JPH02213055A - Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate - Google Patents

Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate

Info

Publication number
JPH02213055A
JPH02213055A JP1034093A JP3409389A JPH02213055A JP H02213055 A JPH02213055 A JP H02213055A JP 1034093 A JP1034093 A JP 1034093A JP 3409389 A JP3409389 A JP 3409389A JP H02213055 A JPH02213055 A JP H02213055A
Authority
JP
Japan
Prior art keywords
electrolyte
powder
less
electrolyte substrate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034093A
Other languages
Japanese (ja)
Inventor
Yoshio Iwase
岩瀬 嘉男
Masahito Takeuchi
将人 竹内
Hideo Okada
秀夫 岡田
Kazuo Iwamoto
岩本 一男
Satoshi Kuroe
黒江 聡
Toshikatsu Mori
利克 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1034093A priority Critical patent/JPH02213055A/en
Publication of JPH02213055A publication Critical patent/JPH02213055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To retain a sufficient amount of molten carbonate electrolyte and to keep high cell performance for a long time by forming an electrolyte base plate so as to have a specified porosity and a specified mean pore size. CONSTITUTION:gamma-LiAlO2 powder which is the main material of a matrix for an electrolyte base plate is screened in a specified particle size or less with a vibrating screen and the powder on the screen is crushed, then repeatedly screened. Particles of the powder separated in each process are adjusted in a specified ratio and the powder is mixed with polyvinyl butyral and a pore forming agent in a dry process. The mixture is mixed with a solvent containing a plasticizer and fibers to form raw slurry. A green sheet is formed with the raw slurry. An electrolyte base plate having a porosity of 47% or more and a mean pore size of 0.5mum or less is obtained. By using this electrolyte base plate, the electrolyte impregnation amount is increased and cell performance is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融炭酸塩型燃料電池に係り、特に電池性能
を向上させ、その良好な性能を長時間保持するのに好適
な電解質基板(マトリックス)及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molten carbonate fuel cell, and in particular to an electrolyte substrate ( matrix) and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来の電解質基板(マトリックス)の製造法に関して特
開昭58−129781号公報及び特開昭62−237
672号公報等があげられる。これらは、粉末の粒子径
(−次粒子径)の異なるものを混合して細孔特性を改善
するというもので、実際のセル特性との相関性を持つフ
ァクターが明確でないと共に、その限定範囲がクリアー
でない点が問題であると考えられる。
JP-A-58-129781 and JP-A-62-237 regarding the conventional manufacturing method of electrolyte substrate (matrix)
For example, Publication No. 672 can be cited. These methods improve pore characteristics by mixing powders with different particle sizes (-particle sizes), but the factors that have a correlation with actual cell characteristics are not clear, and their limited range is unclear. The problem seems to be that it is not clear.

溶融炭酸塩型燃料電池はその高い発電効率と大出力そし
て環境保全性の優れている特徴に注目され1日本のみな
らず世界的にもその早期開発が大いに望まれており、研
究開発が活発に行なわれている。しかし、実用化までに
はまだまだ多くの解決せねばならない問題をかかえてい
る。現在、開発レベルとして、電極面積が3600cm
”のものを40セル積層し出力16kw、運転時間17
00hというレベルにあり、大形化による出力の向上と
共に、単セルにおいても、性能の向上(定電流密度での
電池電圧の向上:目標値0.85V以上)と長寿命化(
現在数千時間:目標値20000h以上)が必要である
。この開発目標を達成するための課題としては、 1)最適反応場の形成 2)最適反応場の維持 3)セパレータ材料の耐食性の向上 4)電極(アノード、カソード)材料の耐食性、耐久性
の向上 等があげられる。
Molten carbonate fuel cells have attracted attention for their high power generation efficiency, large output, and excellent environmental protection.1 Their early development is highly desired not only in Japan but also around the world, and research and development is active. It is being done. However, there are still many problems that need to be solved before it can be put into practical use. Currently, at the development level, the electrode area is 3600 cm.
40 cells stacked, output 16kW, operating time 17
00h level, and in addition to improving output due to larger size, performance improvement (improvement of battery voltage at constant current density: target value of 0.85 V or more) and longer life (
Currently several thousand hours (target value of 20,000 hours or more) are required. The challenges to achieve this development goal are: 1) Forming an optimal reaction field 2) Maintaining an optimal reaction field 3) Improving the corrosion resistance of separator materials 4) Improving the corrosion resistance and durability of electrode (anode, cathode) materials etc. can be mentioned.

