JPH02213433A - Dispersion strengthened copper alloy and its manufacture - Google Patents

Dispersion strengthened copper alloy and its manufacture

Info

Publication number
JPH02213433A
JPH02213433A JP1240755A JP24075589A JPH02213433A JP H02213433 A JPH02213433 A JP H02213433A JP 1240755 A JP1240755 A JP 1240755A JP 24075589 A JP24075589 A JP 24075589A JP H02213433 A JPH02213433 A JP H02213433A
Authority
JP
Japan
Prior art keywords
copper
dispersion
matrix
dispersed particles
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240755A
Other languages
Japanese (ja)
Inventor
Keizo Shimamura
慶三 島村
Tatsuyoshi Aisaka
逢坂 達吉
Kagetaka Amano
天野 景隆
Satoru Hanai
哲 花井
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1240755A priority Critical patent/JPH02213433A/en
Publication of JPH02213433A publication Critical patent/JPH02213433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To easily manufacture the dispersion strengthened copper alloy having high electric conductivity and high strength by pulverizing and mixing copper oxide with dispersion grain raw material hard to reduce, selectively reducing copper oxide at a specified temp. and thereafter subjecting the mixed powder to compacting and sintering. CONSTITUTION:Copper oxide and dispersion grain raw material chemically stabler than copper oxide in a reducing atmosphere such as Al2O3 are mechanically pulverized and mixed. While the obtd. mixed powder is held to <=1065 deg.C, copper oxide therein is selectively reduced. The selectively reduced mixed powder is compacted. The compact is sintered to obtain a sintered body contg. a copper mother phase and dispersion grains. In the copper mother phase of the sintered body, the structure contg. 0.5 to 6vol.% dispersion grains and having <=0.3mum average diameter of mother phase area free from the dispersion grains is formed. Furthermore, the total quantity of the elements to enter a solid soln. such as Al contained in the copper mother phase is regulated so that the degree of the electric conductivity to be reduced at the time of adding the quantity to pure copper amounts to <=5% IACS. In this way, the dispersion strengthened copper alloy combining high electric conductivity and high strength can easily be obtd. with good reproducibility.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、銅母相中に分散粒子を形成させた分散強化型
銅合金及びその製造方法に関し、更に本発明の分散強化
型銅合金の種々の適用に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a dispersion-strengthened copper alloy in which dispersed particles are formed in a copper matrix and a method for producing the same, and Concerning various applications of reinforced copper alloys.

(従来の技術) 近年、高磁場発生用コイル材料、半導体用リードフレー
ム、スポット溶接用電極などへの応用のために、高い電
気伝導度と高い機械的強度を兼ね備えた銅合金への要望
が高まっている。しかしながら、銅合金における電気伝
導度と強度とは、相反する特性であり、この両者を両立
させることは困難である。
(Conventional technology) In recent years, there has been an increasing demand for copper alloys that have both high electrical conductivity and high mechanical strength for applications such as coil materials for generating high magnetic fields, lead frames for semiconductors, and electrodes for spot welding. ing. However, electrical conductivity and strength in copper alloys are contradictory properties, and it is difficult to achieve both.

ところで、これら電気伝導度及び強度をある程度両立さ
せることが可能な銅合金として、銅の母相に分散粒子を
分散してなる分散強化型銅合金が知られている。分散強
化型銅合金においては、非常に微細な分散粒子を銅母相
に均一に分散させることにより前記相反する二つの特性
を両立させることができる。
By the way, as a copper alloy that can achieve both electrical conductivity and strength to some extent, a dispersion-strengthened copper alloy is known, which is made by dispersing dispersed particles in a copper matrix. In dispersion-strengthened copper alloys, the two contradictory properties described above can be achieved by uniformly dispersing very fine dispersed particles in the copper matrix.

分散強化型合金を製造する方法としては、母相粉末と分
散粒子とをボールミルなどの混合機を用いて粉砕、混合
を行なう技術が知られているが、分散強化型銅合金の場
合には、このような方法に。
As a method for producing dispersion-strengthened alloys, a technique is known in which matrix powder and dispersed particles are crushed and mixed using a mixer such as a ball mill. However, in the case of dispersion-strengthened copper alloys, In this way.

よって、分散粒子を微細かつ均一に分散させることは極
めて困難である。従って、得られた銅合金は、強度の低
いものとなってしまう。
Therefore, it is extremely difficult to disperse the dispersed particles finely and uniformly. Therefore, the obtained copper alloy ends up having low strength.

一方、分散強化型銅合金を製造する他の方法として内部
酸化法が提案されている。この方法は、鯛と銅に比べて
酸化され易い元素とからなる合金の粉末又は切粉を酸化
性雰囲気中で加熱して表面を酸化させ、これを密閉容器
に封入して加熱することによって表面の酸素を内部に拡
散させ、合金粉末の添加元素の酸化物粒子を内部に分散
させた粉末又は切粉を得る方法である。゛かかる方法に
よれば、微細な分散粒子が銅母相に均一に分散された分
散強化型銅合金を得ることができる。
On the other hand, an internal oxidation method has been proposed as another method for manufacturing dispersion-strengthened copper alloys. This method heats the powder or chips of an alloy made of sea bream and an element that is more easily oxidized than copper in an oxidizing atmosphere to oxidize the surface, and then seals it in a sealed container and heats it. In this method, oxygen is diffused into the inside of the alloy powder to obtain powder or chips in which oxide particles of the additive element of the alloy powder are dispersed. According to this method, it is possible to obtain a dispersion-strengthened copper alloy in which fine dispersed particles are uniformly dispersed in the copper matrix.

しかしながら、合金粉末表面の酸素を内部に拡散させて
添加元素を完全に酸化させる内部酸化処理°は、非常に
長い時間を必要とするため、どうしても一部の添加元素
は酸化されず固溶元素として銅母相中に残留し易い。添
加元素が銅母相中に固溶元素として残留すると、分散・
強化型銅合金の電気伝導度は大幅に低下するという問題
が生じる。
However, the internal oxidation process in which oxygen on the surface of the alloy powder is diffused into the interior to completely oxidize the added elements requires a very long time, so some added elements are not oxidized and remain as solid solution elements. It tends to remain in the copper matrix. If the added element remains as a solid solution element in the copper matrix, it will disperse and
A problem arises in that the electrical conductivity of the reinforced copper alloy is significantly reduced.

また、分散粒子の量を減少させて電気伝導度を向上させ
ようとすると、強度が低下してしまう。
Furthermore, if an attempt is made to improve the electrical conductivity by reducing the amount of dispersed particles, the strength will decrease.

分散強化型銅合金の更に他の製造方法として混合酸化物
還元法が知られている。この方法は、Trans、AI
ME、第218巻、 (1980年)775頁1社団法
人粉末冶金技術協会編、粉末冶金技術講座9゜粉末冶金
応用製品(IV)−特殊材料−(19[f4年)6頁(
日刊工業新聞社出版)、及び特開昭62−93321号
公報などに開示されているように、母相となる金属の酸
化物と分散粒子とを混合粉砕し、混合物のうち母相とな
る金属の酸化物のみを還元して金属と分散粒子の混合物
を調製した後、該混合物を通常の粉末冶金の手法によっ
て焼結して分散強化型合金を製造する方法である。
A mixed oxide reduction method is known as yet another method for producing dispersion-strengthened copper alloys. This method uses Trans, AI
ME, Vol. 218, (1980) 775 pages 1 Edited by the Powder Metallurgy Technology Association, Powder Metallurgy Technology Course 9゜ Powder Metallurgy Application Products (IV) - Special Materials - (19 [F4]) 6 pages (
As disclosed in Nikkan Kogyo Shimbun (published by Nikkan Kogyo Shimbun) and Japanese Patent Application Laid-Open No. 62-93321, etc., the oxide of the metal that will become the matrix and the dispersed particles are mixed and crushed, and the metal that will be the matrix of the mixture is In this method, a mixture of a metal and dispersed particles is prepared by reducing only the oxide of the metal, and then the mixture is sintered by a conventional powder metallurgy method to produce a dispersion-strengthened alloy.

しかしながら、前記混合酸化物還元法はニッケルや銀を
母相とする分散強化型合金の製造に適用した場合に良好
な結果が得られているものの、母相となる金属の酸化物
として酸化鋼を使用して分散強化型銅合金の製造に適用
した場合には微細な分散粒子を母相中に均一に分散させ
ることが困難である。従って、この方法では、高強度の
分散強化型銅合金が得られていない。
However, although good results have been obtained when the mixed oxide reduction method is applied to the production of dispersion-strengthened alloys with nickel or silver as the matrix, oxidized steel is used as the oxide of the matrix metal. When applied to the production of dispersion-strengthened copper alloys, it is difficult to uniformly disperse fine dispersed particles in the matrix. Therefore, with this method, a high-strength dispersion-strengthened copper alloy cannot be obtained.

(発明が解決しようとする課題) 本発明は、上記課題を解決するためになされたものであ
って、その目的とするところは、高電気伝導度と高強度
とを兼ね備えた分散強化型銅合金、及びかかる分散強化
型銅合金を簡単な工程で製造し得る分散強化型銅合金の
製造方法を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and its purpose is to create a dispersion-strengthened copper alloy that has both high electrical conductivity and high strength. The object of the present invention is to provide a method for producing a dispersion-strengthened copper alloy, which can produce such a dispersion-strengthened copper alloy in a simple process.

[発明の構成] (課題を解決するための手段及び作用)本発明の分散強
化型銅合金は、銅母相と、銅母相中に0.5乃至6体積
%の範囲で含有された分散粒子とを有し、分散粒子が存
在しない母相領域の平均径が0.3μm以下であり、前
記銅母相中に含まれる合計の固溶元素量が、純銅にその
量を添加した場合に電気伝導度の低下分が5%IACS
以下となるような量であることを特徴とするものである
[Structure of the Invention] (Means and Effects for Solving the Problems) The dispersion-strengthened copper alloy of the present invention comprises a copper matrix and a dispersion contained in the copper matrix in an amount of 0.5 to 6% by volume. particles, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less, and the total amount of solid solution elements contained in the copper matrix is when that amount is added to pure copper. The decrease in electrical conductivity is 5% IACS
It is characterized in that the amount is as follows.

上記分散粒子としては、例えば酸化アルミニウム、酸化
ジルコニウム、酸化チタン、酸化珪素、酸化マグネシウ
ム、酸化イツトリウム、酸化クロム、窒化アルミニウム
、窒化珪素、窒化チタン、窒化硼素、炭化チタン、炭化
硼素、硼化チタン等を挙げることができ、これら単独で
も2種以上の混合物でもよい。
Examples of the dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide, titanium boride, etc. They may be used alone or in a mixture of two or more.

銅母相中の固溶元素は著しく電気伝導度を低下させるこ
とは良く知られている。従って、銅母相中の固溶元素の
全体量は、電気伝導度の低下量が許容される範囲になる
ような量であることが必要である。すなわち、母相の固
溶元素のみで電気伝導度が5%IACSを超える範囲で
低下すると、分散粒子の存在で更に電気伝導度が低下す
ることにより分散強化型銅合金の電気伝導度が不十分な
ものとなってしまうから、銅母相中の固溶元素の全体量
を上述のように規定する。
It is well known that solid solution elements in the copper matrix significantly reduce electrical conductivity. Therefore, the total amount of solid solution elements in the copper matrix needs to be such that the amount of decrease in electrical conductivity is within an acceptable range. In other words, if the electrical conductivity decreases by more than 5% IACS only due to solid solution elements in the matrix, the presence of dispersed particles will further reduce the electrical conductivity, resulting in insufficient electrical conductivity of the dispersion-strengthened copper alloy. Therefore, the total amount of solid solution elements in the copper matrix is defined as described above.

なお、電気伝導度を低下させる作用は、固溶元素の種類
により異なり、各元素の固溶量と電気抵抗率との関係は
、第1図のようになることが知られている(出典F、P
avlek and K、Re1chel:pなる量)
を求めると、第1表のようになる。
The effect of lowering electrical conductivity varies depending on the type of solid solution element, and it is known that the relationship between the amount of each element in solid solution and electrical resistivity is as shown in Figure 1 (Source F , P
avlek and K, Re1chel: p amount)
The result is as shown in Table 1.

