JPH02212436A - Sustained release base - Google Patents

Sustained release base

Info

Publication number
JPH02212436A
JPH02212436A JP3422389A JP3422389A JPH02212436A JP H02212436 A JPH02212436 A JP H02212436A JP 3422389 A JP3422389 A JP 3422389A JP 3422389 A JP3422389 A JP 3422389A JP H02212436 A JPH02212436 A JP H02212436A
Authority
JP
Japan
Prior art keywords
acid
drug
sustained release
copolymer
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3422389A
Other languages
Japanese (ja)
Other versions
JPH0547525B2 (en
Inventor
Masaharu Asano
雅春 浅野
Masaru Yoshida
勝 吉田
Minoru Kumakura
熊倉 稔
Hironobu Fukuzaki
裕延 福崎
Hatsuichi Miwa
三輪 肇一
Eiju Yamanaka
山中 英寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Taki Chemical Co Ltd
Original Assignee
Japan Atomic Energy Research Institute
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Taki Chemical Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP3422389A priority Critical patent/JPH02212436A/en
Publication of JPH02212436A publication Critical patent/JPH02212436A/en
Publication of JPH0547525B2 publication Critical patent/JPH0547525B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To obtain a sustained release base, consisting of a polymer prepared by carrying out direct dehydrating polycondensation of lactic acid and/or glycolic acid with a specific hydroxycarboxylic acid, excellent in release control characteristics of a drug and capable of avoiding decomposition of the drug in molding without side effects on living bodies. CONSTITUTION:A sustained release base consisting of a copolymer, prepared by carrying out direct polycondensation of (A) lactic acid and/or glycolic acid with (B) a hydroxycarboxylic acid expressed by formula I [R' is CH2CH3, CH(CH3)2, CH2-CH(CH3)2, formula II or III; R'' is H or CH3] [e.g. alpha- hydroxybutyric or valic acid (alpha-hydroxy-isovaleric acid)] in the absence of a catalyst at 120-250 deg.C temperature under 10-100mmHg reduced pressure while introducing nitrogen gas and having 500-5000 number-average molecular weight at (10/90)-(90/10) molar ratio of the ingredients (A/B). Since the above-mentioned copolymer is a solid with a low softening point. mixing thereof with a drug can be carried out at ordinary temperature or while somewhat heating and problems of decomposition and denaturation of the drug are avoided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は徐放性機能を有する生体分解性の徐放性基剤に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a biodegradable sustained release base having a sustained release function.

(従来の技術) 乳酸、グリコール酸等のポリマーは、生体分解性、生体
吸収性を有するために、従来より手術用縫合糸等の生体
分解性医用材料に応用されている。
(Prior Art) Polymers such as lactic acid and glycolic acid are biodegradable and bioabsorbable, and have thus far been applied to biodegradable medical materials such as surgical sutures.

また、近年に於いては生体への薬物投与を制御するため
の薬物放出制御システム(D D S ;D rBDe
livery  System)用の基剤として各種の
検討が行われている。
In addition, in recent years, drug release control systems (DDS; DrBDe) have been developed to control drug administration to living organisms.
Various studies are being conducted as a base material for the Livery System.

この様なりDS基剤としては、所定時間に一定量の薬物
を生体内部に放出すると共に、薬物放出後は速やかに生
体内で分解することが望まれる。
As such, it is desirable for the DS base to release a certain amount of drug into the living body over a predetermined period of time, and to quickly decompose in the living body after the drug is released.

また、生体に対しては基剤中に不純物を含まず、副作用
の危険がない純粋な成分の基剤であることが望まれてい
る。
Furthermore, for living organisms, it is desired that the base contains no impurities and has pure ingredients without the risk of side effects.

従来より知られている基剤として、乳酸、グリコール酸
等のホモポリマーがある。しかし、乳酸、グリコール酸
等のホモポリマーは、手術用縫合糸等に使用されるため
、一般に高分子量化した製品が所望された結果、通常、
ラクチド若しくはグリコリドを原料とし、触媒を使用し
て重合が行われている。従って、このものは不純物とし
て残存する触媒の除去が必要であり、この触媒除去のた
めに有機溶媒が使用されるが、新たな問題として、この
有機溶媒の残存問題が発生する。また、ポリマーは高分
子量であるため固体状であり、従って、これと薬物とを
混合する際には高温で基剤を溶融する必要があり、薬物
の変性、分解等の問題を生じた。
Conventionally known bases include homopolymers such as lactic acid and glycolic acid. However, homopolymers such as lactic acid and glycolic acid are used in surgical sutures, etc., and as a result, products with high molecular weight are generally desired.
Polymerization is carried out using lactide or glycolide as a raw material and using a catalyst. Therefore, in this method, it is necessary to remove the catalyst remaining as an impurity, and an organic solvent is used for removing the catalyst, but a new problem arises, that is, the remaining organic solvent. Furthermore, since the polymer has a high molecular weight, it is in a solid state, and therefore, when mixing it with a drug, it is necessary to melt the base at a high temperature, which causes problems such as denaturation and decomposition of the drug.

