがで
き、工業上有益である。
According to the present invention, it simultaneously satisfies both properties of an average thermal expansion coefficient of 6 to 11 x 10''/'C1 from 20°C to 150°C and a thermal conductivity of 60 to 150 W/mK, and can be processed at low cost. It is possible to provide a metal material with excellent properties and is industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は°既存材料の熱膨張係数と熱伝導率(斜線部は
本発明の金属系複合材料)の関係を示す図、第2図は実
施例1の結果を熱膨張係数と熱伝導率をCu含有量に対
してプロットした図である。 2眞か5150’Cl21.n 3防kWI外係叛(X
10 /”c)
Figure 1 shows the relationship between the coefficient of thermal expansion and thermal conductivity of existing materials (the shaded area is the metal composite material of the present invention), and Figure 2 shows the relationship between the coefficient of thermal expansion and thermal conductivity of existing materials. It is a figure which plotted against Cu content. 2 Shinka 5150'Cl21. n 3 Anti-KWI Foreign Rebellion (X
10/”c)

Claims (1)

【特許請求の範囲】 1 20℃から150℃までの平均熱膨張係数が6〜1
1×10^−^6/℃、かつ熱伝導率が60〜150W
/mK(1W/mK=0.24cal/sec・cm・
deg)であることを特徴とする低熱膨張高熱伝導性合
金。 2 20℃から150℃までの平均熱膨張係数が6×1
0^−^6/℃以下で、熱伝導率が60W/mK以下の
金属および合金のうちの1種または2種以上の粉末と、
20℃から150℃までの平均熱膨張係数が11×10
^−^6/℃以上で、熱伝導率が150W/mK以上の
金属および合金のうちの1種または2種以上の粉末とを
混合した後、焼結により結合して、それぞれの粉末の界
面においてのみ合金接合されている微細な混合組織を有
し、さらに前記熱伝導率が150W/mK以上の金属お
よび合金のうちの1種または2種以上の粉末が連続層を
有する請求項1に記載の低熱膨張高熱伝導性合金。 3 熱伝導率が150W/mK以上の金属がCuからな
る請求項2に記載の低熱膨張高熱伝導性合金。
[Claims] 1. The average coefficient of thermal expansion from 20°C to 150°C is 6 to 1.
1×10^-^6/℃ and thermal conductivity of 60 to 150W
/mK (1W/mK=0.24cal/sec・cm・
An alloy with low thermal expansion and high thermal conductivity, characterized in that: deg). 2 Average coefficient of thermal expansion from 20℃ to 150℃ is 6×1
A powder of one or more metals and alloys having a thermal conductivity of 60 W/mK or less at a temperature of 0^-^6/°C or less,
Average thermal expansion coefficient from 20℃ to 150℃ is 11×10
After mixing powders of one or more metals and alloys with a thermal conductivity of 150 W/mK or more at a temperature of 6/°C or higher, the powders are combined by sintering to form an interface between the respective powders. 2. The powder has a fine mixed structure in which the alloy is bonded only in the alloy, and further has a continuous layer of powder of one or more of metals and alloys having a thermal conductivity of 150 W/mK or more. Low thermal expansion, high thermal conductivity alloy. 3. The low thermal expansion and high thermal conductivity alloy according to claim 2, wherein the metal having a thermal conductivity of 150 W/mK or more is Cu.
JP3545989A 1989-02-15 1989-02-15 Low thermal expansion and high heat conductivity alloy Pending JPH02213452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3545989A JPH02213452A (en) 1989-02-15 1989-02-15 Low thermal expansion and high heat conductivity alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3545989A JPH02213452A (en) 1989-02-15 1989-02-15 Low thermal expansion and high heat conductivity alloy

Publications (1)

Publication Number Publication Date
JPH02213452A true JPH02213452A (en) 1990-08-24

Family

ID=12442372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3545989A Pending JPH02213452A (en) 1989-02-15 1989-02-15 Low thermal expansion and high heat conductivity alloy

Country Status (1)

Country Link
JP (1) JPH02213452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
US7378053B2 (en) 2003-04-28 2008-05-27 Hitachi Powered Metals Co., Ltd. Method for producing copper-based material with low thermal expansion and high heat conductivity
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378053B2 (en) 2003-04-28 2008-05-27 Hitachi Powered Metals Co., Ltd. Method for producing copper-based material with low thermal expansion and high heat conductivity
JP2006144047A (en) * 2004-11-17 2006-06-08 Dowa Mining Co Ltd Cu-Ni-Ti BASED COPPER ALLOY AND COOLING PLATE
JP4568092B2 (en) * 2004-11-17 2010-10-27 Dowaホールディングス株式会社 Cu-Ni-Ti copper alloy and heat sink
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Similar Documents

Publication Publication Date Title
JPH0159343B2 (en)
JPH0257659A (en) Ternary metal matrix complex
Stoloff et al. Powder processing of intermetallic alloys and intermetallic matrix composites
German Phase diagrams in liquid phase sintering treatments
JPH02213452A (en) Low thermal expansion and high heat conductivity alloy
US6096111A (en) Exothermically sintered homogeneous composite and fabrication method
Li et al. Wettability and interfacial reaction in SiC/Ni plus Ti system
Leszczyńska-Madej et al. Microstructure characterization of SiC reinforced aluminium and Al4Cu alloy matrix composites
Huang et al. Effect of Ti on TLP bonding of SiCp/2618Al composites using interlayers of mixed Al–Ag–Cu system powders
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
US6312495B1 (en) Powder-metallurgically produced composite material and method for its production
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
Atarashiya Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining
JP2924456B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2564527B2 (en) Method for manufacturing heat-resistant, high-strength, high-ductility aluminum alloy member
Binczyk et al. Intermetallic Fe-Al layers obtained by the powder cloth method
JP2679267B2 (en) Manufacturing method of brazing material
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JP2679268B2 (en) Manufacturing method of brazing material
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JP2924457B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
Ruiz-Navas et al. Development of aluminium alloys and metal matrix composites by powder metallurgy
JPS63143236A (en) Composite boride sintered body
JPS6358900B2 (en)