発電の原動となる電気化学反応は電極表面に形成される
反応場界面において起こる。この反応場の界面状況を、
いかにして電気化学反応が最も起こり易い状態にし、か
つ維持するかということである。この反応場界面の状態
は電極自体の表面構造、電解質存在量などによって決ま
る電極の“濡れ“という言葉によっても表現される。
The electrochemical reaction that drives power generation occurs at the reaction field interface formed on the electrode surface. The interface situation of this reaction field is
The problem is how to create and maintain a state in which electrochemical reactions are most likely to occur. The state of this reaction field interface is also expressed by the term "wetting" of the electrode, which is determined by the surface structure of the electrode itself, the amount of electrolyte present, etc.

反応場界面の電解質存在量は電極と電解質基板の細孔特
性の相関関係及び、電解質含浸量によって決まる。その
ため、電解質基板の細孔特性は。
The amount of electrolyte present at the reaction field interface is determined by the correlation between the pore characteristics of the electrode and the electrolyte substrate and the amount of electrolyte impregnated. Therefore, the pore characteristics of the electrolyte substrate are.

良好な電池性能を発現させ、長時間維持するために重要
な要素であると言える。
It can be said that this is an important element for achieving good battery performance and maintaining it for a long time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電解質基板として要求される特性には次の2項目があげ
られる。
The following two items are listed as characteristics required for an electrolyte substrate.

1)液抵抗(電解質イオン移動抵抗)が小さいこと。1) Low liquid resistance (electrolyte ion movement resistance).

2)電解質保持能力が高いこと。2) High electrolyte retention capacity.

この2点について、それぞれ独立した事象として考える
ならば、液抵抗を低下させるためには気孔率の大きい方
が望ましく、電解質保持力を向上させるためには細孔径
の小さいものを望ましいと考えられる。しかし、この2
つの要求項目は相反するものである。
Considering these two points as independent phenomena, it is considered that a larger porosity is desirable in order to lower liquid resistance, and a smaller pore diameter is desirable in order to improve electrolyte retention. However, these two
The two requirements are contradictory.

気孔率を大きくすると、細孔内に保持されうる電解質は
増し、電解質イオンの移動抵抗は低下するが、一方、電
解質の保持能力は低下し、電解質の外部への流出、電極
への移動量の増大が問題となり、結果的には電解質基板
中に保持されつる量が不足状態となり、クロスオーバー
、内部抵抗の増大がみられるようになる。
Increasing the porosity increases the amount of electrolyte that can be retained within the pores and lowers the movement resistance of electrolyte ions, but on the other hand, the ability to retain electrolytes decreases, resulting in less electrolyte flowing out and less transfer to the electrodes. This increase becomes a problem, and as a result, the amount retained in the electrolyte substrate becomes insufficient, causing crossover and an increase in internal resistance.

また、細孔径を小さくすると毛細管力により、電解質保
持力は増大するが粒子の近接により、気孔率が低下し電
解質イオン移動抵抗が増大して電池内部抵抗が増大し電
池性能の低下を招く、よってこの相反する2事象を考慮
し、いかにうまく電解質基板の細孔特性を制御して作製
するかが課題となる。
In addition, when the pore size is made smaller, the electrolyte retention force increases due to capillary force, but due to the proximity of particles, the porosity decreases and the electrolyte ion movement resistance increases, which increases the battery internal resistance and causes a decrease in battery performance. Taking these two contradictory phenomena into consideration, the challenge is how to control the pore characteristics of an electrolyte substrate to produce it.

本発明の目的は、細孔特性を向上させた電解質基板を備
えた溶融炭酸塩型燃料電池並びにその電解質基板の製造
方法を提供せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a molten carbonate fuel cell having an electrolyte substrate with improved pore characteristics and a method for manufacturing the electrolyte substrate.

〔課題を解決するための手段〕 上記目的を達成するため1本発明に係る溶融炭酸塩型燃
料電池は、電解質として次階塩を用いる溶融炭酸塩型燃
料電池において、電解質を保持する電解質基板は気孔率
が47%以上であり、かつ、平均細孔径が0.5μm以
下であるものである。
[Means for Solving the Problems] In order to achieve the above object, a molten carbonate fuel cell according to the present invention is provided, in which an electrolyte substrate holding the electrolyte is The porosity is 47% or more and the average pore diameter is 0.5 μm or less.

また、本発明に係る電解質基板は、気孔率が47%以上
であり、かつ、平均細孔径が0.5μm以下であるもの
である。ここで、電解質基板は2以上のビーク細孔径を
有するものがよい。また、電解質基板は0.3μm以上
のビーク細孔径と。
Further, the electrolyte substrate according to the present invention has a porosity of 47% or more and an average pore diameter of 0.5 μm or less. Here, the electrolyte substrate preferably has two or more peak pore diameters. In addition, the electrolyte substrate has a peak pore diameter of 0.3 μm or more.

0.1μm以下のビーク細孔径とを有するものがよい。It is preferable to have a peak pore diameter of 0.1 μm or less.