前記分散粒子の中では、特に酸化アルミニウムが好まし
く、酸化アルミニウムを分散粒子として用いた場合には
銅母相中に固溶するアルミニウム量を0.04重量%以
下にすることが望ましい。
Among the dispersed particles, aluminum oxide is particularly preferred, and when aluminum oxide is used as the dispersed particles, it is desirable that the amount of aluminum dissolved in the copper matrix is 0.04% by weight or less.

これは上述のように、銅母相中に固溶するアルミニウム
量が0.04i1ft%を超えると、それだけで母相の
電気伝導度が5%IACSを超える範囲で低下し、分散
強化型銅合金の電気伝導度を著しく低下させるためであ
る。
As mentioned above, when the amount of aluminum dissolved in the copper matrix exceeds 0.04i1ft%, the electrical conductivity of the matrix decreases to a range exceeding 5% IACS, and the dispersion-strengthened copper alloy This is because it significantly reduces the electrical conductivity of.

分散粒子の銅母相に対する含有量を上述の範囲に規定し
たのは、その量が0.5体積%未満であると分散強化型
銅合金のおける0、296iJ力を40 kg / a
m2以上にすることができず、6体積%を超えると分散
強化型銅合金の電気伝導度を85%IACS以上にする
ことができなくなるばかりか、二次加工が困難となるか
らである。
The reason for specifying the content of the dispersed particles in the copper matrix in the above range is that if the amount is less than 0.5% by volume, the 0.296 iJ force in the dispersion-strengthened copper alloy will be 40 kg/a.
m2 or more, and if it exceeds 6% by volume, not only will it be impossible to make the electrical conductivity of the dispersion-strengthened copper alloy 85% IACS or more, but also secondary processing will become difficult.

本発明の合金における分散粒子は、分散粒子の存在しな
い銅器相領域の平均径が0.3μm以下であるように分
布していることが必要である。平均径が0.3μmを超
えると、引張強度及び0.2%耐力が著しく低下するか
らである。なお、銅器相領域の平均径は、以下のように
して求めたものである。すなわち、分散強化型銅合金サ
ンプルから薄膜試料を作製して透過型電子顕微鏡により
この薄膜試料の100000倍の写真を写し、第2図に
示すように、写真上で分散粒子以外の位置の任意の10
点を選び、各点を内に含み分散粒子を含まないで描ける
最大の円を10個描き(各点がこの円の中心になるとは
限らない)、これらの円の直径の平均値を分散粒子が存
在しない銅器相領域の平均径する。
It is necessary that the dispersed particles in the alloy of the present invention are distributed such that the average diameter of the copperware phase region where there are no dispersed particles is 0.3 μm or less. This is because if the average diameter exceeds 0.3 μm, the tensile strength and 0.2% proof stress will decrease significantly. The average diameter of the copperware phase region was determined as follows. That is, a thin film sample was prepared from a dispersion-strengthened copper alloy sample, and a photograph of this thin film sample was taken at a magnification of 100,000 times using a transmission electron microscope. 10
Select a point, draw the 10 largest circles that can be drawn including each point without including the dispersed particles (each point is not necessarily at the center of this circle), and calculate the average diameter of these circles as the dispersed particle. is the average diameter of the copperware facies region where it does not exist.

次に、本発明の分散強化型銅合金の製造方法を説明する
Next, a method for producing a dispersion-strengthened copper alloy of the present invention will be explained.

まず、母相の銅原料である酸化銅と還元性雰囲気で酸化
銅より化学的に安定な分散粒子を用意する。酸化銅とし
ては、酸化第一銅(CuzO)、酸化第二銅(Cub)
、及び非化学量論的な酸化銅(CuO,x)がある。酸
化銅は、分散粒子を均一に分散させる観点から、5μm
以下、より好ましくは1μm以下の粒径のものを用いる
ことが望ましい。
First, copper oxide, which is a copper raw material for the parent phase, and dispersed particles, which are chemically more stable than copper oxide, are prepared in a reducing atmosphere. As copper oxide, cuprous oxide (CuzO), cupric oxide (Cub)
, and non-stoichiometric copper oxide (CuO,x). From the viewpoint of uniformly dispersing the dispersed particles, copper oxide has a thickness of 5 μm.
Hereinafter, it is more preferable to use particles with a particle size of 1 μm or less.

分散粒子としては、還元性雰囲気で酸化銅より化学的に
安定であるものであればいかなるものでもよい。このよ
うな分散粒子としては、既述した酸化アルミニウム、酸
化ジルコニウム、酸化チタン、酸化珪素、酸化マグネシ
ウム、酸化イツトリウム、酸化クロム、窒化アルミニウ
ム、窒化珪素、窒化チタン、窒化硼素、炭化チタン、炭
化硼素、硼化チタンから選ばれるIFI又は28以上の
混合物を挙げることができる。また、前記分散粒子原料
の粒径繞銅母相に均一に分散させる観点から、1μm以
下、より好ましくは0.05μm以下にすることが望ま
しい。分散粒子として酸化アルミニウムを用いる場合に
は、結晶型がγ型のもの、又は非晶質のものが好適であ
る。
Any dispersed particles may be used as long as they are chemically more stable than copper oxide in a reducing atmosphere. Such dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide, Mention may be made of IFI selected from titanium boride or a mixture of 28 or more. Further, from the viewpoint of uniformly dispersing the particle size of the dispersed particle raw material in the copper matrix, it is desirable that the particle size is 1 μm or less, more preferably 0.05 μm or less. When aluminum oxide is used as the dispersed particles, those having a γ crystal type or amorphous are preferable.

次いで、銅母相の原料としての酸化銅と分散粒子原料と
を、酸化銅の還元後の銅母相に対して分散粒子が0.5
〜6体積%含有されるように配合した後、機械的に粉砕
・混合する。この場合に、原料としての酸化銅粉末は脆
いため、容易に粉砕される。従って、作製された混合粉
末の粒径は0.05μm以下であり、その平均粒径も0
.01〜0.02μmの微細なものとなる。
Next, the copper oxide as the raw material for the copper matrix and the dispersed particle raw material are mixed so that the dispersed particles are 0.5% of the copper matrix after reduction of the copper oxide.
After blending so that the content is 6% by volume, it is mechanically crushed and mixed. In this case, copper oxide powder as a raw material is brittle and is easily crushed. Therefore, the particle size of the prepared mixed powder is 0.05 μm or less, and the average particle size is also 0.
.. The particles are as fine as 01 to 0.02 μm.

なお原料の粉砕Φ混合は、ボールミル、アトライターの
ような公知の混合装置を使用して行なうことができる。
The pulverization and Φ mixing of the raw materials can be carried out using a known mixing device such as a ball mill or an attriter.

この際に、容器及びボールは非金属製であることが望ま
しい。これは、金属製の容器やボールを用いて粉砕・混
合を行なった場合、混合物中に鉄などの金属が混入して
、得られた分散強化型銅合金の電気伝導度が著しく低下
する恐れがあるからである。
In this case, it is desirable that the container and the ball be made of non-metal. This is because if pulverization and mixing are performed using a metal container or ball, metals such as iron may be mixed into the mixture, which may significantly reduce the electrical conductivity of the resulting dispersion-strengthened copper alloy. Because there is.

次いで、混合粉末を還元雰囲気下に保持された還元炉に
装入して、混合粉末中の酸化銅を選択的に還元する。こ
れにより酸化銅が金属銅に変換される。この還元工程は
、ガス還元及び固体還元剤による還元のいずれをも採用
することができる。
Next, the mixed powder is charged into a reducing furnace maintained under a reducing atmosphere to selectively reduce the copper oxide in the mixed powder. This converts copper oxide to metallic copper. This reduction step can employ either gas reduction or reduction using a solid reducing agent.

ガスによる還元の場合には、水素ガス等の還元性ガス雰
囲気中で熱処理を行う。固体還元剤を用いる場合には、
酸化銅及び分散粒子原料を混合する際に、炭素等の固体
還元剤も添加して混合し、これらの混合物を還元性雰囲
気又は不活性雰囲気中で熱処理して還元する。ただし、
固体還元剤を用いる場合には、その添加量には最適値が
あり、それ以下の添加では酸素が残留して最終的に形成
される合金の導電性が低下してしまい、また、添加量が
過剰である固体還元剤が残留して圧延加工等の二次加工
の際の加工性を害する恐れがある。
In the case of reduction using gas, heat treatment is performed in a reducing gas atmosphere such as hydrogen gas. When using a solid reducing agent,
When the copper oxide and the dispersed particle raw material are mixed, a solid reducing agent such as carbon is also added and mixed, and the mixture is reduced by heat treatment in a reducing atmosphere or an inert atmosphere. however,
When using a solid reducing agent, there is an optimum value for the amount added; if the amount is less than this, oxygen will remain and the conductivity of the final alloy will decrease; There is a risk that an excessive amount of the solid reducing agent may remain and impair workability during secondary processing such as rolling.

なお、この還元工程は、混合粉末中の酸化銅を金属銅の
状態まで還元し得、かつ分散粒子が金属状態まで還元さ
れないような還元ポテンシャルを有する雰囲気で実施さ
れる。ただし、分散粒子が完全に還元されない還元ポテ
ンシャルを有する雰囲気にする必要はない。例えば、分
散粒子がT i O2からなる場合、前記還元工程でT
iOの状態で止まるなら問題はない。
Note that this reduction step is carried out in an atmosphere having a reducing potential that can reduce the copper oxide in the mixed powder to a metallic copper state and prevent the dispersed particles from being reduced to a metallic state. However, it is not necessary to create an atmosphere having a reducing potential in which the dispersed particles are not completely reduced. For example, when the dispersed particles are made of T i O2, T
If it stops in the iO state, there is no problem.

また、還元工程において、酸化銅の還元が終了するまで
は混合粉末の全ての部分を銅と酸化銅の共晶温度である
1065℃を超えない温度に保持する必要がある。これ
は、混合粉末の一部でも1065℃を超えると、分散粒
子の存在しない銅母相領域の平均径が0.3μmを超え
て不均一な組織となり、著しく強度が低下してしまうか
らである。
Furthermore, in the reduction step, all parts of the mixed powder must be maintained at a temperature that does not exceed 1065° C., which is the eutectic temperature of copper and copper oxide, until the reduction of copper oxide is completed. This is because if even a portion of the mixed powder exceeds 1065°C, the average diameter of the copper matrix region where no dispersed particles exist exceeds 0.3 μm, resulting in a non-uniform structure and a significant decrease in strength. .

このように混合粉末を1065℃を超えない温度に保持
するためには、種々の方法を用いることができる。例え
ば、水素による酸化銅の還元反応では多量の熱の発生を
伴うため、還元炉の加熱温度を低く保ち、かつ還元性ガ
スの分圧と流量、必要に応じて還元性ガスに混入される
その他のガスの分圧と流量とを制御して、還元反応にお
ける単位時間当りの熱の発生量を低く押え、混合粉末を
1065℃を超えない温度に保持しつつ還元を行う。酸
化銅の還元がほぼ終了した時点では、酸化銅の還元によ
る多量の熱発生はもはや起きないため、還元炉の加熱温
度をある程度高めても、その温度が1065℃以下であ
れば混合粉末の温度が1065℃を超えることはない。
Various methods can be used to maintain the mixed powder at a temperature not exceeding 1065°C. For example, the reduction reaction of copper oxide with hydrogen involves the generation of a large amount of heat, so the heating temperature of the reduction furnace must be kept low, and the partial pressure and flow rate of the reducing gas must be adjusted to ensure that other gases are mixed in with the reducing gas as necessary. The partial pressure and flow rate of the gas are controlled to keep the amount of heat generated per unit time in the reduction reaction low, and the reduction is carried out while maintaining the mixed powder at a temperature not exceeding 1065°C. When the reduction of copper oxide is almost completed, a large amount of heat is no longer generated by the reduction of copper oxide, so even if the heating temperature of the reduction furnace is increased to a certain extent, if the temperature is below 1065°C, the temperature of the mixed powder will be lower. does not exceed 1065°C.

