JPH02211899A - Measurement of drug sensibility of bacterium - Google Patents

Measurement of drug sensibility of bacterium

Info

Publication number
JPH02211899A
JPH02211899A JP3137989A JP3137989A JPH02211899A JP H02211899 A JPH02211899 A JP H02211899A JP 3137989 A JP3137989 A JP 3137989A JP 3137989 A JP3137989 A JP 3137989A JP H02211899 A JPH02211899 A JP H02211899A
Authority
JP
Japan
Prior art keywords
bacteria
resazurin
drug
measuring
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3137989A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
孝一 鈴木
Mamoru Yamaguchi
山口 衛
Akio Kubo
久保 彰男
Koji Nagase
長瀬 弘司
Hideyuki Kariyama
狩山 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP3137989A priority Critical patent/JPH02211899A/en
Publication of JPH02211899A publication Critical patent/JPH02211899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and simply detect a growth state of bacterium by adding an oxidation-reduction indicator to a medium to culture a bacterium having oxidation-reduction ability and optically measuring degree of change of color tone of the indictor or fluorescence intensity. CONSTITUTION:In examining drug sensitivity of bacterium having oxidation- reduction ability, an oxidation-reduction indicator is added to mediums containing a drug having various concentrations. The bacterium is inoculated into the mediums and degree of change of color tone or fluorescence intensity of the mediums during the culture or after the culture is measured. Resazurin is used as the oxidation-reduction indicator, preferably degree of change of color based on reduction of resazurin to resorufine is obtained by measuring absorbance at wavelength in range of 550-600nm or resorufine is irradiated with excitation light and fluorescence intensity at 580-590nm wavelength is measured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、例えば、細菌感染症の治療において、有効な
薬剤を選択するための細菌の薬剤感受性測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for measuring drug sensitivity of bacteria for selecting effective drugs, for example, in the treatment of bacterial infections.

〈従来の技術〉 従来、臨床検査室で行われている薬剤感受性検査は、薬
剤の被検菌に対する最小発育阻止濃度(以下、rMIC
Jという)を直接的または間接的に測定するものであり
、希釈法とディスり拡散法に大別される。
<Conventional technology> Conventionally, drug susceptibility tests performed in clinical laboratories are based on the minimum inhibitory concentration (hereinafter referred to as rMIC) of a drug against the test bacteria.
J) is measured directly or indirectly, and is broadly divided into dilution method and dispersion method.

希釈法には、寒天平板希釈法と液体希釈法の2種があり
、それぞれ段階希釈した薬剤を含んだ寒天平板またはブ
イヨンを作製し、培地に一定菌量の被検菌を接種し、一
定時間培養後、培地中の細菌の生育の有無を肉眼的に判
定することによりMICを決定する方法である。
There are two types of dilution methods: the agar plate dilution method and the liquid dilution method. Each method involves preparing an agar plate or broth containing serially diluted drugs, inoculating a certain amount of test bacteria onto a medium, and diluting the drug for a certain period of time. This method determines the MIC by visually determining the presence or absence of bacterial growth in the culture medium after culturing.

一方、ディスク拡散法は、一定量の薬剤を含有したディ
スク(濾紙)を予め被検菌が接種された寒天平板上に置
き、一定時間培養後、ディスクの周囲に形成される細菌
の発育阻止帯(阻止円)の大小を測定することにより感
受性/耐性を決定する方法である。
On the other hand, in the disk diffusion method, a disk (filter paper) containing a certain amount of drug is placed on an agar plate inoculated with test bacteria in advance, and after culturing for a certain period of time, a bacterial growth inhibition zone is formed around the disk. This method determines susceptibility/resistance by measuring the size of (inhibition circle).

しかるに、上記いずれの方法も、細菌の生育に要する培
養時間が必要となるため、大腸菌に代表される速育性の
細菌であっても、検体提出後、測定結果が判明するまで
に48時間以上を要し、感染症の治療上重要である初期
治療に検査結果が有効に利用されていない。
However, all of the above methods require culture time for bacteria to grow, so even for fast-growing bacteria such as Escherichia coli, it takes more than 48 hours after specimen submission before the measurement results are known. Test results are not effectively used for initial treatment, which is important for treating infectious diseases.