一方、乳酸、グリコール酸を原料とし、無触媒下で脱水
!i重縮合行い、低分子量のホモポリマーを得る方法が
知られており、この方法によれば低分子量のボ□リマー
が得られ、上述の成形時の温度を低くすることが可能で
あり、薬物の分解は抑制される。しかしながら、前述の
高分子量のホモポリマーも同様であるが、上記ポリマー
も一般に結晶性であり、生体用DDS基剤としては次の
ような問題点がある。即ち、このような結晶性ポリマー
は、生体内で不均一な分解性を示す、これは、結晶ポリ
マーが結晶性部分と非品性部分とからなり、非品性部分
に比べて結晶性部分は生体分解性が非常に悪いことに起
因する。また、薬物は一般に結晶性部分よりも非品性部
分に溶解あるいは分散しており、従って、DDS基削と
してこれを用いた場合、非品性部分が先に分解し、薬物
の放出が終了した後も薬物を含有しない結晶性部分が残
り、DDS基剤としては好ましくない1分子量を低下さ
せることにより、この結晶性を低下させることはある程
度可能であるが、この場合、一般に分子量を数百以下と
することが必要である。更に、この場合にはポリマー末
端の酸濃度が高くなり、生体との接触時には炎症等の問
題を引き起こし、また生体分解性が早過ぎるため、徐放
性基剤としては適当でない。
On the other hand, lactic acid and glycolic acid are used as raw materials and dehydrated without catalyst! A method is known in which a low molecular weight homopolymer is obtained by performing i-polycondensation. This method allows a low molecular weight polymer to be obtained, the temperature during the above-mentioned molding can be lowered, and drug decomposition is suppressed. However, as with the above-mentioned high molecular weight homopolymers, the above-mentioned polymers are generally crystalline and have the following problems as DDS bases for biological use. In other words, such crystalline polymers show non-uniform degradability in vivo. This is because crystalline polymers consist of a crystalline part and a non-quality part, and the crystalline part is smaller than the non-quality part. This is due to extremely poor biodegradability. In addition, drugs are generally dissolved or dispersed in non-quality parts rather than in crystalline parts, so when this is used as a DDS substrate, the non-quality parts decompose first and release of the drug ends. Although it is possible to reduce this crystallinity to some extent by lowering the molecular weight, which is undesirable as a DDS base because a crystalline portion that does not contain the drug remains after the treatment, it is generally possible to reduce the molecular weight to a few hundred or less. It is necessary to do so. Furthermore, in this case, the acid concentration at the end of the polymer becomes high, causing problems such as inflammation when it comes into contact with a living body, and biodegradability is too rapid, making it unsuitable as a sustained release base.

また、このようなポリマーの結晶性に起因する生体分解
性、徐放性の問題を解消するなめ、乳酸とグリコール酸
の共重合により非品性ポリマーを合成してDDS用基剤
として応用する検討も行われてきたが、前述の高分子量
ポリマーも含め、依然として問題が残されている。即ち
、これらの生体分解性ポリマーに薬物を包含させたもの
は、薬物の放出速度が基剤ポリマーの分解速度よりも高
く、従って、初期に多量の薬物が放出されることにより
基剤のみが生体内に残留する。
In addition, in order to solve the problems of biodegradability and sustained release caused by the crystallinity of such polymers, we are considering synthesizing a non-grade polymer by copolymerizing lactic acid and glycolic acid and applying it as a base material for DDS. However, problems still remain, including with the high molecular weight polymers mentioned above. In other words, when a drug is incorporated into these biodegradable polymers, the drug release rate is higher than the decomposition rate of the base polymer. Remains in the body.

更に、乳酸とオキシカルボン酸とからなる医薬の局所投
与用ポリラクチド基剤が知られているが、これはラクチ
ド若しくはグリコリド等の分子環状エステル類を原料と
して使用し触媒を使用して反応が行われる結果、不純物
となる触媒が残留するという問題及び高分子量であるた
めにポリマーの生体分解性の問題が残り、除数性基剤と
しては問題がある。
Furthermore, a polylactide base for topical administration of pharmaceuticals consisting of lactic acid and oxycarboxylic acid is known, but this uses molecular cyclic esters such as lactide or glycolide as raw materials and a reaction is carried out using a catalyst. As a result, there remains the problem that the catalyst that becomes an impurity remains, and the biodegradability of the polymer due to its high molecular weight remains, which poses problems as a divisor base.

このように、乳酸、グリコール酸等のポリマーは、生体
分解性のDDS基剤としては改良すべき点が多いのが現
状であり、これらのものに代る陸れた生体用DDS基剤
は未だ見い出されていないのが現状である。
As described above, polymers such as lactic acid and glycolic acid currently have many points to be improved as biodegradable DDS bases, and there are still no suitable biological DDS bases that can replace these. The current situation is that it has not been discovered.

(発明が解決しようとする課題) 前記問題点に鑑み、本発明は生体用DDS基剤として所
望される薬物の放出ff1l制御特性に優れ、しかも生
体に対して副作用のない基剤であり、また成形性が良く
、成形時における薬物の分解問題を回避できる広範な用
途に適用し得る優れた徐放性基剤を提供することを目的
とする。
(Problems to be Solved by the Invention) In view of the above-mentioned problems, the present invention provides a DDS base for living organisms that has excellent drug release control characteristics and that has no side effects on living organisms. The object of the present invention is to provide an excellent sustained-release base that has good moldability and can be applied to a wide range of applications, avoiding the problem of drug decomposition during molding.

(課題を解決するための手段) 本発明者らは鋭意努力の結果、乳酸及び/又はグリコー
ル酸と特定構造を有するオキシカルボン酸とを直接脱水
重縮合して得られる特定組成のポリマーが、前記問題点
を解決した生体用DDS基剤として優れることを見い出
し、本発明を完成させるに至った。
(Means for Solving the Problem) As a result of the present inventors' earnest efforts, a polymer of a specific composition obtained by direct dehydration polycondensation of lactic acid and/or glycolic acid and an oxycarboxylic acid having a specific structure is We have discovered that this is an excellent DDS base for living organisms that solves the problems, and have completed the present invention.