上述のような還元工程の後、混合粉末を適宜の方法で成
形して成形体を作製し、この成形体を還元性又は不活性
雰囲気中で焼成して焼結させることにより、銅母相中に
分散粒子が分散した分散強化型銅合金を製造する。この
混合粉末の成形及び焼結をホットプレス法により同時に
行って分散強化型銅合金を製造してもよい。また、還元
前の混−金粉末を型内に入れ、酸化銅のみを選択的に還
元し得る雰囲気でホットプレスを施すことにより還元、
成形、焼結を同時に行なって分散強化型銅合金を製造し
てもよい。
After the above-mentioned reduction process, the mixed powder is molded by an appropriate method to produce a molded body, and this molded body is fired and sintered in a reducing or inert atmosphere, thereby reducing the copper matrix. A dispersion-strengthened copper alloy in which dispersed particles are dispersed is manufactured. A dispersion-strengthened copper alloy may be manufactured by simultaneously performing molding and sintering of this mixed powder using a hot pressing method. In addition, the mixed metal powder before reduction is placed in a mold and hot pressed in an atmosphere that can selectively reduce only the copper oxide.
A dispersion-strengthened copper alloy may be manufactured by performing molding and sintering simultaneously.

以上の工程により製造された分散強化型銅合金は、その
まま使用することもできるし、必要に応じて二次加工を
行なってから使用してもよい。本発明の分散強化型銅合
金は、二次加工性にも優れている。
The dispersion-strengthened copper alloy produced through the above steps can be used as is, or may be used after performing secondary processing if necessary. The dispersion-strengthened copper alloy of the present invention also has excellent secondary workability.

本発明によれば、室温における0、2%耐力が40kg
/am’以上で電気伝導度が85%IACSの特性を有
する高強度性と高導電性とを兼ね備えた分散強化型銅合
金を得ることができる。特に、分散粒子として酸化アル
ミニウムを用い、銅母相中へのアルミニウム固溶量を0
. 04ffiffi%以下とすることにより、強度及
び電気伝導度が−層良好・な分散強化型銅合金を得るこ
とができる。
According to the present invention, the 0.2% yield strength at room temperature is 40 kg.
/am' or more, it is possible to obtain a dispersion-strengthened copper alloy having an electric conductivity of 85% IACS and having both high strength and high conductivity. In particular, aluminum oxide is used as the dispersed particles, and the amount of aluminum solid solution in the copper matrix is reduced to 0.
.. By setting the content to 04ffiffi% or less, a dispersion-strengthened copper alloy with good strength and electrical conductivity can be obtained.

また、本発明に係る分散強化型銅合金の製造方法によれ
ば、還元過程で生成する銅及び銅酸化物が共晶化して溶
融するのを防止、して分散粒子の凝集や粗大化を回避で
き、もって分散粒子の存在しない銅器相領域の平均径を
0.3μm以下とすることができる。これにより、銅母
相に分散粒子が均一に分散された組織を有し、前述した
優れた特性を有する分散強化型銅合金を簡単かつ再現性
よく製造することができる。なお、このようにして製造
した分散強化型銅合金の分散粒子の粒径は、0.005
〜0.05μmである。
Furthermore, according to the method for manufacturing a dispersion-strengthened copper alloy according to the present invention, copper and copper oxide produced in the reduction process are prevented from becoming eutectic and melting, thereby avoiding agglomeration and coarsening of dispersed particles. As a result, the average diameter of the copperware phase region where no dispersed particles are present can be 0.3 μm or less. As a result, a dispersion-strengthened copper alloy having a structure in which dispersed particles are uniformly dispersed in a copper matrix and having the above-mentioned excellent properties can be easily produced with good reproducibility. In addition, the particle size of the dispersed particles of the dispersion-strengthened copper alloy produced in this way is 0.005
~0.05 μm.

この発明に係る分散強化型銅合金は、種々の用途に適用
することができる。 先ず、この発明に係る分散強化型
銅合金で形成された高磁場発生用コイルについて説明す
る。
The dispersion-strengthened copper alloy according to the present invention can be applied to various uses. First, a high magnetic field generating coil made of a dispersion-strengthened copper alloy according to the present invention will be explained.

近年、MHI、核融合、磁気浮上式鉄道、物性JlJ定
などのために、高磁場発生の要望が高まっている。そし
て、このような高磁場発生のために、電力消費がない超
電導コイルが広く用いられている。しかしながら、超電
導コイルでは臨界磁場を超えるような高磁場を発生する
ことが不可能である。このため、超電導コイルの限界を
超えるような高磁場を発生させるためには、常電導体か
らなるコイルを磁場発生用コイルの少なくとも一部分に
は用いなければならない。このような常電導コイルを構
成する材料としては、高電気伝導度、高熱伝導度、及び
高強度のものを用いる必要がある。
In recent years, there has been an increasing demand for high magnetic field generation for MHI, nuclear fusion, magnetic levitation railways, physical property JlJ determination, etc. In order to generate such a high magnetic field, superconducting coils that consume no power are widely used. However, with superconducting coils, it is impossible to generate a high magnetic field that exceeds the critical magnetic field. Therefore, in order to generate a high magnetic field that exceeds the limits of superconducting coils, a coil made of a normal conductor must be used for at least a portion of the magnetic field generating coil. It is necessary to use a material constituting such a normally conducting coil that has high electrical conductivity, high thermal conductivity, and high strength.

すなわち、高磁場を発生するためにはコイルに大電流を
流す必要があり、また、常電導コイルではジュール発熱
により大量の熱の発生を伴うため、熱の発生を可能な限
り少なくし、更に発生した熱を速やかに冷却水などの冷
却剤中に放散させ得るように、コイル材料には高電気伝
導度及び高熱伝導度が要求される。また、大電流が流れ
るコイルには巨大な電磁力が作用するため、コイルには
この電磁力に耐える高い強度も必要となる。
In other words, in order to generate a high magnetic field, it is necessary to pass a large current through the coil, and since a normal conducting coil generates a large amount of heat due to Joule heating, it is necessary to minimize the generation of heat and further reduce the amount of heat generated. The coil material is required to have high electrical conductivity and high thermal conductivity so that the generated heat can be quickly dissipated into a coolant such as cooling water. Furthermore, since a huge electromagnetic force acts on a coil through which a large current flows, the coil must also have high strength to withstand this electromagnetic force.

この発明に係る分散強化型銅合金は、上述したように高
電気伝導度と高強度とを兼備しており、また本質的に熱
伝導度が高いので、この発明に係る分散強化型銅合金で
形成された高磁場発生用コイルは極めて優れた特性を有
する。
The dispersion-strengthened copper alloy according to the present invention has both high electrical conductivity and high strength as described above, and also inherently has high thermal conductivity. The formed high magnetic field generating coil has extremely excellent characteristics.

この発明に係る高磁場発生用コイルは、上で説明した方
法で製造された分散強化型銅合金にそのまま、又は必要
に応じて二次加工を行い、更に必要ならば熱処理を行っ
た後、塑性加工又は機械加工を施すことにより得られる
The high magnetic field generating coil according to the present invention can be produced by using the dispersion-strengthened copper alloy manufactured by the method described above as it is, or by performing secondary processing as necessary and further heat treatment if necessary. Obtained by processing or machining.

このコイルを構成している本発明の分散強化型銅合金は
、伸びが大きく、衝撃に対しても強いため、本発明のコ
イルを定常電流による定常マグネットのみならず、パル
ス電流によるパルス争マグネット及び準パルスマグネッ
ト用のコイルとして用いることができる。また、本発明
のコイルは、室温以上の高い温度においても高い強度と
高い電気伝導度とを兼備しているので、溶融金属電磁ポ
ンプ用コイルのような高温で使用されるコイルにも適用
することができる。
The dispersion-strengthened copper alloy of the present invention that constitutes this coil has high elongation and is strong against impact, so the coil of the present invention can be used not only as a steady magnet using a steady current, but also as a pulse war magnet using a pulsed current. It can be used as a coil for quasi-pulsed magnets. Furthermore, since the coil of the present invention has both high strength and high electrical conductivity even at high temperatures above room temperature, it can be applied to coils used at high temperatures such as coils for molten metal electromagnetic pumps. Can be done.

次に、この発明に係る分散強化型銅合金で形成された抵
抗溶接用電極について説明する。
Next, a resistance welding electrode made of a dispersion-strengthened copper alloy according to the present invention will be explained.

抵抗溶接用電極は、熱伝導度及び電気伝導度が高く、高
強度であり、かつ耐熱性が良好であることが要求される
。このようなことから、従来、抵抗溶接用電極の材料と
して、タングステン、カドミウム、クロム、及びジルコ
ニウムのような合金元素を少量添加して強度及び耐熱性
を向上させた銅合金が用いられている。しかしながら、
近年、抵抗溶接作業が高度に自動化され、非常に速い繰
り返し速度での抵抗溶接が実施されるようになり、使用
条件も一層過酷なものとなってきている。このため、従
来の銅合金性の抵抗溶接用電極では耐熱性が十ダではな
く、短期間の使用で電極の変形が生じてしまう。従って
、高精度の溶接を行うためには溶接作業後に電極に修正
加工を施したり、あるいは電極を頻繁に交換する必要が
あり、生産性向上を阻害する要因となっていた。
Resistance welding electrodes are required to have high thermal and electrical conductivity, high strength, and good heat resistance. For this reason, copper alloys to which small amounts of alloying elements such as tungsten, cadmium, chromium, and zirconium are added to improve strength and heat resistance have conventionally been used as materials for resistance welding electrodes. however,
In recent years, resistance welding work has become highly automated and resistance welding has come to be carried out at very high repetition rates, and the conditions of use have become even more severe. For this reason, conventional resistance welding electrodes made of copper alloys do not have a heat resistance of ten degrees, and deformation of the electrodes occurs after a short period of use. Therefore, in order to perform high-precision welding, it is necessary to perform correction work on the electrode after welding work or to frequently replace the electrode, which has been a factor that hinders productivity improvement.

この発明に係る分散強化型銅合金は、上述したように高
電気伝導度と高強度とを兼備しており、また本質的に熱
伝導度が高く、耐熱性も良好なので、この発明に係る分
散強化型銅合金で形成された抵抗溶接用電極は、繰り返
し速度の速い抵抗溶接作業にも十分使用可能である。
The dispersion-strengthened copper alloy according to the present invention has both high electrical conductivity and high strength as described above, and also inherently has high thermal conductivity and good heat resistance. Resistance welding electrodes made of reinforced copper alloys are fully usable for high repetition rate resistance welding operations.

この発明に係る抵抗溶接用電極は、上で説明した方法で
製造された分散強化型銅合金をそのまま、又は必要に応
じて二次加工を行い、更に必要ならば熱処理を行った後
、塑性加工又は機械加工を施すことにより得られる。
The resistance welding electrode according to the present invention can be made by using the dispersion-strengthened copper alloy produced by the method described above as it is, or by performing secondary processing as necessary, and further heat treatment if necessary, and then performing plastic processing. Alternatively, it can be obtained by machining.

次に、この発明に係る分散強化型銅合金を使用した複合
超電導線について説明する。
Next, a composite superconducting wire using the dispersion-strengthened copper alloy according to the present invention will be explained.

複合超電導線は金属性基材と超電導芯線とが複合して形
成されたものである。超電導芯線としては、Nb−Ti
系のような合金超電導体、Nb。
A composite superconducting wire is formed by combining a metallic base material and a superconducting core wire. As the superconducting core wire, Nb-Ti
Alloy superconductors such as Nb.

Snのような化合物超電導体、又はYBCOのような酸
化物超電導体が用いられ、金属性基材としては、Cu、
A(1,Ag、Au、Nb、Ta。
A compound superconductor such as Sn or an oxide superconductor such as YBCO is used, and the metallic base material is Cu,
A(1, Ag, Au, Nb, Ta.