さらに、多数の検体を処理するためには、その操作法は
、結果の判定法と共に非常に煩雑である。
Furthermore, in order to process a large number of samples, the operating method as well as the method for determining the results are extremely complicated.

また、近年開発が進んでいる種々の自動化機器は、薬剤
存在下での細菌の生育な濁度または散乱光強度の変化と
して光学的にとらえることにより感受性/耐性を決定す
るものであるが、この場合、死滅菌や細胞壁合成阻害剤
の作用時に見られる菌体の伸(膨)長の影響を受けるこ
と、遅育性の細菌には適用できない等の精度的、感度的
な問題点を残しており、しかも装置価格およびラニング
コストが高価であるために、広(普及するには至ってい
ない。
In addition, various automated devices that have been developed in recent years determine susceptibility/resistance by optically detecting changes in turbidity or scattered light intensity during bacterial growth in the presence of drugs. However, there are still problems with accuracy and sensitivity, such as being affected by cell expansion (swelling) that occurs during sterilization or the action of cell wall synthesis inhibitors, and not being applicable to slow-growing bacteria. Moreover, the device price and running cost are high, so it has not become widely used.

〈発明が解決しよとする課題〉 本発明は、上記従来技術の欠点に鑑みなされたもので、
各種薬剤存在下における細菌の生育状態を、迅速、簡便
に検出できるようにした細菌の薬剤感受性測定方法を提
供することを目的とする。
<Problems to be Solved by the Invention> The present invention has been made in view of the drawbacks of the above-mentioned prior art.
The purpose of the present invention is to provide a method for measuring bacterial drug sensitivity that allows rapid and simple detection of the growth state of bacteria in the presence of various drugs.

〈課題を解決するための手段〉 このような目的は、以下の本発明により達成される。〈Means for solving problems〉 Such objects are achieved by the present invention as described below.

即ち、本発明は、各種濃度の薬剤を含有する培地にて細
菌を培養し、前記細菌の酸化還元能を利用して、前記細
菌の前記薬剤に対する感受性を測定する細菌の薬剤感受
性測定方法であって、 酸化還元指示薬を前記培地に添加し、その色調変化の度
合または蛍光強度を光学的に測定することにより、前記
細菌の前記薬剤に対する感受性を測定することを特徴と
する細菌の薬剤感受性測定方法である。
That is, the present invention is a method for measuring the drug sensitivity of bacteria, in which bacteria are cultured in a medium containing drugs at various concentrations, and the susceptibility of the bacteria to the drug is measured using the redox ability of the bacteria. A method for measuring drug sensitivity of bacteria, which comprises adding a redox indicator to the medium and optically measuring the degree of color change or fluorescence intensity of the medium, thereby measuring the sensitivity of the bacteria to the drug. It is.

また、前記酸化還元指示薬はレサズリンであり、該レサ
ズリンのレゾルフィンへの還元に基づく色調変化の度合
を検出するにあたり、55e〜600 nmの範囲の少
な(とも1点の波長における吸光度を測定することによ
り行う細菌の薬剤感受性測定方法であるのが好ましい。
The redox indicator is resazurin, and in order to detect the degree of color tone change due to the reduction of resazurin to resorufin, it is possible to detect the degree of color tone change based on the reduction of resazurin to resorufin by measuring the absorbance at one wavelength in the range of 55e to 600 nm. Preferably, it is a method for measuring the drug susceptibility of bacteria.

また、前記酸化還元指示薬はレサズリンであり、該レサ
ズリンのレゾルフィンへの還元の度合を検出するにあた
り、励起光を照射し、波長580〜590 nmの蛍光
強度を測定することにより行う細菌の薬剤感受性測定方
法であるのが好ましい。
Further, the redox indicator is resazurin, and in order to detect the degree of reduction of resazurin to resorufin, bacterial drug sensitivity measurement is performed by irradiating excitation light and measuring fluorescence intensity at a wavelength of 580 to 590 nm. Preferably, it is a method.