即ち、本発明は乳酸及び/又はグリコール酸(A>と−
最大(+) HO−C−COOH(1) R” 但し、RoはcH,−CL −、(CHz)z−CL、
 (CI+、 >2−CI+C1]、−で示されるオキ
シカルボン1tQ(B)とを直接脱水重縮合して得られ
る(B)/(A)モル比10/90〜90/10、数平
均分子量500〜5000からなるポリマーをその要旨
とする。
That is, the present invention provides lactic acid and/or glycolic acid (A> and -
Maximum (+) HO-C-COOH (1) R" However, Ro is cH, -CL -, (CHz)z-CL,
(CI+, >2-CI+C1], obtained by direct dehydration polycondensation of oxycarboxylic acid 1tQ (B) represented by - (B)/(A) molar ratio 10/90 to 90/10, number average molecular weight 500 The gist is a polymer consisting of ~5000.

(作用) 以下、本発明を更に詳細に説明する。(effect) The present invention will be explained in more detail below.

本発明で使用する乳酸の種類については特段限定はなく
、0体、L体、DL体の何れのものであってもよい、ま
た−最大(りで示されるオキシカルボン酸の種類として
は、α−オキシ酪酸(2−l+ydroxy−n−bu
Lyric  acid)、バリン酸(α−bydro
xy−iso−valerric  acid)、ロイ
シン酸(a −hydroxy−iso−caproi
e  acid)、マンデルwi(mandelie 
 acid)、アトロ乳酸(aLro −1actie
acid)、3−フェニル乳酸(3phenyl−1a
cticacid)がある。
There is no particular limitation on the type of lactic acid used in the present invention, and it may be any of the 0-form, L-form, and DL-form. -oxybutyric acid (2-l+ydroxy-n-bu
Lyric acid), Valic acid (α-bydro
xy-iso-valerric acid), leucine acid (a-hydroxy-iso-caproi
e acid), mandelie
acid), atrolactic acid (aLro-1actie
acid), 3-phenyl lactic acid (3phenyl-1a
cticacid).

本発明ではこれらの原料を使用し、直接脱水重縮合反応
により本発明の基剤を得る0両者の使用割合については
、直接脱水重縮合後に得られるコポリマーが、乳酸及び
/又はグリコールa(A)と前記オキシカルボン酸(B
)とのモル比(B)/(A>として10/90〜90/
10の範囲となるような割合で用いる。
In the present invention, these raw materials are used and the base material of the present invention is obtained by direct dehydration polycondensation reaction. Regarding the proportion of both materials used, the copolymer obtained after direct dehydration polycondensation reaction is based on lactic acid and/or glycol a(A). and the oxycarboxylic acid (B
) molar ratio (B)/(A> is 10/90 to 90/
It is used in proportions that are within the range of 10.

この場合に、このモル比が10/90を下廻り乳酸、グ
リコール酸を多用すると、ポリマーの結晶化度が高くな
ると共に、このポリマー基剤と薬物とを混合したものは
不均一なマトリックスを形成し、薬物の放出速度が大き
くなるため、徐放性基剤として好ましくない、また、反
対にこのモル比が90/10を下廻りオキシカルボン酸
を多用すると、前述と同様にポリマーの結晶化度が高く
なるだけでなく、ポリマーの生体分解性が極度に低下す
るため、生体分解性DDS基剤としては好ましくない。
In this case, if the molar ratio is less than 10/90 and lactic acid or glycolic acid is used extensively, the crystallinity of the polymer will increase and the mixture of this polymer base and drug will form a non-uniform matrix. This is not preferable as a sustained release base because the drug release rate increases.On the other hand, if the molar ratio is less than 90/10 and oxycarboxylic acid is used extensively, the crystallinity of the polymer increases as described above. Not only this, but also the biodegradability of the polymer is extremely reduced, making it undesirable as a biodegradable DDS base.

乳酸、グリコール酸とオキシカルボン酸との直接脱水重
縮合反応に関して云えば、前記原料の混合物中に窒素ガ
スを導入しながら無触媒下で反応を行うか、あるいは1
0〜10(lvHFl程度の減圧下で反応を行えばよい
、また、使用する原料の種類、使用割合等により限定で
きないが、反応時の温度は120〜250℃で行い、反
応時間は2〜30時間が必要である。
Regarding the direct dehydration polycondensation reaction between lactic acid, glycolic acid and oxycarboxylic acid, the reaction may be carried out without a catalyst while introducing nitrogen gas into the mixture of the raw materials, or 1.
The reaction may be carried out under a reduced pressure of about 0 to 10 (lvHFl), and the reaction temperature is 120 to 250°C, and the reaction time is 2 to 30°C. It takes time.

本発明に於いては、反応後に得られるポリマー基剤の数
平均分子量が500〜5000の範囲となることが必要
であるが、この分子量範囲の調整は、上記反応時間の選
択により容易に行うことができる。
In the present invention, it is necessary that the number average molecular weight of the polymer base obtained after the reaction is in the range of 500 to 5000, but this molecular weight range can be easily adjusted by selecting the reaction time described above. Can be done.

この分子量範囲について更に詳記すると、コポリマーの
分子量がこの範囲を逸脱し、500を下廻ると、添加混
合する薬物の放出が極端に早くなり。
To explain this molecular weight range in more detail, if the molecular weight of the copolymer deviates from this range and falls below 500, the release of the drug to be added and mixed becomes extremely rapid.

徐・散性基剤としての機能が全くないものとなる。It has no function as a slow-dispersing base.