Cu−NL、Cu−8nが用いられる。金属性基材に用
いられる材料のうち、Ag、Cu、Ag。
Cu-NL and Cu-8n are used. Among the materials used for the metallic base material, Ag, Cu, and Ag.

Auは超電導芯線の安定化材として作用する。このよう
な複合超電導線において、基材として使用される上記材
料は、加工された場合の加工硬化性が低く、かつ軟化温
度が低いため、ステンレスのような低温において非磁性
であり、かつ比較的強度が高い材料を補強材として用い
る必要があった。
Au acts as a stabilizing material for the superconducting core wire. In such composite superconducting wires, the above-mentioned materials used as base materials have low work hardening properties and low softening temperatures when processed, so they are non-magnetic at low temperatures like stainless steel, and are relatively non-magnetic. It was necessary to use a material with high strength as a reinforcing material.

また、このように基材の軟化温度が低いため、比較的硬
い超電導体との一体的な複合加工が困難であり、加工時
に複合材の不均一変形が生じ、超電導芯線の断面積の不
均一や断線を招きやすくなる恐れがあった。
In addition, because the softening temperature of the base material is low, it is difficult to perform integrated composite processing with a relatively hard superconductor, resulting in uneven deformation of the composite material during processing, resulting in uneven cross-sectional area of the superconducting core wire. There was a fear that it would be more likely to cause wire breakage.

このような問題に対する解決策として、高電気伝導度と
高強度とを兼備する可能性を有する分散強化型銅合金を
基材として用いることが提案されている(特開昭61−
264609号公報、特開昭63−53811号公報)
。これにより、基材を複合超電導線の補強材と安定化材
とを兼ねたものにすることができる。しかしながら、前
述したように、従来の分散強化型銅合金は、強度と導電
率とを両立させることができず、また、残留抵抗比RR
Rが低いという欠点があり、複合超電導線の基材として
は不十分であった。
As a solution to these problems, it has been proposed to use a dispersion-strengthened copper alloy as a base material, which has the potential to have both high electrical conductivity and high strength (Japanese Patent Application Laid-Open No. 1986-1999).
264609, Japanese Patent Application Laid-Open No. 63-53811)
. Thereby, the base material can serve as both a reinforcing material and a stabilizing material for the composite superconducting wire. However, as mentioned above, conventional dispersion-strengthened copper alloys cannot achieve both strength and electrical conductivity, and also have a residual resistance ratio of RR.
It had the disadvantage of low R and was unsatisfactory as a base material for composite superconducting wires.

これに対して、この発明に係る分散強化型銅合金は、上
述したように高電気伝導度と高強度とを兼備しているた
め、これを基材として用いることにより複合超電導線の
補強材及び安定化材として十分な特性を示す。
On the other hand, since the dispersion-strengthened copper alloy according to the present invention has both high electrical conductivity and high strength as described above, it can be used as a reinforcing material for composite superconducting wires by using it as a base material. Shows sufficient properties as a stabilizing material.

すなわち、本発明の複合超電導線は、本発明に係る分散
強化型銅合金で形成された基材と、基材中に設けられた
超電導芯線とを有することを特徴とするものであり、こ
れにより極めて良好な特性を得ることができる。
That is, the composite superconducting wire of the present invention is characterized by having a base material formed of the dispersion-strengthened copper alloy according to the present invention and a superconducting core wire provided in the base material. Very good characteristics can be obtained.

このような複合超電導線は、上で説明した方法で製造さ
れた分散強化型銅合金にそのまま、又は必要に応じて二
次加工を行い、更に必要ならば熱処理を行った後、塑性
加工又は機械加工を施すことにより基材を作製し、適宜
の手段によりこの基材と超電導芯線とを一体化すること
により製造することができる。この際に、超電導芯線を
基材としての分散強化型銅合金で被覆して複合超電導線
を形成するか、超電導芯線を分散強化型銅合金で被覆し
た後さらに加工を加えて複合超電導線を形成するか、あ
るいは、熱処理により超電導体となる物質を超電導芯線
材料として用い、これを超電導芯線を分散強化型銅合金
で被覆した後、さらに加工を加え、その後熱処理を施す
ことにより超電導芯線材料を超電導体に転換して複合超
電導線を形成する。また、このようにして形成された複
合超電導線をステンレス等により被覆してもよい。
Such a composite superconducting wire can be produced by using the dispersion-strengthened copper alloy manufactured by the method described above, as it is, or by performing secondary processing as necessary, and further heat treatment if necessary, followed by plastic processing or mechanical processing. It can be manufactured by fabricating a base material through processing and integrating this base material and a superconducting core wire by appropriate means. At this time, the superconducting core wire is coated with a dispersion-strengthened copper alloy as a base material to form a composite superconducting wire, or the superconducting core wire is coated with a dispersion-strengthened copper alloy and then further processed to form a composite superconducting wire. Alternatively, a substance that becomes a superconductor through heat treatment is used as a superconducting core material, and the superconducting core wire is coated with a dispersion-strengthened copper alloy, which is further processed, and then heat treated to make the superconducting core wire material superconducting. The superconducting wire is converted into a composite superconducting wire. Further, the composite superconducting wire thus formed may be covered with stainless steel or the like.

更に、超電導芯線を予め銅で被覆し、その外側を本発明
に係る分散強化型銅合金で更に被覆するようにしてもよ
い。なお、本発明の複合超電導線は、超電導芯線を分散
強化型銅合金等で被覆した同心円状の形態に限定される
ものでなく、超電導芯線が複数であってもよいし、例え
ば平板状に配された超電導線に直接、又は他の金属マト
リックスを介して分散強化型銅合金の基材が配置されて
いてもよい。
Furthermore, the superconducting core wire may be coated with copper in advance, and the outside thereof may be further coated with the dispersion-strengthened copper alloy according to the present invention. Note that the composite superconducting wire of the present invention is not limited to a concentric shape in which a superconducting core wire is coated with a dispersion-strengthened copper alloy, etc., but may have a plurality of superconducting core wires, or may be arranged in a flat plate shape, for example. A dispersion-strengthened copper alloy base material may be disposed directly on the superconducting wire or via another metal matrix.

次に、この発明に係る分散強化型銅合金で形成された高
電気伝導性ばねについて説明する。
Next, a highly electrically conductive spring made of a dispersion-strengthened copper alloy according to the present invention will be explained.

コネクター、スイッチ、リレー、スリップリング等の各
種の電気・電子機器に用いられる高電気伝導性ばねは、
電気伝導度が大きいことはもちろんのこと、熱伝導度が
大きいこと、高強度であること、耐熱性が良好であるこ
と、めっき性が良好であること、電極との接合が容易で
あること、及び摺動特性(耐磨耗性)やぼね特性が良い
ことが要求される。このような導電性ばね材料・とじて
は、従来、JISの2種又は3種に規定されている銅合
金(4,2〜9%Sn、0.03〜0.3%Pを含むり
ん青銅)が用いられていた。しかしながら、近年、半導
体分野において、素子の高集積化、小型化の傾向が著し
く、これに伴って各種の電気・電子機器に用いられる導
電用ばねに小型化、高性能化が要求されている。このた
め、電気伝導性ばねには、−層の高電気伝導度と高強度
とが要求されている。このような要求を満たす材料とし
て、例えば特開昭53−14612号公報には、ベリリ
ウム銅合金を用いることが提案されているが、Beに毒
性があること、及び析出硬化処理が困難なことから、使
用が限定され、さらには電気伝導度が不十分であるとい
う欠点もあった。
Highly conductive springs are used in various electrical and electronic devices such as connectors, switches, relays, and slip rings.
It not only has high electrical conductivity, but also high thermal conductivity, high strength, good heat resistance, good plating properties, and easy bonding with electrodes. It is also required to have good sliding properties (abrasion resistance) and ballistic properties. Conventionally, such conductive spring materials and binding materials have been made of copper alloys (phosphor bronze containing 4.2 to 9% Sn and 0.03 to 0.3% P) specified in JIS Type 2 or Type 3. ) was used. However, in recent years, in the semiconductor field, there has been a remarkable trend toward higher integration and miniaturization of elements, and with this trend, smaller size and higher performance are required for conductive springs used in various electrical and electronic devices. For this reason, electrically conductive springs are required to have high electrical conductivity and high strength in the negative layer. As a material that satisfies these requirements, for example, Japanese Patent Application Laid-Open No. 14612/1983 proposes the use of beryllium-copper alloy, but this is difficult due to the toxicity of Be and the difficulty of precipitation hardening. However, its use was limited, and it also had the disadvantage of insufficient electrical conductivity.

これに対して、この発明に係る分散強化型銅合金は、上
述したように高電気伝導度と高強度とを兼備しており、
更に他の高電気伝導性ばねに要求される特性も具備して
いるため、この発明に係る分散強化型銅合金で形成され
たばねは、高電気伝導性ばねとして極めて優れた特性を
有する。
In contrast, the dispersion-strengthened copper alloy according to the present invention has both high electrical conductivity and high strength, as described above.
Furthermore, the spring made of the dispersion-strengthened copper alloy according to the present invention has extremely excellent characteristics as a high electrical conductivity spring because it also has other properties required for high electrical conductivity springs.

この高電気伝導性ばねも、上述の磁場発生用コ?イルと
同様、分散強化型銅合金にそのまま塑性加工又は機械加
工を施すか、又は必要に応じて二次加工を行い、更に必
要ならば熱処理を行った後、塑性加工又は機械加工を施
すことにより得られる。
This highly electrically conductive spring is also used for the magnetic field generation mentioned above. As with steel, dispersion-strengthened copper alloys can be subjected to plastic working or machining as they are, or they can be subjected to secondary processing if necessary, heat treated if necessary, and then subjected to plastic working or machining. can get.

次に、この発明に係る分散強化型銅合金で形成されたり
一7ドフレームについて説DA する。
Next, a description will be given of a hard frame made of a dispersion-strengthened copper alloy according to the present invention.

半導体装置に用いられるリードフレームには、熱伝導度
及び電気伝導度が大きいこと、高強度であること、耐熱
性が良好であること、及びめっき性が良好であることが
要求される。このようなリードフレームとしては、従来
、大別してFe−Ni系の合金を用いたものと、銅合金
を用いたものとがある。前者としては、例えばコバール
、Fe−42Niがあり、これらは高強度であり、耐熱
性及びめっき性が良好である。後者としては、例えばり
ん青銅、CA 194、CA195があり、これらは電
気伝導性に優れ、めっき性も良好である。しかしながら
、近年、半導体分野において、素子の高集積化、小型化
の傾向、が著しく、これに伴ってリードフレームに、−
層の高強度化、高熱伝導化及び高電気伝導化が要求され
ており、上述の材料ではこうした要求に答えることがで
きなかった。
Lead frames used in semiconductor devices are required to have high thermal conductivity and electrical conductivity, high strength, good heat resistance, and good plating properties. Conventionally, such lead frames can be broadly classified into those using Fe-Ni alloys and those using copper alloys. Examples of the former include Kovar and Fe-42Ni, which have high strength and good heat resistance and plating properties. Examples of the latter include phosphor bronze, CA 194, and CA 195, which have excellent electrical conductivity and good plating properties. However, in recent years, in the semiconductor field, there has been a remarkable trend toward higher integration and miniaturization of elements, and with this, lead frames have become
High strength, high thermal conductivity, and high electrical conductivity are required for the layer, and the above-mentioned materials have not been able to meet these demands.

これに対して、この発明に係る分散強化型銅合金は、上
述したように高電気伝導度と高強度とを兼備しており、
更に他のリードフレームに要求される特性も具備してい
るため、この発明に係る分散強化型銅合金で形成された
リードフレームは極めて優れた特性を有する。
In contrast, the dispersion-strengthened copper alloy according to the present invention has both high electrical conductivity and high strength, as described above.
Furthermore, since it also has the characteristics required of other lead frames, the lead frame formed of the dispersion-strengthened copper alloy according to the present invention has extremely excellent characteristics.