以下、本発明の細菌の薬剤感受性測定方法について詳細
に説明する。
Hereinafter, the method for measuring bacterial drug sensitivity of the present invention will be explained in detail.

細菌は多数の有機物および無機物を酵素的に酸化還元し
、それによって必要な物質を合成し、不必要または有害
な物質を代謝し、あるいは生命維持に必要なエネルギー
を獲得する。 これらの反応に関与する酸化還元酵素は
、多数知られており、特に菌体内に最も多量に存在する
酸化還元酵素に関与する補酵素であるNAD (H)や
HADP (H)を電子受容体(または供与体)とする
酵素は数多(知られ、その例として、アルコール、乳酸
、グリセルアルデヒド−3−リン酸、3−ヒドロキシス
テロイド等のデヒドロゲナーゼが挙げられる。
Bacteria enzymatically redox and oxidize many organic and inorganic substances, thereby synthesizing necessary substances, metabolizing unnecessary or harmful substances, or obtaining energy necessary for sustaining life. Many oxidoreductases are known to be involved in these reactions, and in particular NAD (H) and HADP (H), which are coenzymes involved in the oxidoreductases that exist in the largest amount in bacterial cells, are converted into electron acceptors ( Numerous enzymes are known (eg, dehydrogenases such as alcohol, lactic acid, glyceraldehyde-3-phosphate, and 3-hydroxysteroids).

本発明は、細菌が普遍的に有する種々の酸化還元酵素活
性に着目し、薬剤存在下における細菌の生育状態を、細
菌の生育に伴う前記酵素活性の増大を指標として、細菌
の薬剤感受性を測定するものである。
The present invention focuses on various oxidoreductase activities that bacteria universally possess, and measures the drug sensitivity of bacteria by observing the growth state of bacteria in the presence of drugs and using the increase in enzyme activity accompanying bacterial growth as an indicator. It is something to do.

臨床上分離される細菌および臨床上使用される薬剤存在
下において、細菌の前記酵素活性、即ち酸化還元能を測
定する方法としては、酸化還元指示薬(以下、単に指示
薬という)を培地、特に液体培地に添加し、その色調変
化の度合または蛍光強度の大小を、それぞれに応じた光
学的測定方法により検出するのが好ましい。 このよう
な指示薬としては、例えばレサズリン、テトラゾリウム
塩、またはこれらに類するものが挙げられる。
In the presence of clinically isolated bacteria and clinically used drugs, a method for measuring the enzymatic activity, that is, redox ability of bacteria, involves adding a redox indicator (hereinafter simply referred to as an indicator) to a medium, particularly a liquid medium. It is preferable that the degree of color tone change or the level of fluorescence intensity is detected by an optical measurement method appropriate for each. Such indicators include, for example, resazurin, tetrazolium salts, or the like.

以下、指示薬としてレサズリンを用い、細菌がレサズリ
ンを還元してレゾルフィンを生成せしめる反応を利用す
る場合について代表的に説明する。
Hereinafter, a typical case will be described in which resazurin is used as an indicator and a reaction in which bacteria reduce resazurin to produce resorufin is utilized.

レサズリンは、細菌の生育に伴う種々の酸化還元酵素活
性により、レゾルフィンに還元される。 この反応式を
次に示す。
Resazurin is reduced to resorufin by various oxidoreductase activities associated with bacterial growth. This reaction formula is shown below.

この反応は非可逆的で、上記式中のプロトンおよび電子
は各種酸化還元反応において授受されるプロトンおよび
電子により供給される。
This reaction is irreversible, and the protons and electrons in the above formula are supplied by protons and electrons exchanged in various redox reactions.