また逆に、数平均分子量が5000を下廻ると、得られ
るコポリマーの軟化点が高くなり、このため薬物との混
合時、あるいは成形時に高温での加熱を必要とし、薬物
の分解等の問題を生じ、また薬物の分散状態も不均一と
なり、その結果薬物の放出速度が5000以下のコポリ
マーよりも逆に大きくなり、コポリマー基剤のみが長期
間残存することとなる。
Conversely, if the number average molecular weight is less than 5000, the softening point of the resulting copolymer will be high, which will require heating at high temperatures when mixing with drugs or molding, which may cause problems such as drug decomposition. In addition, the dispersion state of the drug becomes non-uniform, and as a result, the drug release rate is conversely higher than that of a copolymer of 5000 or less, and only the copolymer base remains for a long period of time.

(実施例) 以下、本発明の実施例を掲げて添付図面を参照しつつ更
に説明を行うが、本発明はこれらに塑定されるものでは
ない、また、%は特に断わらない限り全て重量%を示す
(Example) Hereinafter, the present invention will be further explained with reference to the attached drawings by presenting examples of the present invention, but the present invention is not limited to these, and unless otherwise specified, all percentages are by weight. shows.

実施例1〜6 L−礼1i!(90%水溶液)とDL−バリンn<結晶
)混合物(L−乳酸/DL−バリン酸=70/30(モ
ル比))の50gを200m1容反応容器にいれ、20
0m1/winの流量で窒素ガスを混合物中に導入しな
がら200℃で10時間反応させ、室温で固体状のコポ
リマーを得た(実施例1)。
Examples 1 to 6 L-Rei 1i! (90% aqueous solution) and DL-valine n<crystal) mixture (L-lactic acid/DL-valine acid = 70/30 (mole ratio)) was put into a 200 ml reaction vessel,
The reaction was carried out at 200° C. for 10 hours while introducing nitrogen gas into the mixture at a flow rate of 0 ml/win to obtain a copolymer that was solid at room temperature (Example 1).

また、DL−バリン酸に代え、DL−α−オキシ酪酸(
実施IM2>、DL−ロイシン酸(実施例3)、DL−
マンデルvi(実施例4)、DL−アトロ乳酸(実施例
5)、L−3−フェニル乳酸(実施例6)を用いた以外
は実施例1と同一条件下で反応を行い、いずれも固体状
のコポリマーを得た。
Also, instead of DL-valic acid, DL-α-oxybutyric acid (
Implementation IM2>, DL-Leucic Acid (Example 3), DL-
The reaction was carried out under the same conditions as in Example 1, except that Mandel vi (Example 4), DL-atrolactic acid (Example 5), and L-3-phenyllactic acid (Example 6) were used, and all of them were solid. A copolymer of was obtained.

比較例1〜3 また比較のために、実施例1のバリン酸に代えて、3−
(p−ヒドロキシフェニル)プロピオン酸(3(P −
hydroxyphenyl)propionic  
acid)(比較Ml)、DL−β−オキシ酪#(比較
例2)、α−ヒドロキシイソ酪酸(α−hydroxy
isobutyricac id) (比較例3)を用
いた以外は同一条件下で反応を行ない、固体状のコポリ
マーを得た。
Comparative Examples 1 to 3 For comparison, instead of valic acid in Example 1, 3-
(p-hydroxyphenyl)propionic acid (3(P-
hydroxyphenyl) propionic
acid) (comparative Ml), DL-β-oxybutyric acid # (comparative example 2), α-hydroxyisobutyric acid (α-hydroxyisobutyric acid)
A solid copolymer was obtained by carrying out the reaction under the same conditions except that isobutyric acid (Comparative Example 3) was used.

実験1 これらのコポリマーの物性及びインビボ(invivo
)分解率を測定した。尚、in  vivoの分解率は
次の方法により求めた。
Experiment 1 Physical properties of these copolymers and in vivo
) Degradation rate was measured. Incidentally, the in vivo decomposition rate was determined by the following method.

先ず、所定量のコポリマーをテフロンチューブ(内f1
2smφ、長さ50I)内に充填し、100kf/cs
i”の圧力下、70℃で成形処理した。この処理によっ
て、テフロンチューブに充填された複合体は内径2mm
φのロッド状となった0次に、この状態で尖端としたチ
ューブ先端をラットの背中皮下部に挿入し、ステンレス
棒状の押し出し器で注射挿入した。
First, a predetermined amount of copolymer was placed in a Teflon tube (inner f1
2smφ, length 50I), 100kf/cs
The molding process was carried out at 70°C under a pressure of
The tip of the tube, which had become a rod with a diameter of φ, was inserted into the lower back skin of the rat, and the tube was injected using a stainless steel rod-shaped pusher.

コポリマーの埋込みがら5週間口にラットを層殺し、残
存しているコポリマー重量を測定し、埋込み前の重量か
ら分解率を算出した。結果を第1表に示す。
After implanting the copolymer, rats were sacrificed by mouth for 5 weeks, the weight of the remaining copolymer was measured, and the decomposition rate was calculated from the weight before implantation. The results are shown in Table 1.

第1表から明らかなように、比較例1〜3はいずれも数
平均分子量が500以下であり、本発明の実施例に比べ
てin  vivo分解率が極めて高く徐放性能が劣る
As is clear from Table 1, Comparative Examples 1 to 3 all have a number average molecular weight of 500 or less, and have extremely high in vivo decomposition rates and inferior sustained release performance compared to the Examples of the present invention.