なお、これらの適用において、材料として従来の内部酸
化法で製造された分散強化型銅合金を使用した場合には
、長時間の拡散処理を施しても分散粒子としての酸化物
になるべき元素が一部酸化されずに残有し、その結果こ
れが銅母相中に固溶元素として存在することになるため
、得られた合金の電気伝導度は不十分なものとなってし
まう。
In addition, in these applications, when a dispersion-strengthened copper alloy manufactured by the conventional internal oxidation method is used as the material, elements that should become oxides as dispersed particles do not exist even after long-term diffusion treatment. A portion of it remains unoxidized, and as a result, it exists as a solid solution element in the copper matrix, resulting in an insufficient electrical conductivity of the resulting alloy.

(実施例) 以下、本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.

先ず、この発明の範囲内に含まれる実施例1〜9及びこ
の発明の範囲から外れる比較例1〜9について、合金の
製造条件について示す。
First, alloy manufacturing conditions will be described for Examples 1 to 9 included within the scope of the present invention and Comparative Examples 1 to 9 that fall outside the scope of the present invention.

実施例1〜9 まず、母相原料として粒径1μmの酸化第二銅。Examples 1-9 First, cupric oxide with a particle size of 1 μm is used as a matrix raw material.

粉末を用い、これに分散粒子原料としての酸化アルミニ
ウム粉末(γ型、α型、非晶質)、酸化ジルコニウム粉
末、酸化イツトリウム粉末及び窒化珪素粉末を夫々還元
後の銅に対する割合に換算して0.5〜6体積%の範囲
で配合して9種の混合粉末を作製した。なお、分散粒子
の種類、粒径及び配合量は以下に示す第2表に記載した
。つづいて、これら混合粉末を酸化アルミニウム製の容
器及びボールからなるボールミル中で4日間、乾式で粉
砕・混合した。
Using powder, aluminum oxide powder (γ-type, α-type, amorphous), zirconium oxide powder, yttrium oxide powder, and silicon nitride powder as raw materials for dispersed particles were added to the powder, each converted to a ratio of 0 to copper after reduction. Nine types of mixed powders were prepared by blending in the range of .5 to 6% by volume. The types, particle sizes, and amounts of the dispersed particles are listed in Table 2 below. Subsequently, these mixed powders were dry ground and mixed for 4 days in a ball mill consisting of an aluminum oxide container and balls.

次いで、粉砕・混合した混合粉末をアルミナボ−ト中に
入れ、混合粉末の5箇所に直径0.5鰭の耐熱合金製シ
ースで保護されたPt/(Pt−Rh)熱電対を挿入し
て還元中の混合粉末の局所的な温度上昇をill定しつ
つ全圧1気圧のアルゴンと水素の混合ガス気流中で20
0℃から還元を開始した。この際に、混合粉末の局所的
な最高温度が1065℃を越えないように混合ガスのア
ルゴンと水素の混合比を5:1(体積比)とし、3g/
 m i nの(20℃、1気圧での値)の流量で還元
を行なった。そして、最終900℃(実施例1のみ50
0℃)にまで昇温し、900℃に到達した後、アルゴン
の供給を停止して3jl/minの純水素気流中で1時
間保持した。冷却後、還元して得られた9種の分散強化
型銅合金粉末をカーボン型中に充填し、真空中、900
℃の温度にて400kg/ctiの圧力でホットプレス
成形を行なって分散強化型銅合金のビレットを製造した
Next, the pulverized and mixed powder is placed in an alumina boat, and Pt/(Pt-Rh) thermocouples protected by heat-resistant alloy sheaths with a diameter of 0.5 fin are inserted into five locations of the mixed powder for reduction. 20 minutes in a mixed gas flow of argon and hydrogen at a total pressure of 1 atm while controlling the local temperature rise of the mixed powder inside.
Reduction was started at 0°C. At this time, the mixing ratio of argon and hydrogen in the mixed gas was set to 5:1 (volume ratio) so that the local maximum temperature of the mixed powder did not exceed 1065°C.
Reduction was carried out at a flow rate of min (value at 20° C. and 1 atm). Then, the final temperature was 900°C (50°C only in Example 1).
After reaching 900°C, the supply of argon was stopped and the temperature was maintained in a pure hydrogen flow of 3jl/min for 1 hour. After cooling, nine types of dispersion-strengthened copper alloy powders obtained by reduction were filled into a carbon mold, and heated at 900 °C in a vacuum.
A billet of dispersion-strengthened copper alloy was produced by hot press molding at a temperature of 0.degree. C. and a pressure of 400 kg/cti.

比較例1〜3・ 母相原料として粒径1μmの酸化第二銅粉末を用い、こ
れに分散粒子原料としての粒径0.05μmの酸化アル
ミニウム粉末を、夫々還元後の銅に対する割合に換算し
て1.5体積%、3.0体積%、6.0体積%配合して
3種の混合粉末を作製した。還元工程においてアルゴン
と水素の混合比が1=3の混合ガスを5f!/minの
流量とした以外、実施例1と同様な方法により3種の分
散強化型銅合金のビレットを製造した。なお、還元工程
においては、混合粉末の最高温度は局所的に1065℃
を超えていた。
Comparative Examples 1 to 3 Cupric oxide powder with a particle size of 1 μm was used as a matrix raw material, and aluminum oxide powder with a particle size of 0.05 μm was added as a dispersed particle raw material, each converted into a ratio to copper after reduction. Three types of mixed powders were prepared by blending 1.5% by volume, 3.0% by volume, and 6.0% by volume. In the reduction process, 5f of mixed gas with a mixing ratio of argon and hydrogen of 1=3! Billets of three types of dispersion-strengthened copper alloys were manufactured in the same manner as in Example 1, except that the flow rate was 1/min. In addition, in the reduction process, the maximum temperature of the mixed powder is locally 1065°C.
exceeded.

比較例4〜6 母相原料として粒径1μmの酸化第二銅粉末を用い、こ
れに分散粒子原料としての粒径0,05μmの酸化アル
ミニウム粉末を、夫々還元後の銅に対する割合に換算し
て0.3体積%、7.5体積%、10.0体積%配合し
て3種の混合粉末を作製した。これら混合粉末から実施
例1と同様な方法により3種の分散強化型銅合金のビレ
ットを製造した。
Comparative Examples 4 to 6 Cupric oxide powder with a particle size of 1 μm was used as a matrix raw material, and aluminum oxide powder with a particle size of 0.05 μm was added as a dispersed particle raw material, each converted into a ratio to copper after reduction. Three types of mixed powders were prepared by blending 0.3% by volume, 7.5% by volume, and 10.0% by volume. Billets of three types of dispersion-strengthened copper alloys were produced from these mixed powders in the same manner as in Example 1.

比較例7 母相原料として粒径5μmの純銅粉末を用い、これに分
散粒子原料としての粒径0.05μmの酸化アルミニウ
ム粉末を3.0体積%配合して混合粉末を作製した。つ
づいて、この混合粉末を酸化アルミニウム製の容器及び
ボールからなるボールミル中で4日間、乾式で混合粉砕
した。
Comparative Example 7 Pure copper powder with a particle size of 5 μm was used as a matrix raw material, and 3.0% by volume of aluminum oxide powder with a particle size of 0.05 μm as a dispersed particle raw material was blended therewith to produce a mixed powder. Subsequently, this mixed powder was dry mixed and pulverized for 4 days in a ball mill consisting of an aluminum oxide container and balls.

次いで、粉砕混合した混合粉末をアルミナボート中に入
れ、アルゴンと水素の混合比が5:1(体積比)、流量
3N/m1n(20℃、1気圧での値)の混合ガス気流
中で900℃、1時間の還元を行ない、冷却した後、カ
ーボン型中に充填し、真空中、900℃の温度にて40
0kg/cjの圧力でホットプレス成形を行なって分散
強化型銅合金のビレットを製造した。
Next, the pulverized mixed powder was placed in an alumina boat, and heated at 900 °C in a mixed gas flow with a mixing ratio of argon and hydrogen of 5:1 (volume ratio) and a flow rate of 3 N/ml (value at 20 ° C. and 1 atmosphere). ℃ for 1 hour, and after cooling, it was filled into a carbon mold and heated at 900℃ in vacuum for 40 minutes.
A dispersion-strengthened copper alloy billet was produced by hot press molding at a pressure of 0 kg/cj.

実施例1〜9及び比較例1〜7の分散強化型銅合金のビ
レットについて室温における電気伝導度を測定すると共
に、各ビレットから切り出した試験片を用いて引張り強
さ、室温における0、2%耐力及び伸びをδP1定した
。なお、電気伝導度は、西ドイツlN5TITUT D
R,POR3TER製のシグマテスト(商標名)2.0
67−061を用いて/i11定した。
The electrical conductivity at room temperature was measured for the dispersion-strengthened copper alloy billets of Examples 1 to 9 and Comparative Examples 1 to 7, and the tensile strength was measured using test pieces cut from each billet, 0 and 2% at room temperature. The yield strength and elongation were determined as δP1. In addition, the electrical conductivity is West Germany lN5TITUT D
Sigma Test (trade name) 2.0 manufactured by R, POR3TER
/i11 was determined using 67-061.

また、分散粒子を構成する金属元素の銅母相中への固溶
量、及びその他の元素の固溶量をn1定した。固溶量の
n1定は、各分散強化型銅合金サンプルをアンモニア水
と過酸化水素との混合溶液で加熱溶解し、この混合溶液
に不溶解である分、散粒子の沈殿を生じさせ、この沈殿
物を0.05μmのフィルタを2枚重ねたものにより濾
過分離し、濾液を吸光光度法にて定量分析することによ
り行った。固溶m1ll定後、母相と同一成分の銅合金
を作成してその電気伝導度を#J定し、固溶元素による
母相の電気伝導度低下量を求めた。この際に、上述した
シグマテストを用いて導電率をAPI定し、無酸素銅0
FHCの導電率である102%IACSからの導電率の
低下量を求めた。
In addition, the amount of solid solution of the metal element constituting the dispersed particles in the copper matrix and the amount of solid solution of other elements were determined as n1. The n1 constant of the amount of solid solution is determined by heating and dissolving each dispersion-strengthened copper alloy sample in a mixed solution of aqueous ammonia and hydrogen peroxide, and causing the precipitation of dispersed particles that are not dissolved in this mixed solution. The precipitate was separated by filtration using two 0.05 μm filters, and the filtrate was quantitatively analyzed by spectrophotometry. After determining the solid solution ml, a copper alloy having the same components as the parent phase was prepared and its electrical conductivity was determined to #J, and the amount of decrease in the electrical conductivity of the parent phase due to the solid solution element was determined. At this time, conductivity was determined by API using the sigma test described above, and oxygen-free copper was
The amount of decrease in electrical conductivity from 102% IACS, which is the electrical conductivity of FHC, was determined.

更に、前述したように、分散強化型銅合金サンプルから
薄膜試料を作製して透過型電子顕微鏡によりこの薄膜試
料の100000倍の写真を写し、第2図に示すように
、写真上で分散粒子以外の位置の任意の10点を選び、
各点を内に含み分散粒子を含まないで描ける最大の円を
10個描き(各点がこの円の中心になるとは限らない)
、これらの円の直径の平均値を分散粒子の存在しない銅
母相領域の平均径とした。ただし、比較例1,2゜3.
7は組織が粗大であるため、5000倍の写真を用いて
測定した。
Furthermore, as mentioned above, a thin film sample was prepared from the dispersion-strengthened copper alloy sample, and a photograph of this thin film sample was taken at a magnification of 100,000 times using a transmission electron microscope. Select any 10 points at the position of
Draw the 10 largest circles that can be drawn without including each point and not including the dispersed particles (each point is not necessarily the center of this circle)
The average value of the diameters of these circles was taken as the average diameter of the copper matrix region where no dispersed particles were present. However, Comparative Examples 1, 2゜3.
Since sample No. 7 had a coarse structure, it was measured using a photograph with a magnification of 5,000 times.