一方、細菌が薬剤に対して感受性である場合は、上記反
応は起こらないかまたは最低限に抑えられる。 即ち、
各種薬剤存在下における細菌のレサズリン還元能を測定
することにより、細菌の薬剤に対する感受性を容易に判
定することができる。
On the other hand, if the bacteria are sensitive to the drug, the reaction will not occur or will be minimized. That is,
By measuring the ability of bacteria to reduce resazurin in the presence of various drugs, the sensitivity of bacteria to drugs can be easily determined.

レサズリンは、中性条件下で青色を示し、波長600 
nm付近に吸収極大を有する。 一方、レゾルフィンは
、桃色を示し、波長570nm付近に吸収極大を有する
Resazurin exhibits a blue color under neutral conditions and has a wavelength of 600
It has an absorption maximum near nm. On the other hand, resorufin exhibits a pink color and has an absorption maximum near a wavelength of 570 nm.

なお、レサズリンは、アルキル基、ニトロ基、メトキシ
基、ハロゲン原子等の置換基を有するものであってもよ
い。
Note that resazurin may have a substituent such as an alkyl group, a nitro group, a methoxy group, or a halogen atom.

本発明においては、各種濃度の薬剤と、レサズリンとを
含有する培地にて細菌を培養し、その色調の変化(青色
→桃色)等を、正確な測定結果を得るために、光学的に
測定する。 そして、所定の判定基準に基づいて、MI
C等を決定する。
In the present invention, bacteria are cultured in a medium containing various concentrations of drugs and resazurin, and changes in color (from blue to pink) are measured optically in order to obtain accurate measurement results. . Then, based on predetermined criteria, MI
Determine C, etc.

以下、光学的な測定の具体的方法について説明する。A specific method of optical measurement will be described below.

段階希釈した薬剤(臨床上使用されるもの)を含有する
培地に所定濃度(好ましくは、10〜10100ILの
レサズリンを添加し、被検菌を接種、一定時間培養後、
550〜600nmの範囲の少な(とも1点の波長の吸
光度を測定する。
A predetermined concentration (preferably 10 to 10,100 IL) of resazurin is added to a medium containing serially diluted drugs (those used clinically), the test bacteria are inoculated, and after culturing for a certain period of time,
The absorbance at one wavelength in the range of 550 to 600 nm is measured.

レサズリンの還元、即ち細菌の生育の度合は、 ■レサズリンの吸収極大である600nmの吸収の減少
、■レゾルフィンの吸収極大である5 70 nmの吸
収の増加、または■570nmと600 nmの吸光度
差[OD!?。−OD、、。]を指標として検出するの
が好ましい。
The reduction of resazurin, that is, the degree of bacterial growth, is determined by: (1) a decrease in absorption at 600 nm, which is the maximum absorption of resazurin, (2) an increase in absorption at 570 nm, which is the maximum absorption of resorufin, or (2) a difference in absorbance between 570 nm and 600 nm [ OD! ? . -OD. ] is preferably detected as an index.

特に、上記■の場合、培養に伴う濁りの散乱によるベー
スラインの浮き上がり等の妨害成分の影響を排除した測
定が行えるため、有用である。
In particular, the above case (2) is useful because it allows measurement to be performed while eliminating the influence of interfering components such as baseline elevation due to scattering of turbidity associated with culture.

本発明では、前記吸光度値をそのまま薬剤感受性測定の
指標とすることもできるが、さらに詳細な判定を行うた
めに、吸光度差[ODB?。−OD、。。]値から次式
(1)により算出される生育%を求め、これにより判定
するのが好ましい。
In the present invention, the absorbance value can be directly used as an index for drug sensitivity measurement, but in order to make a more detailed determination, the absorbance difference [ODB? . -OD,. . ] It is preferable to determine the growth percentage calculated by the following formula (1) from the value and make the determination based on this.