実施例7〜10 グリコール酸とL−ロイシン酸を混合モル比(グリコー
ルa/L−ロイシン酸モル比)が各々90/10(実施
例7)、50150(実施例8)、30/70(実施例
9)、10/90(実施例10)となるように混合し、
その50gを各々200@1容反応容器に入れた。
Examples 7 to 10 The mixing molar ratio of glycolic acid and L-leucic acid (glycol a/L-leucic acid molar ratio) was 90/10 (Example 7), 50150 (Example 8), and 30/70 (Example 8), respectively. Example 9), mixed so as to be 10/90 (Example 10),
50 g of each was placed in a 200@1 volume reaction vessel.

この混合物に、窒素ガスを200MZ/winの割合で
導入しながら、200℃で10時間反応を行いコポリマ
ーを得た。
A copolymer was obtained by carrying out a reaction at 200° C. for 10 hours while introducing nitrogen gas into this mixture at a rate of 200 MZ/win.

比較例4,5 グリコール酸とL−ロイシン酸を混合モル比(グリコー
ル酸/L−ロイシン酸モル比)が各々9515(比較例
4)、5/95(比較例5)となるように混合し、その
501Fを同様に各々200d容反応容器に入れた。
Comparative Examples 4 and 5 Glycolic acid and L-leucic acid were mixed so that the mixing molar ratio (glycolic acid/L-leucic acid molar ratio) was 9515 (Comparative Example 4) and 5/95 (Comparative Example 5), respectively. , 501F were similarly placed in each 200 d capacity reaction vessel.

同様に、この混合物に窒素ガスを200mt’/sin
の割合で導入しながら、200℃で10時間反応を行い
コポリマーを得た。
Similarly, nitrogen gas was added to this mixture at 200 mt'/sin.
A copolymer was obtained by conducting a reaction at 200° C. for 10 hours while introducing the copolymer at a ratio of .

実験2 これらコポリマーは実施例1同様の成形処理によりロッ
ド状とし、ラットの背中皮下部に埋込み5週間口の分解
率を求めた。
Experiment 2 These copolymers were shaped into rods by the same molding process as in Example 1, and implanted under the skin of the backs of rats for 5 weeks to determine the rate of oral decomposition.

これらのコポリマーの物性測定結果及びinvivo分
解率を第2表に示した。
Table 2 shows the physical property measurement results and in vivo decomposition rates of these copolymers.

第2表から明らかなように、比較例4.5においては、
グリコール酸とオキシカルボン酸との比率が10/90
〜90/10の範囲を越えており、本発明に比べてin
  v+vo分解率が著しく低く、徐放性基剤としては
不適当である。
As is clear from Table 2, in Comparative Example 4.5,
The ratio of glycolic acid and oxycarboxylic acid is 10/90
~90/10, compared to the present invention.
The v+vo decomposition rate is extremely low, making it unsuitable as a sustained release base.

実施例11〜13 D−乳酸(90%水溶液)とDL−マンデル酸を混合モ
ル比(D−乳酸/DL−マンデル酸モル比)が70/3
0(実施例11)、50150(実施例12)、30/
70(実施例13)となるように混合し、その50gを
各200mf容反応容器に入れた。
Examples 11 to 13 Mixing molar ratio of D-lactic acid (90% aqueous solution) and DL-mandelic acid (D-lactic acid/DL-mandelic acid molar ratio) is 70/3
0 (Example 11), 50150 (Example 12), 30/
70 (Example 13), and 50 g of the mixture was placed in each 200 mf reaction vessel.

この混合物に、200 yal/ 曽inの流量で窒素
ガスを混合物中に導入しながら、200℃で12時間反
応させ、コポリマー及びホモポリマーを得た。
This mixture was reacted at 200° C. for 12 hours while introducing nitrogen gas into the mixture at a flow rate of 200 yal/soin to obtain a copolymer and a homopolymer.

比較例6,7 D−乳酸のホモポリマーを得るために、D−乳酸の60
g(比較例6)、またDL−マンデル酸のホモポリマー
を得るために、DL−マンデル酸の30g(比較例7)
をそれぞれ同様に各200mZ容反応容器に入れた。
Comparative Examples 6 and 7 In order to obtain a homopolymer of D-lactic acid, 60% of D-lactic acid was
g (Comparative Example 6), and 30 g of DL-mandelic acid (Comparative Example 7) to obtain a homopolymer of DL-mandelic acid.
were similarly placed in each 200 mZ capacity reaction vessel.

同様に、この混合物に200+*1/sinの流量で窒
素ガスを混合物中に導入しながら、200℃で12時間
反応させ、コポリマー及びホモポリマーを得た。
Similarly, this mixture was reacted at 200° C. for 12 hours while introducing nitrogen gas into the mixture at a flow rate of 200+*1/sin to obtain a copolymer and a homopolymer.

実験3 これらのポリマーは実施例1と同様の成形処理によりロ
ッド状とし、ラット背中皮下部に埋込み7週間口の分解
率を求めた。
Experiment 3 These polymers were shaped into rods by the same molding process as in Example 1, and implanted under the skin of the back of a rat for 7 weeks to determine the decomposition rate.

これらコポリマーの物性測定結果及び1nvivo分解
率を第3表に示した。
Table 3 shows the physical property measurement results and in vivo decomposition rates of these copolymers.

坑3表 第3表から明らかなように、比較例6,7はいずれもi
n  vivo分解率が低く、徐放性基剤としては不適
当である。
As is clear from Table 3 of Table 3, Comparative Examples 6 and 7 both had i
The n-vivo decomposition rate is low, making it unsuitable as a sustained release base.