さらに、範囲を限定すれば、電解質基板は0.3μm以
上3μm以下の細孔径の細孔の容積が全細孔容積に対し
20vol%以上及び、0.1μm以下、0.003μ
m以上の細孔径の容積が全細孔容積に対し、20vol
%以上存在するものがよい。
Furthermore, if the range is limited, the electrolyte substrate has a volume of pores with a pore diameter of 0.3 μm or more and 3 μm or less, which is 20 vol% or more of the total pore volume, 0.1 μm or less, and 0.003 μm or more.
The volume of pores with a diameter of m or more is 20 vol relative to the total pore volume.
% or more is better.

また、本発明に係る電解質基板の製造方法は、原料粉末
とバインダーと増孔剤とを乾式混合する工程と、溶剤混
合液中に可塑剤と繊維素とを添加し混合する工程と、前
記両工程の生成物を混合する工程と、減圧して混合生成
物を脱泡し成形用の原料スラリーとする工程と、原料ス
ラリーからグリーンシートを成形する工程と、を含むも
のである。ここで、原料粉末はγ−LiAΩO1であり
Further, the method for manufacturing an electrolyte substrate according to the present invention includes a step of dry mixing a raw material powder, a binder, and a pore-forming agent, a step of adding and mixing a plasticizer and cellulose into a solvent mixture, and a step of adding and mixing a plasticizer and cellulose to a solvent mixture. The method includes a step of mixing the products of the step, a step of defoaming the mixed product under reduced pressure to obtain a raw material slurry for molding, and a step of molding a green sheet from the raw material slurry. Here, the raw material powder is γ-LiAΩO1.

所定の粒径以下の粉末を分離した後、残りの原料を解砕
し再び所定の粒径以下の粉末を分離し、前記解砕及び粉
末分離工程を適宜繰り返し、各工程で分離された各粉末
の使用割合を適宜調整する工程を含むものがよい。
After separating the powder with a predetermined particle size or less, the remaining raw materials are crushed and the powder with a predetermined particle size or less is separated again, and the crushing and powder separation steps are repeated as appropriate, and each powder separated in each step is It is preferable that the method includes a step of appropriately adjusting the usage ratio of .

また、電解質基板の強度を増すためには、AQよo z
 Jim維を加えることが望ましい5〔作用〕 本発明によれば、気孔率が47%以下で、平均細孔径が
0.5μm以下の電解質基板としたので、細孔内に保持
される電解質が増して電解質イオンの移動抵抗は低下し
、それでいて、電解質保持力が増大する。よって、この
ような電解質基板を備えた燃料電池は、その向上した電
池性能を長時間維持させることができる。
In addition, in order to increase the strength of the electrolyte substrate, AQ
It is desirable to add Jim fibers 5 [Function] According to the present invention, since the electrolyte substrate has a porosity of 47% or less and an average pore diameter of 0.5 μm or less, the amount of electrolyte retained in the pores increases. Therefore, the movement resistance of electrolyte ions is reduced, and the electrolyte retention strength is increased. Therefore, a fuel cell equipped with such an electrolyte substrate can maintain its improved cell performance for a long time.

また、電解質基板が0.3μm以上のビーク細孔径と、
0.1μm以下のビーク細孔径との2つのビーク細孔径
を有することにより、前記電解質イオン移動抵抗の低下
及び電解質保持力は一層向上する。
In addition, the electrolyte substrate has a peak pore diameter of 0.3 μm or more,
By having two beak pore diameters, one being 0.1 μm or less, the electrolyte ion transfer resistance and electrolyte retention are further improved.

〔実施例〕〔Example〕

先ず電解質基板の材料及び作製方法を示す。 First, the material and manufacturing method of the electrolyte substrate will be described.

イ)マトリックス材料 電解質基板用マトリックス主材料として、高比表面積(
’) y  L x A Q Oz粉末(比表面積23
m2/g)を用いた。また、グリーンシートの強度向上
及び耐ヒートサイクル性向上のために7スペクト比(1
1/d、 n :繊維長、d:繊維径)が約100のA
2□O1繊維を用いた。
b) Matrix material As the main matrix material for the electrolyte substrate, use a material with a high specific surface area (
') y L x A Q Oz powder (specific surface area 23
m2/g) was used. In addition, in order to improve the strength and heat cycle resistance of the green sheet, we have added a spectral ratio of 7 (1
1/d, n: fiber length, d: fiber diameter) is about 100
2□O1 fiber was used.

口)バインダー 低温分解性バインダーPVB (ポリビニールブチラー
ル樹脂4000−Z、平均重合度1000゜電気化学工
業mりを用いた。
Binder Low-temperature decomposable binder PVB (polyvinyl butyral resin 4000-Z, average degree of polymerization 1000°, manufactured by Denki Kagaku Kogyo mri) was used.