A:薬剤存在下における吸光度差 [oDst。−OD、。。] B:薬剤を含まないときの吸光度差 (耐性対照) C:細菌を接種しないときの吸光度差 (感受性対照) なお、生育%からの感受性の判定基準は、薬剤毎に異な
り、薬剤の作用機序、作用時間および濃度等の条件に基
づいて決定される。
A: Absorbance difference in the presence of drug [oDst. -OD,. . ] B: Difference in absorbance when no drug is included (resistant control) C: Difference in absorbance when no bacteria are inoculated (susceptibility control) The criteria for determining susceptibility based on growth % differs for each drug, and depends on the mechanism of action of the drug. It is determined based on conditions such as onset, duration of action, and concentration.

また、本発明では、リサズリンのレゾルフィンへの還元
の度合を蛍光強度の測定により求めることができる。
Furthermore, in the present invention, the degree of reduction of resazurin to resorufin can be determined by measuring fluorescence intensity.

レサズリンは、蛍光性を有さず、レゾルフィンは、蛍光
性を有する。 従って、レサズリンのレゾルフィンへの
還元は、蛍光物質の生成としてとらえることができる。
Resazurin does not have fluorescence, and resorufin has fluorescence. Therefore, the reduction of resazurin to resorufin can be viewed as the production of a fluorescent substance.

具体的には、前記と同様にして細菌を培養した後、例え
ば波長540〜550 nmの励起光を照射し、蛍光波
長580〜590 nmの強度を測定し、その蛍光強度
の大小を測定することにより感受性を判定する。
Specifically, after culturing bacteria in the same manner as described above, for example, irradiation with excitation light having a wavelength of 540 to 550 nm, measuring the intensity of fluorescence wavelength of 580 to 590 nm, and measuring the magnitude of the fluorescence intensity. Determine susceptibility by

なお、この場合、励起光の種類、波長等は特に限定され
ない。
In this case, the type, wavelength, etc. of the excitation light are not particularly limited.

〈実施例〉 (実施例1) ニスケリチア・コリATCC25922株をミューラー
・ヒントン寒天培地で、37℃、18時間培養して得ら
れたコロニーを釣菌し、滅菌蒸留水にマクファーランド
濃度N001(約10 ”/ml)となるように懸濁し
た。
<Example> (Example 1) Niskerichia coli ATCC 25922 strain was cultured on Mueller-Hinton agar medium at 37°C for 18 hours. 10"/ml).

一方、アンピシリン(ABPC)を滅菌蒸留水に溶解し
、2倍段階希釈したABPC溶液を96穴マイクロプレ
ートに1ウェル当り100μEずつ分注した。 ABP
C濃度は、菌液接種後、最終的に0.5.1.2.4.
8.16.32.64μg力価/IIIjとなるように
調製した。
On the other hand, ampicillin (ABPC) was dissolved in sterile distilled water, and the ABPC solution, which was serially diluted 2 times, was dispensed into a 96-well microplate at 100 μE per well. ABP
After inoculating the bacterial solution, the final C concentration was 0.5.1.2.4.
It was adjusted to have a titer of 8.16.32.64 μg/IIIj.

次に濾過滅菌したミューラー・ヒントンブロス (pH
7,4)4.8mff1に4.OXlo−3Mレサズリ
ン水溶液100μ恋を添加し、上記ニスケリチア・コリ
懸濁液100μEを接種したこの菌液を、上記ABPC
溶液が分注されたマイクロプレートに、1ウェル当たり
100μmずつ接種し、37℃、4時間培養後、島原製
作所社製吸光度計UV−160型により各ウェルの吸光
度OD、、。およびOD s。。を測定した。
Next, filter-sterilized Mueller-Hinton broth (pH
7,4) 4.8mff1 to 4. This bacterial solution to which 100 μE of OXlo-3M resazurin aqueous solution was added and 100 μE of the above Niskerichia coli suspension was added was added to the above ABPC.
The solution was inoculated at 100 μm per well in a microplate, and after culturing at 37° C. for 4 hours, the absorbance OD of each well was measured using an absorbance meter UV-160 manufactured by Shimabara Manufacturing Co., Ltd. and OD s. . was measured.