実施例14〜17 DL−乳酸く90%水溶液)とDL−ロイシン酸の混合
物(DL−乳酸/DL−ロイシン酸=50150(モル
比))の50gを200m1容反応容器に入れ、200
m1/winの流量で窒素ガスを混合物中に導入しなが
ら200℃で4時間(実施例14)、8時間(実施例1
5)、12時間(実施例16)、18時間(実施例17
)反応させコポリマーを得た。
Examples 14 to 17 50 g of a mixture of DL-lactic acid (90% aqueous solution) and DL-leucinic acid (DL-lactic acid/DL-leucinic acid = 50150 (mole ratio)) was placed in a 200 ml reaction vessel, and
At 200° C. for 4 hours (Example 14) and 8 hours (Example 1) while introducing nitrogen gas into the mixture at a flow rate of m1/win.
5), 12 hours (Example 16), 18 hours (Example 17)
) was reacted to obtain a copolymer.

比較例8.9 また比較のために、反応時間のみを3時間(比較例8)
、30時間(比較例9)としたコポリマーを得た。
Comparative Example 8.9 For comparison, only the reaction time was 3 hours (Comparative Example 8)
, 30 hours (Comparative Example 9).

実験4 同様の実験を行い、これらのコポリマーの物性測定結果
を第4表に示した。また、ラットの背中皮下部でのin
  vivo分解率を第1図に示した。
Experiment 4 A similar experiment was conducted, and the results of measuring the physical properties of these copolymers are shown in Table 4. In addition, in the lower back skin of rats
The in vivo degradation rate is shown in Figure 1.

第4表 第4表から明らかなように、反応時間の調整により容易
に所望する分子量のコポリマーが得られることが判る。
Table 4 As is clear from Table 4, it can be seen that a copolymer with a desired molecular weight can be easily obtained by adjusting the reaction time.

また第1図に示したように、分子量が本発明の範囲を逸
脱すると徐放性基剤としての機能を具有しないものとな
る。
Moreover, as shown in FIG. 1, if the molecular weight is outside the range of the present invention, it will not have the function as a sustained release base.

実施例18 実施例7〜10と比較例4.5で得られたグリコール酸
とL−ロイシン酸のコポリマーの各45−2と、薬物と
して天然黄体形成ホルモン放出ホルモン(!utein
izing hor@one  releasing 
 hormone(以下LH−RHと略記する)、天然
LH−RHのアミノ酸配列は、pGUn−His−Tr
p−9erTyr−Leu−A、rg−Pro−Gly
−NH2である)の5vagとをそれぞれガラス製試験
管に入れ、温度80℃で2分間混合撹拌した。
Example 18 Each 45-2 of the copolymer of glycolic acid and L-leucic acid obtained in Examples 7 to 10 and Comparative Example 4.5 was combined with natural luteinizing hormone-releasing hormone (!utein) as a drug.
Ising hor@one releasing
hormone (hereinafter abbreviated as LH-RH), the amino acid sequence of natural LH-RH is pGUn-His-Tr.
p-9erTyr-Leu-A, rg-Pro-Gly
-NH2) were placed in glass test tubes, and mixed and stirred at a temperature of 80°C for 2 minutes.

複&体含冷却後、これをディスポーザルタイプのテフロ
ン管(内径21mIIφ、長さ60111J)内に充填
し、100 kg/ am’の圧力下、温度50°Cで
2分間成形処理した。この処理によって、テフロンチュ
ーブに充填された複合体は内径2IIII*φ、長さ1
゜鴎細のロッド状となった。
After cooling the mixture, it was filled into a disposable type Teflon tube (inner diameter 21 mIIφ, length 60111 J), and molded at a temperature of 50°C for 2 minutes under a pressure of 100 kg/am'. Through this process, the composite filled in the Teflon tube has an inner diameter of 2III*φ and a length of 1
゜It became a thin rod shape.

この成形した複合体を殺菌処理するため、窒素雰囲気中
、−78℃(ドライアイス−メタノール)の温度で”C
o線源からのγ線をI X 10’ R/ bの線I率
で3時間照射した。
In order to sterilize this molded composite, it was heated to ``C'' at a temperature of -78℃ (dry ice - methanol) in a nitrogen atmosphere.
Gamma rays from an o-ray source were irradiated for 3 hours at a line I rate of I x 10' R/b.

この様に処理して得た複合体の薬物(生理活性物質)の
in  viva放出量を測定した。
The in vivo release amount of the drug (physiologically active substance) from the complex obtained by the above treatment was measured.

尚、方法は複合体をウィスター系ラット(雄、体重40
0〜500g)の背中皮下部にディスポーザルタイプテ
フロン管の先端を挿入し、充填している複合体をテフロ
ン棒で全量押し出し挿入した。
The method was to test the complex in Wistar rats (male, body weight: 40
The tip of a disposable type Teflon tube was inserted into the lower part of the back skin weighing 0 to 500 g), and the entire amount of the filled composite was extruded with a Teflon rod and inserted.

所定時間の経過後、ラットを層殺し、複合体を摘出して
残存する薬物量を測定して注入量から薬物放出率を算出
した。
After a predetermined period of time had elapsed, the rats were sacrificed, the complex was extracted, the amount of remaining drug was measured, and the drug release rate was calculated from the injected amount.

この様にして、各薬物について所定期間毎の薬物放出量
を測定し、その結果を第2図に示した。
In this way, the amount of drug released for each drug was measured at each predetermined period, and the results are shown in FIG.