ハ)増孔剤 低温で分解する有機高分子材料のイソブチレン無水マレ
イン酸共重合体(イソパン04.クラレイソブレンケミ
カルに、K11)を用いた。
c) Pore forming agent Isobutylene maleic anhydride copolymer (isopane 04, K11 from Clareisobrene Chemical), which is an organic polymeric material that decomposes at low temperatures, was used.

二)溶剤 粉末と繊維の混合スラリーを調製するために。2) Solvent To prepare a mixed slurry of powder and fibers.

トリクロールエチレン、テトラクロールエチレン及びn
−ブチルアルコールの混合液を用いた。溶剤混合液の混
合比は、トリクロールエチレン60VOΩ%、テトラク
ロールエチレン17vof1%、n−ブチルアルコール
23von%である。
trichlorethylene, tetrachlorethylene and n
- A mixture of butyl alcohol was used. The mixing ratio of the solvent mixture was 60 VOΩ% of trichlorethylene, 17% of tetrachlorethylene, and 23 von% of n-butyl alcohol.

以上の材料を用いて第2図の原料スラリーの調製フロー
に従い、スラリー、の作製を行った。PvB、γ−L 
i A 1!O,粉末及び増孔剤を秤量後、ボールミル
にて乾式で混合する。一方、溶剤混合液中に可塑剤とA
Qzo3繊維を添加し、AQzO3繊維がよくほぐれる
まで混合したのち、前者のマトリックス材料と合わせて
再び混合した。容器はボールミルで混合中に繊維が細か
く切断されるのを避けるため、ポリエチレン製広口瓶(
2000aa用)を用い、ボールは樹脂ボールを使用し
た。
Using the above materials, a slurry was prepared according to the raw material slurry preparation flow shown in FIG. PvB, γ-L
i A 1! After weighing O, powder, and pore-forming agent, they are mixed dry in a ball mill. On the other hand, plasticizer and A
Qzo3 fibers were added and mixed until the AQzO3 fibers were well loosened, and then mixed again with the former matrix material. The container is a polyethylene wide-mouth bottle (
2000 aa), and a resin ball was used.

この時のスラリー粘度は、原料の均質混合性から5ボイ
ズ前後になるように溶剤量で調整した。ボールミルで2
4〜30時間混合したのち、真空ポンプを用いて減圧し
、脱泡と同時に粘度調整のため溶剤除去を行って成形用
の原料スラリーとした。
The viscosity of the slurry at this time was adjusted by adjusting the amount of solvent to be around 5 voids based on the homogeneous mixability of the raw materials. 2 with ball mill
After mixing for 4 to 30 hours, the pressure was reduced using a vacuum pump, and at the same time as defoaming, the solvent was removed to adjust the viscosity to obtain a raw material slurry for molding.

シート成形時のスラリー粘度は塗布特性の面から考えて
、室温(約20℃)で40〜60ボイズに調整した。こ
うして得られたスラリーを、ドクターブレード機のスラ
リーダムに流してグリーンシートを成形した。ドクター
ブレード機は、ブレード間隙1.0a+m、マイラーシ
ート(東し製ルミラー、片面シリコンコーティング)の
引き抜き速度Q、3m/winとした。成形終了後4時
間自然乾燥し、乾燥後グリーンシートを400■鳳角に
切り出し供試材とした0以上が電解質基板の作製方法で
ある。
The viscosity of the slurry during sheet forming was adjusted to 40 to 60 voids at room temperature (approximately 20° C.) in view of coating properties. The slurry thus obtained was poured into a slurry dam of a doctor blade machine to form a green sheet. The doctor blade machine was set to have a blade gap of 1.0 a+m and a drawing speed Q of a Mylar sheet (Lumirror manufactured by Toshi Co., Ltd., one side silicon coated) of 3 m/win. After completion of molding, the green sheet was air-dried for 4 hours, and after drying, the green sheet was cut into 400 mm square pieces and used as test materials.

本発明においてはさらに、微細孔の調整を行うために、
γ−LiAQO□の粉末の調整を行った。
In the present invention, further, in order to adjust the micropores,
A powder of γ-LiAQO□ was prepared.

粉体調製に用いた主な装置を以下に示す。The main equipment used for powder preparation is shown below.

イ)振動ミル:中央加工機IJ、MB−3型口)振動篩
e DALTON社fJI、50ZA型本発明の特徴の
一つに、γ−L i A Q Ox粉末の二次粒子解砕
工程がある1本工程により、γ−L i A Q O,
の二次粒子径が調整されることにより、平均細孔径が微
細孔(0,5μm)であることのみならず、気孔率を制
御することが可能となる。また、この細孔特性の電解質
マトリックス基板が再現性よく生産され得ることが、リ
チウムアルミネート粉末の解砕工程の働きである。
b) Vibration mill: Central processing machine IJ, MB-3 type Port) Vibration sieve e DALTON fJI, 50ZA type One of the features of the present invention is the process of crushing secondary particles of γ-L i A Q Ox powder. Through one step, γ-L i A Q O,
By adjusting the secondary particle size, it becomes possible not only to ensure that the average pore size is micropores (0.5 μm) but also to control the porosity. Moreover, the ability of the electrolyte matrix substrate with this pore characteristic to be produced with good reproducibility is a function of the crushing process of the lithium aluminate powder.