第2表に、実施例1〜9及び比較例1〜7の条件及びこ
れら測定値を示す。 また、比較例8.9として市販の
内部酸化法により製造された2種のアルミナ分散強化型
銅合金(酸化アルミニウム含有量1.5体積%、3.0
体積%)丸棒を入手し、これら丸棒について同様な試験
を行なった。
Table 2 shows the conditions of Examples 1 to 9 and Comparative Examples 1 to 7 and their measured values. In addition, as Comparative Example 8.9, two types of alumina dispersion-strengthened copper alloys (aluminum oxide content: 1.5% by volume, 3.0% by volume,
Volume %) round bars were obtained and similar tests were conducted on these round bars.

その結果を第2表に併記した。なお、第2表には還元中
の局所的な最高温度を併記した。
The results are also listed in Table 2. Note that Table 2 also shows the local maximum temperature during reduction.

第2表から明らかなように比較例1〜9の分散強化型銅
合金では、室温における0、2%耐力が40 kg /
 am2以上のものについては室温における電気伝導度
が85%IACS以上にならず、室温における電気伝導
度が85%IACS以上のものについては室温における
0、2%耐力が40kg/llI2以上とならない。
As is clear from Table 2, the dispersion-strengthened copper alloys of Comparative Examples 1 to 9 have a 0 and 2% yield strength of 40 kg /
For materials with am2 or higher, the electrical conductivity at room temperature will not exceed 85% IACS, and for materials with electrical conductivity at room temperature of 85% IACS or higher, the 0 and 2% proof stress at room temperature will not exceed 40 kg/llI2.

これに対し、実施例1〜9の分散強化型銅合金では、室
温における電気伝導度が85%I AC3以上で、かつ
室温における0、2%耐力が40kg/mta2以上、
の特性を有しており、高電気伝導度と高強度とを兼ね備
えていることが確認された。
In contrast, the dispersion-strengthened copper alloys of Examples 1 to 9 have an electrical conductivity of 85% IAC3 or higher at room temperature, a 0 and 2% proof stress of 40 kg/mta2 or higher at room temperature, and
It was confirmed that it has both high electrical conductivity and high strength.

次に、実施例2〜4及び比較例5.9の分散強化型銅合
金のビレットから切り出した加工試験片について室温で
圧延加工を行ない、クラックが発生するまでの圧延加工
率をnj定した。これらの結果を第3表に示す。
Next, the processed test pieces cut out from the dispersion-strengthened copper alloy billets of Examples 2 to 4 and Comparative Example 5.9 were rolled at room temperature, and the rolling rate nj was determined until cracking occurred. These results are shown in Table 3.

第  3 表 第3表に示すように、実施例2〜4はクラックが発生す
るまでの圧延加工率が高く、二次加工性が良好なのに対
し、比較例5.9はクラックが発生するまでの圧延加工
率が低く、二次加工性が低いことが確認された。
Table 3 As shown in Table 3, Examples 2 to 4 had a high rolling reduction rate before cracking and good secondary workability, whereas Comparative Examples 5 and 9 had a high rolling reduction rate until cracking occurred. It was confirmed that the rolling rate was low and the secondary workability was low.

次に、この発明に係る分散強化型銅合金で形成された高
磁場発生用コイルの実施例について説明する。
Next, an example of a high magnetic field generating coil formed of a dispersion-strengthened copper alloy according to the present invention will be described.

先ず、還元工程において混合ガス流量及び純水素流量を
2042/g+1nにした以外は前述の実施例3と同様
にして分散強化型銅合金のビレットを作製した。ここで
流量を増加させたのは、原料装入量を増加させたためで
ある。このビットについて、室温及び550℃における
電気伝導度を測定し、室温における熱伝導度を測定した
。また、このビレットから引張試験片を切り出し、室温
及び550℃における0、2%耐力、引張強度、伸びを
測定した。これらの結果を第4表に示す。
First, a dispersion-strengthened copper alloy billet was produced in the same manner as in Example 3 above, except that the mixed gas flow rate and pure hydrogen flow rate were set to 2042/g+1n in the reduction step. The flow rate was increased here because the amount of raw material charged was increased. Regarding this bit, the electrical conductivity at room temperature and 550° C. was measured, and the thermal conductivity at room temperature was measured. Further, a tensile test piece was cut out from this billet, and the 0 and 2% proof stress, tensile strength, and elongation at room temperature and 550°C were measured. These results are shown in Table 4.

次いで、このビレットを外径165 wms内径88m
5、高さ125℃露の筒状に加工し、更に放電加工によ
り螺旋状に貫通切削して、第3図に示すように11ター
ンの磁場発生用コイルを作製した。
Next, this billet was made into an outer diameter of 165 wms and an inner diameter of 88 m.
5. It was machined into a cylindrical shape with a height of 125° C., and then cut through in a spiral shape by electric discharge machining to produce an 11-turn magnetic field generating coil as shown in FIG.

このコイル(水冷マグネット)をステンレス製の水冷容
器に入れて、14.3T(テスラーンの磁場を発生する
超電導マグネットの中に設置した。
This coil (water-cooled magnet) was placed in a stainless steel water-cooled container and placed inside a superconducting magnet that generates a 14.3 T (Teslan) magnetic field.

そして、水冷容器に高圧水を流してコイルを冷却しつつ
、コイルに1050OAの直流電流を流したところ、水
冷マグネットの中心空間の磁束密度は23.2.Tであ
った。磁場発生後、コイルを取り出して検査したところ
、コイルにはクラック、変形等は一切認められなかりた
Then, while cooling the coil by flowing high-pressure water into the water-cooled container, a direct current of 1050 OA was passed through the coil, and the magnetic flux density in the center space of the water-cooled magnet was 23.2. It was T. After the magnetic field was generated, the coil was taken out and inspected, and no cracks or deformations were found in the coil.

比較例として、内部酸化法により製造された市販のアル
ミナ分散強化型銅合金(酸化アルミニウム含有量0.9
体積%;銅母相中のアルミニウム固溶量0.07重量%
)を純アルゴン気流中、900℃にて1時間の熱処理を
行った後、上の実施例と同様形状のコイルを作製し、同
様の磁場発生試験を行ったところ、10500Aの直流
電流で23.OTの磁束密度が測定された。磁場発生後
、このコイルを取り出して検査したところ、著しい変形
が認められた。
As a comparative example, a commercially available alumina dispersion-strengthened copper alloy (aluminum oxide content 0.9
Volume %; Aluminum solid solution amount in copper matrix 0.07% by weight
) was heat-treated at 900°C for 1 hour in a pure argon stream, a coil having the same shape as in the above example was made, and a similar magnetic field generation test was conducted. The magnetic flux density of the OT was measured. After the magnetic field was generated, the coil was removed and inspected, and significant deformation was observed.

なお、この比較例についても、コイルの作製に先立って
、実施例と同様に電気伝導度、熱伝導度、0.2%耐力
、引張強度、伸びの測定を行った。
In this comparative example, electrical conductivity, thermal conductivity, 0.2% yield strength, tensile strength, and elongation were also measured in the same manner as in the examples prior to manufacturing the coil.

その結果を第4表に合わせて示す。The results are also shown in Table 4.

第  4 表 次に、この発明に係る分散強化型銅合金で形成された抵
抗溶接用電極の実施例について説明する。
Table 4 Next, examples of resistance welding electrodes made of the dispersion-strengthened copper alloy according to the present invention will be described.

先ず、前述の実施例3と同様にして分散強化型銅合金の
ビレットを作製した。次いで、このビレットを冷間の溝
ロール圧延によって丸棒に加工し、その電気伝導度、熱
伝導度、引張強度、伸び及びビッカース硬度をnj定し
た結果、第5表に示す結果が得られた。
First, a dispersion-strengthened copper alloy billet was produced in the same manner as in Example 3 above. Next, this billet was processed into a round bar by cold groove roll rolling, and its electrical conductivity, thermal conductivity, tensile strength, elongation, and Vickers hardness were determined, and the results shown in Table 5 were obtained. .

次いで、丸棒から第4図に示すような電極を機械加工に
よって製作した。この図に示すように、この電極の尖端
部は、尖端の直径4mlで傾斜角αが45°の戴頭円錐
をなしている。この電極を用いて厚さ1mmの鋼板のス
ポット溶接試験を行った。
Next, an electrode as shown in FIG. 4 was manufactured from the round bar by machining. As shown in this figure, the tip of this electrode has a truncated cone shape with a tip diameter of 4 ml and an inclination angle α of 45°. Using this electrode, a spot welding test was conducted on a steel plate with a thickness of 1 mm.

この際に、溶接電流が550OA、繰り返し速度が約1
回/秒の溶接条件で溶接した。その結果、5000点の
溶接を連続して行った後においても電極尖端部の形状に
変化は認められず、更に継続使用が可能な状態であった
At this time, the welding current was 550OA, and the repetition rate was approximately 1
Welding was carried out under the welding conditions of 3 times/sec. As a result, no change was observed in the shape of the tip of the electrode even after 5,000 welding points were performed continuously, and the electrode tip was in a state where continued use was possible.

比較例として、内部酸化法により製造された市販のアル
ミナ分散強化型銅合金(酸化アルミニウム含冑ff13
.0体積%)のビレットから、冷間の溝ロール圧延によ
って丸棒を製造し、機械加工により実施例と同様の形状
の電極を製作し、同様の溶接条件で鋼板のスポット溶接
試験を行った。その結果4500点の溶接までは良好な
溶接状態を維持していたが、これを超えると電極尖端部
の拡大変形が認められる用になり、小位面積当りの電流
が減少して溶接部の品質が低下するようになった。なお
、この比較例についても、電極の作製に先立って、実施
例と同様に電気伝導度、熱伝導度、引張強度、伸び及び
ビッカース硬度をnj定した。
As a comparative example, a commercially available alumina dispersion-strengthened copper alloy (aluminum oxide-containing FF13) manufactured by an internal oxidation method was used.
.. A round bar was manufactured from a billet (0 volume %) by cold groove roll rolling, an electrode having the same shape as in the example was manufactured by machining, and a spot welding test on a steel plate was conducted under the same welding conditions. As a result, a good welding condition was maintained up to 4,500 welding points, but beyond this point, enlarged deformation of the electrode tip was observed, the current per small area decreased, and the quality of the welded part was reduced. started to decrease. In this comparative example, electrical conductivity, thermal conductivity, tensile strength, elongation, and Vickers hardness were determined in the same manner as in the examples prior to the production of the electrode.

その結果を第5表に合わせて示す。The results are also shown in Table 5.

第  5  表 次に、この発明に係る分散強化型銅合金製の基材を備え
た複合超電導線の実施例について説明する。
Table 5 Next, examples of composite superconducting wires having a base material made of dispersion-strengthened copper alloy according to the present invention will be described.

先ず、前述の実施例3と同様にして分散強化型銅合金の
ビレットを作製した。次いで、このビレットの室温にお
ける電気伝導度を測定した。また、このビレットから引
張試験片を切り出し、室温における0、2%耐力、引張
強度、伸びをnj定した。
First, a dispersion-strengthened copper alloy billet was produced in the same manner as in Example 3 above. Next, the electrical conductivity of this billet at room temperature was measured. Further, a tensile test piece was cut out from this billet, and the 0 and 2% proof stress, tensile strength, and elongation at room temperature were determined by nj.

これらの結果を第6表に示す。These results are shown in Table 6.

第5図に示すように、このビレットから外径45履畠、
長さ120mg+の丸棒に仕上げ、直径3.6■の孔を
80個形成して金属製基材11とし、この孔に外径3.
55amのNb−Ti超電導部材12(46,5重量%
Ti、残部Nb)を80本挿入して複合超電導線素材を
形成した。その後、通常の加工、熱処理を繰り返し行っ
て直径0.21の複合超電導線とした。この複合超電導
線の特性を測定した結果を第7表に示す。
As shown in Figure 5, from this billet, the outer diameter is 45,
A round bar with a length of 120 mg+ is finished, and 80 holes with a diameter of 3.6 mm are formed to form the metal base material 11, and the holes have an outer diameter of 3.6 mm.
55am Nb-Ti superconducting member 12 (46.5% by weight
A composite superconducting wire material was formed by inserting 80 pieces of Ti, the remainder being Nb. Thereafter, normal processing and heat treatment were repeated to obtain a composite superconducting wire with a diameter of 0.21. Table 7 shows the results of measuring the characteristics of this composite superconducting wire.