実施例19 実施例14〜17で得られたDL−乳酸とDL−ロイシ
ン酸のコポリマーの各451とLHH類似物質である[
des−Gly ”、D−Leu’ ]−LH−RHの
5mgをそれぞれガラス製試験管に入れ、温度70℃で
3分間混合撹拌した。これら複合体を実施例18と同じ
操作によりテフロンチューブ中で内径21φ、長さ10
mmのロッド状に成形し、続いて一78℃(ドライアイ
ス−メタノール)の温度で”Co線源からのγ線を2 
X 10’R/hの線量率で1時間照射した。
Example 19 Each of the copolymers 451 of DL-lactic acid and DL-leucic acid obtained in Examples 14 to 17 and an LHH analogue [
5 mg of des-Gly'', D-Leu']-LH-RH were each placed in a glass test tube, and mixed and stirred at a temperature of 70°C for 3 minutes.These complexes were placed in a Teflon tube by the same procedure as in Example 18. Inner diameter 21φ, length 10
It was molded into a rod shape with a diameter of
Irradiation was performed for 1 hour at a dose rate of X 10'R/h.

このようにして得た複合体をラットの背中皮下部に埋入
し、薬物による薬理作用をラット1001体重当たりの
前立腺脱葉の重量(B/ 100 gbw)で求め、結
果を第3図に示した。
The complex thus obtained was implanted into the lower back skin of a rat, and the pharmacological effect of the drug was determined as the weight of prostatic defoliation per 1001 rat body weight (B/100 gbw), and the results are shown in Figure 3. Ta.

(発明の効果) 以上のように、本発明の徐放性基剤は、無触媒で反応し
得られたものであることから特段触媒の除去操作を必要
とせず、従って得られるコポリマーは、有機溶媒等の不
純物を含有しない生体用DDS基剤として好ましいもの
である。
(Effects of the Invention) As described above, since the sustained release base of the present invention is obtained by reacting without a catalyst, there is no need for a special catalyst removal operation, and therefore the obtained copolymer is It is preferable as a DDS base for living organisms that does not contain impurities such as solvents.

また、得られたポリマーは、その軟化点が低い固体状で
あることから、薬物との混合時には常温あるいは若干の
加熱下で行うことができ、薬物の分解、変性の問題は回
避される。
Furthermore, since the obtained polymer is in a solid state with a low softening point, it can be mixed with a drug at room temperature or under slight heating, thereby avoiding the problems of decomposition and denaturation of the drug.

更に、このポリマーは広い分子量範囲にも係わらず、組
成が全て非品性のものであり、薬物の放出制御において
最適な徐放特性を有するものである。従って、本発明の
基剤は、薬物として多種の薬物に適用でき、例えばホル
モン剤、抗ヒスタミン剤、血圧降下剤、血管拡張剤、血
管補強剤、健胃消化剤、!1腸剤、避妊剤、外皮用殺菌
消毒剤、寄生性皮膚疾患用剤、消炎剤、鎮痛剤、利胆剤
、抗リウマチ薬、強心剤、痔治療剤、便秘治療剤、ビタ
ミン剤、各種酵素製剤、ワクチン類、抗原虫剤、インタ
ーフェロン誘起物質、駆虫剤、魚病薬、農薬、オーキシ
ン、ジベレリン、サイトカイニン、アプシジン酸等の植
物ホルモン、昆虫フェロモン等の薬物が使用できる。ま
たこれら薬物は、天然物又は合成物のどちらであっても
よい。
Furthermore, despite having a wide molecular weight range, this polymer has a completely non-polymer composition and has optimal sustained release properties for controlled drug release. Therefore, the base of the present invention can be applied to a wide variety of drugs, such as hormones, antihistamines, antihypertensives, vasodilators, vascular reinforcing agents, digestive aids, and more! Intestinal agents, contraceptives, sterilizing agents for the skin, agents for parasitic skin diseases, anti-inflammatory agents, analgesics, choleretic agents, antirheumatic drugs, cardiotonic agents, hemorrhoid treatment agents, constipation treatment agents, vitamin preparations, various enzyme preparations Drugs such as vaccines, antiprotozoal agents, interferon inducers, anthelmintics, fish disease drugs, agricultural chemicals, plant hormones such as auxin, gibberellin, cytokinin, and apsidic acid, and insect pheromones can be used. Further, these drugs may be either natural products or synthetic products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例14〜17と比較例8.9の
生体内分解率と生体埋め込み期間との関係を示すグラフ
であり、第2図は、本発明の実施例7〜10と比較例4
.5からなる複自体からの薬物の生体内放出量と生体埋
め込み期間との関係を示すグラフであり、第3図は、本
発明の実施例14〜17からなる複合体から放出された
薬物による薬理作用(前立腺脱葉の重量で表わす)と生
体埋め込み期間との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the biodegradation rate and the in-vivo implantation period of Examples 14 to 17 of the present invention and Comparative Examples 8.9, and FIG. and comparative example 4
.. FIG. 3 is a graph showing the relationship between the in-vivo release amount of the drug from the complex consisting of 5 and the in-vivo implantation period, and FIG. FIG. 2 is a graph showing the relationship between the effect (expressed as the weight of prostatic delobation) and the period of in-vivo implantation.