また、気孔率を制御することにより得られた異なる気孔
率の電解質基板を電池試験に用いることにより、電解質
基板の気孔率が電池特性にどのような影響を与えるかを
確認することができる。
Furthermore, by using electrolyte substrates with different porosities obtained by controlling the porosity in battery tests, it is possible to confirm how the porosity of the electrolyte substrate affects battery characteristics.

〈実施例1〉 原料のγ−L i A Q O,粉末の二次凝集粒子解
砕によるrIl′IB方法を第3図に示した。
<Example 1> FIG. 3 shows the rIl'IB method by crushing secondary agglomerated particles of the raw material γ-L i A Q O and powder.

まず最初に、原料のγ−L i A Q O2粉末を。First, the raw material γ-L i A Q O2 powder.

振動篩を使用して100メツシュ通過の微粉末とその他
のものに分離する。100メツシュ通過の粉末はA保管
し、一方、100メツシユ未通過のγ−LiAflO□
粉末は乾燥機に入れ、150℃で1.5時間乾燥した。
Use a vibrating sieve to separate fine powder that passes through 100 meshes and other powders. Powder that has passed through 100 meshes is stored in A, while γ-LiAflO□ that has not passed through 100 meshes
The powder was placed in a dryer and dried at 150°C for 1.5 hours.

次に、乾燥したγ−LiAΩ02粉末と、直径10脂爵
のセラミックボールlokgを6Qの振動ミル用ボット
に入れた。この際、凝集防止のためのエタノールを1w
t%投入して1時間の解砕を行った。解砕された粉末を
、再度振動篩で処理して100メツシユによる分粒を行
った。この工程を4回繰り返し、各回に通過した粉末を
A−Dに別々に保管した。
Next, the dried γ-LiAΩ02 powder and 10 kg of ceramic balls in diameter were placed in a 6Q vibrating mill bot. At this time, add 1w of ethanol to prevent agglomeration.
t% was added and crushed for 1 hour. The crushed powder was again treated with a vibrating sieve and sized using 100 meshes. This process was repeated four times, and the powder passed each time was stored separately in A-D.

このA−Dの解砕回数の異なる粉末の量と嵩密度の関係
を第1表に示した。その結果、AとDでは嵩密度が1.
5倍(=D/A)であることが判った。
Table 1 shows the relationship between the amount of powder and the bulk density of the powders A-D, which were crushed at different times. As a result, the bulk density of A and D is 1.
It was found to be 5 times (=D/A).

第  1  表 また、解砕回数の異なる粉末の使用量を変えることによ
り、電解質基板の気孔率が異なることが判った。混合量
の相違による気孔率の変化を第2表にまとめた。A(1
回篩)の使用量の多いもの、B(2回篩)の使用量の少
ないものほど、気孔率が高くなることがわかった。
Table 1 It was also found that the porosity of the electrolyte substrate varied by changing the amount of powder used at different times of crushing. Table 2 summarizes changes in porosity due to differences in mixing amounts. A(1
It was found that the larger the amount of B (twice sieve) used and the smaller the amount of B (double sieve) used, the higher the porosity.

第  2  表 気孔率の測定は、650℃で焼成したグリーンシート(
電解質基板)を、n−プロピルアルコール中に浸せきし
、浸せきの前、中、後の試料重量の測定を行い、その値
から次の(1)式を用いて算出したものである。
Table 2 The porosity was measured using green sheets fired at 650°C (
An electrolyte substrate) was immersed in n-propyl alcohol, the weight of the sample was measured before, during and after immersion, and the weight was calculated using the following equation (1).

t= (Wl−W、)/ (wz−wz)・・・・・・
 (1)〔:気孔率(%) W、:大気中試料重量(g) W、:n−プロピルアルコール含浸後の試料重量(g) W、:n−プロピルアルコール中での試料重量(g) ここで、ロット庖つまり気孔率の異なる試料のSEMI
!mの結果を第4@ (a)〜(c)に示す。
t= (Wl-W,)/ (wz-wz)...
(1) [: Porosity (%) W,: Sample weight in air (g) W,: Sample weight after n-propyl alcohol impregnation (g) W,: Sample weight in n-propyl alcohol (g) Here, the SEMI of samples with different porosity, that is, lot size,
! The results of m are shown in 4th (a) to (c).