比較例として、内部酸化法により製造された市販のアル
ミナ分散強化型銅合金(酸化アルミニウム含有量3.0
体積%;銅母相中のアルミニウム固溶m0.13重量%
)のビレットを、純アルゴン気流中、900℃にて1時
間の熱処理を行った後、これを基材とした複合超電導線
を上の実施例と同様に作製したものを用い、同様に特性
を01定した。その結果、第7表に示すような特性が得
られた。第7表からフィラメントの均一性、臨界電流密
度、引張強度、残留抵抗比のいずれの特性も、比較例よ
りも実施例のほうが優れていることを確認することがで
、きる。特に、残留抵抗比については、著しい差がみら
れた。なお、この比較例についても、゛複合超電導線の
作製に先立って、実施例と同様に基材の電気伝導度、引
張強度、0.2%耐力及び伸びを測定した。その結果を
第6表に合わせて示す。
As a comparative example, a commercially available alumina dispersion-strengthened copper alloy (aluminum oxide content 3.0
Volume %; solid solution of aluminum in copper matrix m0.13% by weight
) was heat-treated at 900°C for 1 hour in a pure argon stream, and a composite superconducting wire using this billet as a base material was prepared in the same manner as in the above example, and the properties were similarly determined. 01 was established. As a result, the characteristics shown in Table 7 were obtained. From Table 7, it can be confirmed that the Examples are superior to the Comparative Examples in all properties of filament uniformity, critical current density, tensile strength, and residual resistance ratio. In particular, a significant difference was observed in the residual resistance ratio. In this comparative example as well, the electrical conductivity, tensile strength, 0.2% yield strength, and elongation of the base material were measured in the same manner as in the examples prior to the production of the composite superconducting wire. The results are also shown in Table 6.

第 表 第  6  表 次に、この発明に係る分散強化型銅合金で形成された高
電気伝導性ばねの実施例について説明する。
Table 6 Next, examples of high electrical conductivity springs made of a dispersion-strengthened copper alloy according to the present invention will be described.

先ず、前述の実施例3と同様にして分散強化型銅合金の
ビレットを作製した。次いで、このビレットを冷間圧延
によって。厚さ0315■の薄板に加工してばねサンプ
ルとした。このサンプルについて電気伝導度、熱伝導度
、引張強度、伸び及びマイクロビッカース硬度を試験し
た。更に、ばね限界値の測定を行い、電極に対するろう
付は性能(650℃)を評価した。電極としてはSM4
76 : MOS2 +gral)hlte/Agの複
合材料を用い、そのBAg−1にろう付けを実施した。
First, a dispersion-strengthened copper alloy billet was produced in the same manner as in Example 3 above. This billet is then cold rolled. A spring sample was prepared by processing a thin plate with a thickness of 0315 mm. This sample was tested for electrical conductivity, thermal conductivity, tensile strength, elongation, and micro-Vickers hardness. Furthermore, the spring limit value was measured, and the performance (650° C.) of brazing to the electrode was evaluated. SM4 as an electrode
76: Using a composite material of MOS2 + gral) hlte/Ag, brazing was performed on BAg-1.

これらの結果を第8表に示す。These results are shown in Table 8.

比較例Aとして、内部酸化法により製造された市販のア
ルミナ分散強化型銅合金(酸化アルミニウム含有量30
体積%;銅母相中のアルミニウム固溶量0.13重量%
)のビレットから冷間圧延によって厚さ0.15m−の
薄板を作製した。また、比較例B、Cとして、夫々市販
のりん青銅(4,5%5n−0,03%P−Cu)及び
ベリリウム銅(1,9%Be−0,2%Co−0,5%
Fe−Cu)のビレットから冷間圧延によって厚さ0.
15mmの薄板を作製した。これら比較例A−Cについ
ても、実施例と同様の評価を行った。
As Comparative Example A, a commercially available alumina dispersion-strengthened copper alloy (aluminum oxide content: 30
Volume %; Aluminum solid solution amount in copper matrix 0.13% by weight
) A thin plate with a thickness of 0.15 m was produced by cold rolling. In addition, as comparative examples B and C, commercially available phosphor bronze (4,5%5N-0,03%P-Cu) and beryllium copper (1,9%Be-0,2%Co-0,5%
A billet of Fe-Cu) is cold rolled to a thickness of 0.
A 15 mm thin plate was produced. These Comparative Examples A to C were also evaluated in the same manner as in the Examples.

その結果を第8表に合わせて示す。The results are also shown in Table 8.

この第8表に示すように、実施例のほうが比較例A〜C
に比較して、高電気伝導性ばねとして優れた特性を示す
ことが確認された。
As shown in Table 8, Examples are better than Comparative Examples A to C.
It was confirmed that the spring exhibits superior characteristics as a high electrical conductivity spring compared to the above.

次に、この発明に係る分散強化型銅合金で形成されたリ
ードフレームの実施例について説明する。
Next, an example of a lead frame formed of a dispersion-strengthened copper alloy according to the present invention will be described.

先ず、前述の実施例3と同様にして分散強化型銅合金の
ビレットを作製した。次いで、このビレットを冷間圧延
によって厚さ0.15■■の薄板に加工し、650℃、
1時間の熱処理を行った後、その電気伝導度、熱伝導度
、引張強度、伸び及びマイクロビッカース硬度を測定し
た結果、第9表に示す結果が得られた。
First, a dispersion-strengthened copper alloy billet was produced in the same manner as in Example 3 above. Next, this billet was processed into a thin plate with a thickness of 0.15■■ by cold rolling, and heated at 650°C.
After heat treatment for 1 hour, the electrical conductivity, thermal conductivity, tensile strength, elongation, and micro-Vickers hardness were measured, and the results shown in Table 9 were obtained.

次いで、この薄板からリードフレームを作製して実装試
験(た結果、良好な特性が得られた。
Next, a lead frame was made from this thin plate and a mounting test was carried out (results showed that good characteristics were obtained).

比較例として、内部酸化法により製造された市販のアル
ミナ分散強化型銅合金(酸化アルミニウム含有量3.0
体積%)のビレットから冷間圧延により厚さ0.15m
mの薄板を作製し、650℃、1時間の熱処理を行った
後、実施例と同様に電気伝導度、熱伝導度、引張強度、
伸び及びマイクロビッカース硬度を測定した。その結果
を第9表に合わせて示す。この表に示すように、実施例
のほうが比較例よりも全ての項目において優れた結果を
示した。また、この薄板から実際にリードフレームを作
製して実装試験を行った結果、特性は実施例よりも低い
ものとなった。
As a comparative example, a commercially available alumina dispersion-strengthened copper alloy (aluminum oxide content 3.0
% by volume) to a thickness of 0.15 m by cold rolling from a billet.
After preparing a thin plate of m and heat treating it at 650°C for 1 hour, the electrical conductivity, thermal conductivity, tensile strength,
Elongation and micro-Vickers hardness were measured. The results are also shown in Table 9. As shown in this table, the Examples showed better results than the Comparative Examples in all items. Furthermore, when a lead frame was actually manufactured from this thin plate and a mounting test was performed, the characteristics were lower than those of the example.

第  9 表 [発明の効果] 本発明によれば、高電気伝導度と高強度とを兼備した分
散強化型銅合金を得ることができる。また、このような
分散強化型銅合金を簡単な工程により再現性良く製造し
得る方法を提供することができる。
Table 9 [Effects of the Invention] According to the present invention, a dispersion-strengthened copper alloy having both high electrical conductivity and high strength can be obtained. Furthermore, it is possible to provide a method for manufacturing such a dispersion-strengthened copper alloy through simple steps with good reproducibility.