Claims (1)

【特許請求の範囲】 乳酸及び/又はグリコール酸(A)と一般式( I )▲
数式、化学式、表等があります▼( I ) 但し、R’はCH_3−CH_2−、(CH_3)_2
−CH−、(CH_3)_2−CH−CH_2−、▲数
式、化学式、表等があります▼又は▲数式、化学式、表
等があります▼であり、R”はH−又はCH_3−で示
されるオキシカルボン酸(B)とを直接脱水重縮合して
得た(B)/(A)モル比10/90〜90/10、数
平均分子量500〜5000からなる徐放性基剤。
[Claims] Lactic acid and/or glycolic acid (A) and general formula (I)▲
There are mathematical formulas, chemical formulas, tables, etc. ▼ (I) However, R' is CH_3-CH_2-, (CH_3)_2
-CH-, (CH_3)_2-CH-CH_2-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, and R" is H- or the oxyoxygen represented by CH_3- A sustained release base obtained by direct dehydration polycondensation with carboxylic acid (B) and having a molar ratio of (B)/(A) of 10/90 to 90/10 and a number average molecular weight of 500 to 5000.
JP3422389A 1989-02-14 1989-02-14 Sustained release base Granted JPH02212436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3422389A JPH02212436A (en) 1989-02-14 1989-02-14 Sustained release base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3422389A JPH02212436A (en) 1989-02-14 1989-02-14 Sustained release base

Publications (2)

Publication Number Publication Date
JPH02212436A true JPH02212436A (en) 1990-08-23
JPH0547525B2 JPH0547525B2 (en) 1993-07-19

Family

ID=12408147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3422389A Granted JPH02212436A (en) 1989-02-14 1989-02-14 Sustained release base

Country Status (1)

Country Link
JP (1) JPH02212436A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304377A (en) * 1990-10-16 1994-04-19 Takeda Chemical Industries, Ltd. Prolonged release preparation and polymers thereof
US5594091A (en) * 1994-02-21 1997-01-14 Takeda Chemical Industries, Ltd. Matrix for sustained-release preparation
JP2009046552A (en) * 2007-08-17 2009-03-05 Kyoto Institute Of Technology Composition and film
JP2012001619A (en) * 2010-06-16 2012-01-05 Teijin Ltd Polylactic acid composition, and molded article formed therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391325A (en) * 1986-10-07 1988-04-22 Chugai Pharmaceut Co Ltd Sustained release preparation containing granulocyte colony stimulating factor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391325A (en) * 1986-10-07 1988-04-22 Chugai Pharmaceut Co Ltd Sustained release preparation containing granulocyte colony stimulating factor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304377A (en) * 1990-10-16 1994-04-19 Takeda Chemical Industries, Ltd. Prolonged release preparation and polymers thereof
LT3277B (en) 1990-10-16 1995-05-25 Takeda Chemical Industries Ltd Prolonged release pharmaceutical preparation, polymeric composition as base for it and process for preparing thereof
CN1057670C (en) * 1990-10-16 2000-10-25 武田药品工业株式会社 Prolonged release preparation and polymers thereof
US5594091A (en) * 1994-02-21 1997-01-14 Takeda Chemical Industries, Ltd. Matrix for sustained-release preparation
US5665394A (en) * 1994-02-21 1997-09-09 Takeda Chemical Industries, Ltd. Matrix for sustained-release preparation
JP2009046552A (en) * 2007-08-17 2009-03-05 Kyoto Institute Of Technology Composition and film
JP2012001619A (en) * 2010-06-16 2012-01-05 Teijin Ltd Polylactic acid composition, and molded article formed therefrom

Also Published As

Publication number Publication date
JPH0547525B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
US6432438B1 (en) Biodegradable vehicle and filler
Sun et al. The in vivo degradation, absorption and excretion of PCL-based implant
Kitchell et al. [32] Poly (lactic/glycolic acid) biodegradable drug—polymer matrix systems
FI66412C (en) ENI LAEKEMEDELPREPARAT SOM BAERARAEMNE ANVAENDBAR SAMPOLYME R OM HAR FRAMSTAELLS GENOM CONDENSATION POLYMERIZATION FRAO N JOELKSYRA OCH GLYCOLSYRA OCH ETT FOERFARANDE FOER DESS FR AMTAELLNING
US4148871A (en) Sustained subdermal delivery ofdrugs using poly(ε-caprolactone) and its copolymers
AU777673B2 (en) Enhanced intra vaginal devices
KR101612073B1 (en) Fast Dissolving Solid Dosage Form
US4130639A (en) Absorbable pharmaceutical compositions based on isomorphic copolyoxalates
JP4907359B2 (en) Biodegradable multi-block copolymer
US3991766A (en) Controlled release of medicaments using polymers from glycolic acid
EP0139286B1 (en) Prolonged sustained-release preparations
DE69825040T2 (en) BIOABAIBLE POLYMERS WITH PHOSPHATE END GROUPS, COMPOSITIONS, OBJECTS, AND METHOD FOR THEIR MANUFACTURE AND USE
JP2004511431A (en) Biodegradable vehicles and delivery systems containing bioactive agents
MX2014015902A (en) Biodegradable drug delivery for hydrophobic compositions.
JP4548623B2 (en) Biomaterial
JP2009286803A (en) Controlled release delivery of peptide or protein
US20080206303A1 (en) Prolonged Release Formulations Comprising Anastrozole
TWI399224B (en) Solid sustained-release formulation comprising triptorelin acetate
JP3351523B2 (en) Improved sustained release system for sustained release of pharmaceutically and / or biologically useful substances from a depot carrier material
WO1978000011A1 (en) Form of implant medicament and preparation process
EP0245840A2 (en) Biodegradable polymers for retarding preparations with controlled release
JP2000509403A (en) Pharmaceutical compositions for sustained release of insoluble active ingredients
EP1339776B1 (en) Polyanhydrides
JPH02212436A (en) Sustained release base
JP2005507385A (en) Biodegradable implant comprising polylactide polymer and LH-RH analogue