第5図(a)〜(c)は第4(a)〜(c)に対応する
図で、原料粉末と繊維素と気孔率との関係を説明する説
明図である。この結果から、気孔率の大きなものほど、
細孔径の大きな細孔が多く存在していることが判明した
FIGS. 5(a) to 5(c) are diagrams corresponding to 4th (a) to (c), and are explanatory diagrams for explaining the relationship between raw material powder, cellulose, and porosity. From this result, the larger the porosity, the
It was found that there were many pores with large pore diameters.

〈実施例2〉 二次粒子解砕の回数の違う粉末の混合比を変えた試料の
細孔分布をポロシメータにより測定し。
<Example 2> The pore distribution of samples with different mixing ratios of powders subjected to secondary particle crushing at different times was measured using a porosimeter.

その結果を第6図〜第8図に示した。The results are shown in FIGS. 6 to 8.

第6図は気孔率が42.7%の試料の結果で、0.04
μmと0.12μmを中心とする2つの細孔ビークによ
り形成されている。第7図は気孔率が45.5%の試料
の結果で、解砕回数1回の試料の増加により、0.04
μmと0.12μmの細孔の増加と共に、最大細孔径が
1μmまで大きくなっていることがわかる。第8図は気
孔率が50.5%の試料の結果で、やはり解砕回数1回
の試料の増加により、さらに、0.5μm付近の細孔率
のピークが新たに形成されていることがわかった。
Figure 6 shows the results for a sample with a porosity of 42.7%, which is 0.04%.
It is formed by two pore peaks centered at μm and 0.12 μm. Figure 7 shows the results for a sample with a porosity of 45.5%.
It can be seen that as the pores increase from μm to 0.12 μm, the maximum pore diameter increases to 1 μm. Figure 8 shows the results for a sample with a porosity of 50.5%, and it can be seen that a new porosity peak around 0.5 μm has been formed due to the increase in the number of crushing samples. Understood.

〈実施例3〉 気孔率の異なる電解質基板(マトリックス)試料に電解
質を含浸し、その抵抗値を測定した結果を第9図に示し
た。測定方法は以下に示す通りである。試料を2枚重ね
とし、その全細孔容積の120%に相当する電解質(混
合炭酸塩:Li。
<Example 3> Electrolyte substrate (matrix) samples having different porosities were impregnated with electrolyte, and the resistance values thereof were measured. The results are shown in FIG. 9. The measurement method is as shown below. Two samples were stacked, and the electrolyte (mixed carbonate: Li) corresponded to 120% of the total pore volume.

Co、 : K、Coj= 62 : 38mofl比
)をその重量の20%前後にの水と練り合わせてペース
ト状とし、それを2枚の試料間に塗布し乾燥する。これ
をカソード2枚で挾んで、更にその両側に金線(直径0
 、3 mm)を設置して測定端子とした。
Co, K, Coj = 62:38 mofl ratio) is kneaded with approximately 20% of its weight of water to form a paste, which is applied between two samples and dried. This is sandwiched between two cathodes, and gold wire (diameter 0
, 3 mm) was installed as a measurement terminal.

これを1ブロツクとして、気孔率の異なる試料毎にブロ
ックを作り、各ブロック間に絶縁板(人造マイカ板)を
挾んで重ね合わせ、同一加圧で締め付けて、650℃に
昇温し、ミリオームメータにより、その抵抗値を測定し
た。
With this as one block, blocks were made for each sample with a different porosity, and an insulating plate (artificial mica plate) was sandwiched between each block, and they were stacked together, tightened with the same pressure, heated to 650°C, and measured with a milliohmmeter. The resistance value was measured.

第9図の結果から、気孔率が大きくなる程、液抵抗値(
炭酸塩電解質イオンの移動抵抗値)が減少することが判
った。
From the results in Figure 9, it can be seen that the larger the porosity, the higher the liquid resistance (
It was found that the transfer resistance value of carbonate electrolyte ions) decreased.

〈実施例4〉 気孔率の異なる試料を用いて単セルを組み立て。<Example 4> Assemble single cells using samples with different porosity.

その性能を比較した。セルの部材、その他の組み立て条
件は、電解質基板試料以外すべて同一とした。
Their performance was compared. All cell members and other assembly conditions were the same except for the electrolyte substrate sample.

その結果を第1図に示した。気孔率が47voQ%以上
で、実線で示す電池性能が負荷電流密度150raA/
cm”の時に0.8Vとなることがわかった。また、破
線で示した内部抵抗の値も、気孔率が41voQ%以上
で、13mΩ以下となることがわかった。
The results are shown in Figure 1. When the porosity is 47voQ% or more, the battery performance shown by the solid line is at a load current density of 150raA/
It was found that the value of the internal resistance was 0.8 V when the temperature was 41 voQ% or more and the value of the internal resistance indicated by the broken line was 13 mΩ or less when the porosity was 41 voQ% or more.