更に、このような分散強化型銅合金により優れた特性を
有する磁場発生用コイル、抵抗溶接用電極、複合超電導
線、高電気伝導性ばね、及びリードフレームを得ること
ができる。
Furthermore, magnetic field generating coils, resistance welding electrodes, composite superconducting wires, highly electrically conductive springs, and lead frames having excellent properties can be obtained using such dispersion-strengthened copper alloys.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は銅に対する各固溶元素の添加量と電気抵抗率と
の関係を示す図1、第2図は銅母相領域の平均径を測定
する方法を説明するための模式図、第3図はこの発明に
係る磁場発生用コイルの実施例を示す図、第4図はこの
発明に係る抵抗溶接用電極の実施例を示す断面図、第5
図はこの発明に係る複合超電導線の実施例を示す断面図
である。 11;基討、12:超電導芯線 #*oiヒS  17L  (1−1町−)第1図 出願人代理人 弁理士 鈴江武彦 第2図 第3図 第4図 第5図 1、事件の表示 特願平1−240755号 2、発明の名称 分散強化型銅合金及びその製造方法 3、補正をする者 事件との関係 特許出願人 (307)  株式会社 東芝 4、代理人 東京都千代田区霞が関3丁目7番2号 〒 100  電話03 (502)3181 (大代
表)7、補正の内容 (1)特許請求の範囲を別紙の通り訂正する。 (2)明細書第13頁第11行目に「平均径する」とあ
るのを、「平均径とする」に訂正する。 (3)明細書第21頁第4行目に「銅合金に」とあるの
を、「銅合金を」に訂正する。 (4)明細書第27頁第10行目に「導電用」とあるの
を、「電気伝導性」に訂正する。 (5)明細書第28頁第6行目乃至7行目に「銅合金に
そのまま塑性加工又は機械加工を施すか」とあるのを、
「銅合金をそのまま」に訂正する。 (6)明細書第34頁第12行目、第13行目及び第1
4行目に夫々「導電率」とあるのを、「電気伝導度」に
訂正する。 (7)明細書第36頁の第2表を別紙の通り訂正する。 (8)明細書第39頁第2行目に「ビット」とあるのを
、「ビレット」に訂正する。 (9)明細書第48頁の第8表を別紙の通り訂正する。 (10)明細書第50頁の第9表を別紙の通り訂正する
。 (11)第4図を別紙の通り訂正する。 2、特許請求の範囲 (1)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量であることを特徴とする分散強化型銅合金。 (2)前記分散粒子の全部又は一部が酸化アルミニウム
で形成されており、前記銅母相は、0.04fflff
i%以下の固溶アルミニウムと、その他の不可避的不純
物とを含んでいることを特徴とする請求項1に記載の分
散強化型銅合金。 (3)室温111する0、29g耐カフ!l<40 k
 g/am”以上であり、かつ電気伝導度が85%IA
CS以上であることを特徴とする請求項2に記載の分散
強化型銅合金。 (4)前記分散粒子は、酸化アルミニウム、酸化ジルコ
ニウム、酸化チタン、酸化珪素、酸化マグネシウム、酸
化イツトリウム、酸化クロム、窒化アルミニウム、窒化
珪素、窒化チタン、窒化硼素、炭化チタン、炭化硼素及
び硼化チタンからなる群から選択された1種又は2種以
上で構成されていることを特徴とする請求項1に記載の
分散強化型銅合金。 (5)酸化銅と、還元性雰囲気において酸化銅よ゛りも
化学的に安定な分散粒子原料とを機械的に粉砕・混合し
て混合粉末を形成する混合粉未形成工程と、この混合粉
末中の酸化銅を選択的に還元する還元工程と、選択的に
還元された混合粉末を成形する成形工程と、成形工程に
より得られた成形体を焼成して銅母相と分散粒子とを有
する焼結体を形成する焼成工程とを具備し、前記還元工
程は、前記混合粉末を1065℃以下の温度に保持しつ
つ実施されることを特徴とする分散強化型銅合金の製造
方法。 (6)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成されたことを
特徴とする磁場発生用コイル。 (7)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成されたことを
特徴とする抵抗溶接用電極。 (8)銅母相と、銅母相中に0,5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成された基材と
、基材中に埋設された超電導芯線とを具備することを特
徴とする複合超電導線。 (9)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成さ、れなこと
を特徴とする゛高電気伝導性ばね。 (10)銅母相と、銅母相中に0.5乃至6体積%の範
囲で含有された分散粒子とを有し、分散粒子が存在しな
い母相領域の平均径が0.3μm以下であり、前記銅母
相中に含まれる合計の固溶元素量が、純銅にその量を添
加した場合に電気伝導度の低下分が5%IACS以下と
なるような量である分散強化型銅合金で形成されたこと
を特徴とするリードフレーム。 第4 図
Figure 1 shows the relationship between the amount of each solid solution element added to copper and the electrical resistivity; Figure 2 is a schematic diagram to explain the method for measuring the average diameter of the copper matrix region; FIG. 4 is a cross-sectional view showing an embodiment of the resistance welding electrode according to the present invention; FIG.
The figure is a sectional view showing an embodiment of a composite superconducting wire according to the present invention. 11; Fundamental discussion, 12: Superconducting core wire #*oihiS 17L (1-1 Town-) Figure 1 Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 4 Figure 5 Figure 1. Display of the case Patent Application No. 1-240755 2, Name of the invention: Dispersion-strengthened copper alloy and its manufacturing method 3, Relationship with the amended case Patent applicant (307) Toshiba Corporation 4, Agent 3, Kasumigaseki, Chiyoda-ku, Tokyo No. 7-2, 100 Telephone: 03 (502) 3181 (Main Representative) 7. Contents of Amendment (1) The scope of the claims will be corrected as shown in the attached sheet. (2) In the 11th line of page 13 of the specification, the phrase "average diameter" should be corrected to "average diameter." (3) In the fourth line of page 21 of the specification, the phrase "to copper alloy" is corrected to "copper alloy." (4) On page 27, line 10 of the specification, the phrase "for electrical conductivity" is corrected to "electrical conductivity." (5) On page 28 of the specification, lines 6 and 7, it says, "Do you directly apply plastic working or machining to the copper alloy?"
Correct to "copper alloy as is". (6) Lines 12, 13 and 1 of page 34 of the specification
In the fourth line, the words "electrical conductivity" are corrected to "electrical conductivity." (7) Table 2 on page 36 of the specification is corrected as shown in the attached sheet. (8) In the second line of page 39 of the specification, the word "bit" is corrected to "billet." (9) Table 8 on page 48 of the specification is corrected as shown in the attached sheet. (10) Table 9 on page 50 of the specification is corrected as shown in the attached sheet. (11) Figure 4 is corrected as shown in the attached sheet. 2. Claims (1) An average diameter of a matrix region having a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, where no dispersed particles are present. is 0.3 μm or less, and the total amount of solid solution elements contained in the copper matrix is such that when that amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A dispersion-strengthened copper alloy characterized by: (2) All or part of the dispersed particles are formed of aluminum oxide, and the copper matrix is 0.04fflff.
The dispersion-strengthened copper alloy according to claim 1, containing i% or less of solid solution aluminum and other unavoidable impurities. (3) 0.29g resistant cuff that is 111% room temperature! l<40k
g/am” or more, and the electrical conductivity is 85% IA
The dispersion-strengthened copper alloy according to claim 2, characterized in that the copper alloy has a strength of CS or higher. (4) The dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide, and titanium boride. The dispersion-strengthened copper alloy according to claim 1, characterized in that it is composed of one or more selected from the group consisting of: (5) A mixed powder non-formation process in which a mixed powder is formed by mechanically crushing and mixing copper oxide and a dispersed particle raw material that is chemically more stable than copper oxide in a reducing atmosphere, and this mixed powder A reduction step for selectively reducing the copper oxide contained therein, a molding step for molding the selectively reduced mixed powder, and a molded body obtained by the molding step is fired to form a copper matrix and dispersed particles. a firing step for forming a sintered body, and the reducing step is carried out while maintaining the mixed powder at a temperature of 1065° C. or lower. (6) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A magnetic field generating coil characterized by being formed of. (7) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A resistance welding electrode characterized by being formed of. (8) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. 1. A composite superconducting wire comprising a base material made of , and a superconducting core wire embedded in the base material. (9) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A highly electrically conductive spring made of (10) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A lead frame characterized by being formed of. Figure 4

Claims (10)

【特許請求の範囲】[Claims] (1)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量であることを特徴とする分散強化型銅合金。
(1) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. The total amount of solid solution elements contained in the copper matrix is such that when added to pure copper, the electrical conductivity decreases by 5% IACS or less. Dispersion strengthened copper alloy.
(2)前記分散粒子の全部又は一部が酸化アルミニウム
で形成されており、前記銅母相は、0.04重量%以下
の固溶アルミニウムと、その他の不可避的不純物とを含
んでいることを特徴とする請求項1に記載の分散強化型
銅合金。
(2) All or part of the dispersed particles are formed of aluminum oxide, and the copper matrix contains 0.04% by weight or less of solid solution aluminum and other unavoidable impurities. The dispersion-strengthened copper alloy according to claim 1.
(3)室温における0.2%耐力が40kg/mm^2
以上であり、かつ電気導電度が85%IACS以上であ
ることを特徴とする請求項2に記載の分散強化型銅合金
(3) 0.2% proof stress at room temperature is 40kg/mm^2
The dispersion-strengthened copper alloy according to claim 2, wherein the dispersion-strengthened copper alloy has a conductivity of 85% IACS or higher.
(4)前記分散粒子は、酸化アルミニウム、酸化ジルコ
ニウム、酸化チタン、酸化珪素、酸化マグネシウム、酸
化イットリウム、酸化クロム、窒化アルミニウム、窒化
珪素、窒化チタン、窒化硼素、炭化チタン、炭化硼素及
び硼化チタンからなる群から選択された1種又は2種以
上で構成されていることを特徴とする請求項1に記載の
分散強化型銅合金。
(4) The dispersed particles include aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, magnesium oxide, yttrium oxide, chromium oxide, aluminum nitride, silicon nitride, titanium nitride, boron nitride, titanium carbide, boron carbide, and titanium boride. The dispersion-strengthened copper alloy according to claim 1, characterized in that it is composed of one or more selected from the group consisting of:
(5)酸化銅と、還元性雰囲気において酸化銅よりも化
学的に安定な分散粒子原料とを機械的に粉砕・混合して
混合粉末を形成する混合粉未形成工程と、この混合粉末
中の酸化銅を選択的に還元する還元工程と、選択的に還
元された混合粉末を成形する成形工程と、成形工程によ
り得られた成形体を焼成して銅母相と分散粒子とを有す
る焼結体を形成する焼成工程とを具備し、前記還元工程
は、前記混合粉末を1065℃以下の温度に保持しつつ
実施されることを特徴とする分散強化型銅合金の製造方
法。
(5) A mixed powder non-formation step in which a mixed powder is formed by mechanically pulverizing and mixing copper oxide and a dispersed particle raw material that is chemically more stable than copper oxide in a reducing atmosphere; A reduction step for selectively reducing copper oxide, a molding step for molding the selectively reduced mixed powder, and sintering to have a copper matrix and dispersed particles by firing the compact obtained by the molding step. a firing step for forming a dispersion-strengthened copper alloy, the reduction step being carried out while maintaining the mixed powder at a temperature of 1065° C. or lower.
(6)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成されたことを
特徴とする磁場発生用コイル。
(6) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A magnetic field generating coil characterized by being formed of.
(7)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成されたことを
特徴とする抵抗溶接用電極。
(7) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A resistance welding electrode characterized by being formed of.
(8)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成された基材と
、基材中に埋設された超電導芯線とを具備することを特
徴とする複合超電導線。
(8) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. 1. A composite superconducting wire comprising a base material made of , and a superconducting core wire embedded in the base material.
(9)銅母相と、銅母相中に0.5乃至6体積%の範囲
で含有された分散粒子とを有し、分散粒子が存在しない
母相領域の平均径が0.3μm以下であり、前記銅母相
中に含まれる合計の固溶元素量が、純銅にその量を添加
した場合に電気伝導度の低下分が5%IACS以下とな
るような量である分散強化型銅合金で形成されたことを
特徴とする高電気伝導性ばね。
(9) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A highly electrically conductive spring characterized by being formed of.
(10)銅母相と、銅母相中に0.5乃至6体積%の範
囲で含有された分散粒子とを有し、分散粒子が存在しな
い母相領域の平均径が0.3μm以下であり、前記銅母
相中に含まれる合計の固溶元素量が、純銅にその量を添
加した場合に電気伝導度の低下分が5%IACS以下と
なるような量である分散強化型銅合金で形成されたこと
を特徴とするリードフレーム。
(10) It has a copper matrix and dispersed particles contained in the copper matrix in a range of 0.5 to 6% by volume, and the average diameter of the matrix region where no dispersed particles are present is 0.3 μm or less. A dispersion-strengthened copper alloy in which the total amount of solid solution elements contained in the copper matrix is such that when the amount is added to pure copper, the electrical conductivity decreases by 5% IACS or less. A lead frame characterized by being formed of.
JP1240755A 1988-10-13 1989-09-19 Dispersion strengthened copper alloy and its manufacture Pending JPH02213433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240755A JPH02213433A (en) 1988-10-13 1989-09-19 Dispersion strengthened copper alloy and its manufacture

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP25768588 1988-10-13
JP63-257685 1988-10-13
JP63-269330 1988-10-27
JP63-269329 1988-10-27
JP63-269331 1988-10-27
JP63-269328 1988-10-27
JP63-269333 1988-10-27
JP1240755A JPH02213433A (en) 1988-10-13 1989-09-19 Dispersion strengthened copper alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH02213433A true JPH02213433A (en) 1990-08-24

Family

ID=26534898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240755A Pending JPH02213433A (en) 1988-10-13 1989-09-19 Dispersion strengthened copper alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH02213433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056548A (en) * 2019-11-11 2021-05-20 한국생산기술연구원 Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056548A (en) * 2019-11-11 2021-05-20 한국생산기술연구원 Manufacturing method of Ta-Cu alloy and Ta-Cu alloy using thereof

Similar Documents

Publication Publication Date Title
EP0364295B1 (en) Dispersion strengthened copper alloy and a method of manufacturing the same
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
EP1705721B1 (en) Method for manufacturing powder-metallurgy processed Nb3Sn superconducting wire and precursor to powder-metallurgy processed Nb3Sn superconducting wire
US4999336A (en) Dispersion strengthened metal composites
US3779714A (en) Dispersion strengthening of metals by internal oxidation
CN106148756B (en) The preparation method of one Albatra metal
KR101693814B1 (en) Ti included oxide dispersion strengthened copper alloy and method for manufacturing dispersed copper
JPS60228602A (en) Dispersion-enhanced metal composite body
JP2002540294A (en) Alloy material
JP2758503B2 (en) Method of forming superconductor precursor
Lee et al. Correlation of the microstructure and mechanical properties of oxide-dispersion-strengthened coppers fabricated by internal oxidation
US4999050A (en) Dispersion strengthened materials
US4752333A (en) Alloys having high electrical and mechanical characteristics, the production thereof and the uses thereof in particular in the electrical, electronic and connection arts
US3922180A (en) Method for oxidation-hardening metal alloy compositions, and compositions and structures therefrom
US5830257A (en) Manufacturing method for alumina-dispersed reinforced copper
US3438753A (en) Tungsten-copper composites
Verhoeven et al. Deformation processed Cu-refractory metal composites
JPH02213433A (en) Dispersion strengthened copper alloy and its manufacture
KR100596998B1 (en) Sn based alloy for the precursor of Nb3Sn superconducting wire, and the manufacturing method of the same
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
AU2003277656B2 (en) Electrode material for electric discharge machining and method for production thereof
CN110651371B (en) MgB-based sheath with Al-based sheath 2 Superconductor wire of core and method for producing same
US2471630A (en) Pressed and sintered oxidation resistant nickel alloys
US5071618A (en) Dispersion strengthened materials
CN109477164B (en) Conductive support member and method for manufacturing same