なお、電極面積は64cm”であり測定条件は、温度が
650℃、アノードガス組成が80%H2−20%CO
,,カソードガス組成が70%Air−30%CO,,
反応ガス利用率は40%の標準条件によるものである。
The electrode area is 64cm'', and the measurement conditions are a temperature of 650℃ and an anode gas composition of 80%H2-20%CO.
,,Cathode gas composition is 70%Air-30%CO,,
The reaction gas utilization rate is based on standard conditions of 40%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶融炭酸塩型燃料電池の電解質基板(
マトリックス)の細孔特性として望ましい条件となり、
そのため、電解質基板として十分な量の炭酸塩電解質を
保持することが可能となるので、電池性能を向上させ、
長時間維持させる効果がある。
According to the present invention, an electrolyte substrate (
This is a desirable condition for the pore characteristics of the matrix).
Therefore, it is possible to hold a sufficient amount of carbonate electrolyte as an electrolyte substrate, improving battery performance and
It has a long-lasting effect.

また、本発明に係る製造方法によれば、上記電解質基板
を容易に製造することができる。
Further, according to the manufacturing method according to the present invention, the electrolyte substrate described above can be easily manufactured.

【図面の簡単な説明】 第1図は本発明の実施例により作製した気孔率の異なる
電解質板を用いた電池の特性図、第2図はドクターブレ
ード装置で電解質基板を作製するためのスラリーの製造
フロー図、第3図は原料粉末を解砕し分粒する工程のフ
ロー図、第4図は試料の気孔率と表面状態(SEMfR
察)の関係を示した図、第5図(a)〜(C)は第4図
(a)〜(c)に対応する説明図、第6図、第7図、第
8図は気孔率の異なる試料の細孔分布をポロシメータに
より測定した結果を示す図、第9図は気孔率の異なる試
料の抵抗値と気孔率の関係を示す図である。
[Brief Description of the Drawings] Figure 1 is a characteristic diagram of a battery using electrolyte plates with different porosities produced according to the embodiments of the present invention, and Figure 2 is a diagram of the characteristics of a battery using electrolyte plates with different porosities produced according to the embodiments of the present invention. The manufacturing flow diagram, Figure 3 is a flow diagram of the process of crushing and sizing the raw material powder, and Figure 4 shows the porosity and surface condition of the sample (SEMfR
Figures 5(a) to (C) are explanatory diagrams corresponding to Figures 4(a) to (c), and Figures 6, 7, and 8 are porosity diagrams. FIG. 9 is a diagram showing the results of measuring the pore distribution of samples with different porosity using a porosimeter, and FIG. 9 is a diagram showing the relationship between resistance value and porosity of samples with different porosity.

Claims (1)

【特許請求の範囲】 1、電解質として炭酸塩を用いる溶融炭酸塩型燃料電池
において、前記電解質を保持する電解質基板が気孔率4
7%以上平均細孔径0.5μm以下を有することを特徴
とする溶融炭酸塩型燃料電池。 2、気孔率が47%以上平均細孔径が0.5μm以下で
あることを特徴とする溶融炭酸塩型燃料電池用の電解質
基板。 3、請求項2において、電解質基板は0.3μm以上3
μm以下の細孔径の細孔の容積が全細孔容積に対し20
vol%以上及び、0.1μm以下、0.003μm以
上の細孔径の容積が全細孔容積に対し、20vol%以
上存在する溶融炭酸塩型燃料電池用の電解質基板。 4、原料粉末とバインダーと増孔剤とを乾式混合する工
程と、溶剤混合液中に可塑剤と繊維素とを添加し混合す
る工程と、前記両工程の生成物を混合する工程と、減圧
して混合生成物を脱泡し成形用の原料スラリーとする工
程と、原料スラリーからグリーンシートを成形する工程
と、を含む請求項2記載の電解質基板の製造方法。 5、請求項4において、原料粉末はγ−LiAlO_2
であり、所定の粒径以下の粉末を分離した後、残りの原
料を解砕し再び所定の粒径以下の粉末を分離し、前記解
砕及び粉末分離工程を適宜繰り返し、各工程で分離され
た各粉末の使用割合を適宜調整する工程を含む請求項1
記載の電解質基板の製造方法。 6、請求項5における原料粉末のγ−LiAlO_2に
、Al_2O_3繊維を加えたことを特徴とする溶融炭
酸塩型燃料電池用の電解質基板の製造方法。 7、請求項4において、増孔剤として、イソブチレン無
水マレイン酸共重合体を用いることを特徴とする溶融炭
酸塩型燃料電池用電池用電解質基板の製造方法。
[Claims] 1. In a molten carbonate fuel cell using carbonate as an electrolyte, an electrolyte substrate holding the electrolyte has a porosity of 4.
A molten carbonate fuel cell having an average pore diameter of 7% or more and 0.5 μm or less. 2. An electrolyte substrate for a molten carbonate fuel cell, which has a porosity of 47% or more and an average pore diameter of 0.5 μm or less. 3. In claim 2, the electrolyte substrate has a thickness of 0.3 μm or more3
The volume of pores with a pore diameter of μm or less is 20% of the total pore volume.
An electrolyte substrate for a molten carbonate fuel cell, in which the volume of pores with a diameter of vol% or more, 0.1 μm or less, and 0.003 μm or more is present in a volume of 20 vol% or more based on the total pore volume. 4. A step of dry mixing the raw material powder, a binder, and a pore-forming agent, a step of adding and mixing a plasticizer and cellulose into the solvent mixture, a step of mixing the products of both of the above steps, and a step of reducing pressure. 3. The method for manufacturing an electrolyte substrate according to claim 2, comprising the steps of: defoaming the mixed product to obtain a raw material slurry for molding; and molding a green sheet from the raw material slurry. 5. In claim 4, the raw material powder is γ-LiAlO_2
After separating the powder with a predetermined particle size or less, the remaining raw materials are crushed and the powder with a predetermined particle size or less is separated again, and the crushing and powder separation steps are repeated as appropriate, and the powder separated in each step is Claim 1 comprising the step of appropriately adjusting the proportion of each powder used.
A method of manufacturing the electrolyte substrate described above. 6. A method for producing an electrolyte substrate for a molten carbonate fuel cell, characterized in that Al_2O_3 fibers are added to the γ-LiAlO_2 raw material powder according to claim 5. 7. The method of manufacturing an electrolyte substrate for a molten carbonate fuel cell according to claim 4, wherein an isobutylene maleic anhydride copolymer is used as the pore-forming agent.
JP1034093A 1989-02-14 1989-02-14 Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate Pending JPH02213055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034093A JPH02213055A (en) 1989-02-14 1989-02-14 Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034093A JPH02213055A (en) 1989-02-14 1989-02-14 Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate

Publications (1)

Publication Number Publication Date
JPH02213055A true JPH02213055A (en) 1990-08-24

Family

ID=12404658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034093A Pending JPH02213055A (en) 1989-02-14 1989-02-14 Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate

Country Status (1)

Country Link
JP (1) JPH02213055A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237672A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Molten carbonate fuel cell and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237672A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Molten carbonate fuel cell and its manufacture

Similar Documents

Publication Publication Date Title
CN109560249A (en) A kind of double-layer structure anode pole piece, and its preparation method and application
CN108550764B (en) Superfine diamond coating isolating membrane and lithium ion battery applying same
CN109004153A (en) A kind of ultrathin electrodes support type anodic aluminium oxide membrane and preparation method thereof
CN108183192A (en) A kind of ceramic slurry and lithium ion battery separator
CN110197883B (en) Inorganic diaphragm for lithium ion battery and preparation method
CN110380016A (en) Carbon nanotube aqueous slurry, carbon nanotube silicon carbon material and preparation method thereof
CN110729440A (en) Lithium ion battery coating diaphragm, preparation method and lithium ion battery
KR20160061167A (en) Electrod coated with inorganic layer, manufacturing method thereof and rechargeable battery therewith
JP2021532551A (en) Synthesis of carbon-bonded lithium-ion conductor with carbon fiber structure-carbon composite negative electrode material
CN109088031A (en) Ceramic coating membrane slurry, Ceramic Composite diaphragm and its preparation method and application
CN110364660A (en) A kind of water system Zinc ion battery composite diaphragm and preparation method
CN113629357A (en) Battery diaphragm, preparation method thereof and secondary battery
KR102190691B1 (en) Separator coating material for secondary battery of electric vehicle or energy storage system and coating separator manufacturing method using the same, middle or large sized secondary battery of electric vehicle or energy storage system
CN113451703B (en) High-ion-conductivity composite gel polymer diaphragm and preparation method thereof
CN112072047A (en) Sol coating diaphragm and preparation method thereof
CN113764823A (en) High-performance gradient composite gel polymer diaphragm and preparation method thereof
KR20230066434A (en) Anode Materials, Anode Plates and Batteries
CN110739430A (en) lithium ion battery coating diaphragm, preparation method and lithium ion battery
JPH02213055A (en) Molten carbonate fuel cell and electrolyte base plate and manufacture of electrolyte base plate
CN115863920A (en) Composite coating diaphragm and preparation method thereof
CN115513410A (en) Negative pole piece with coating, preparation method thereof and lithium ion battery
CN109524594A (en) A kind of application in mesoporous silicon oxide modification nonwoven cloth diaphragm and lithium-sulfur cell
KR20200105470A (en) Separator coating material for secondary battery of electric vehicle or energy storage system and coating separator manufacturing method using the same, middle or large sized secondary battery of electric vehicle or energy storage system
CN112271401A (en) Preparation method of rubidium-doped inorganic-organic lithium battery composite coating type diaphragm
CN115241603B (en) Heavy metal capturing diaphragm and preparation method and application thereof