第1図にODi、。およびOD s。。の測定結果、第
2図に吸光度差[OD、?。−OD、。。J1第3図に
生育%をそれぞれ示す。 第1図〜第3図のいずれより
も、ABPC濃度が2Mg/mjでレサズリン還元が抑
制されていることがわかる。 この結果は、NCCLS
により標準化されたMIC測定法で測定したMIC値(
=2μg/ ml)と一致するものである。
Figure 1 shows ODi. and OD s. . Figure 2 shows the measurement results of the absorbance difference [OD, ? . -OD,. . The growth percentages are shown in Fig. 3 of J1. It can be seen from any of FIGS. 1 to 3 that resazurin reduction is suppressed at an ABPC concentration of 2 Mg/mj. This result is based on the NCCLS
MIC value measured using the MIC measurement method standardized by
= 2 μg/ml).

(実施例2) 実施例1と同様の方法で、各種濃度のアンピシリン(A
BPC)、セファゾリン(CEZ)およびゲンタミシン
(GM)の存在下における、下記表1に示す各菌種のレ
サズリン還元能を測定し、レサズリン還元が抑えられた
薬剤濃度をMICとして求めた。
(Example 2) Various concentrations of ampicillin (A
BPC), cefazolin (CEZ), and gentamicin (GM), the resazurin-reducing ability of each bacterial species shown in Table 1 below was measured, and the drug concentration at which resazurin reduction was suppressed was determined as the MIC.

表1に、吸光度測定結果より前記式(1)に基づいて算
出した生育%の結果とこれにより求めたMICおよびN
CCLS標準法により測定したMICを示す。
Table 1 shows the results of the growth percentage calculated based on the above formula (1) from the absorbance measurement results, and the MIC and N
The MIC measured by the CCLS standard method is shown.

なお、本発明法によるMICは、生菌数と生育%の相関
性、生菌数一定のときの生育%等を総合的に考慮し、生
育%が50%以下となる最大の薬剤濃度をMICとした
In addition, MIC according to the method of the present invention comprehensively considers the correlation between the number of viable bacteria and growth %, the growth % when the number of viable bacteria is constant, etc., and determines the maximum drug concentration at which the growth % is 50% or less. It was set as MIC.

表1に示すように、本発明法とNCCLS法によるMI
C値はいずれの菌種および薬剤においても一致しており
極めて信頼性の高いものであることがわかる。
As shown in Table 1, MI by the method of the present invention and the NCCLS method
It can be seen that the C values are consistent for all bacterial species and drugs and are extremely reliable.

〈発明の効果〉 本発明の細菌の薬剤感受性測定方法によれば細菌の酸化
還元能を指標とすることにより、従来の測定法に比べ、
迅速かつ簡便に細菌の薬剤感受性検査を行うことができ
る。
<Effects of the Invention> According to the method for measuring bacterial drug susceptibility of the present invention, by using the redox ability of bacteria as an index, compared to conventional measuring methods,
Bacterial drug susceptibility testing can be performed quickly and easily.

特に、レサズリンのレゾルフィンへの還元の度合を光学
的に検出する場合には、薬剤感受性の測定精度が高い。
In particular, when the degree of reduction of resazurin to resorufin is optically detected, drug sensitivity can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1における吸光度0Dsy。 およびOD、。。を示すグラフである。 第2図は、実施例1における吸光度差 [oDsy。−OD、。。]を示すグラフである。 第3図は、実施例1における生育%を示すグラブである
。 (−e−)OL’+ (IQ (−o−)009(IQ F I G: 2 ABPC濃!(P92Iイa/ml  )FIG、3
FIG. 1 shows the absorbance of Example 1 at 0 Dsy. and OD,. . This is a graph showing. FIG. 2 shows the absorbance difference [oDsy] in Example 1. -OD,. . ] is a graph showing. FIG. 3 is a graph showing growth percentage in Example 1. (-e-)OL'+ (IQ (-o-)009(IQ FI G: 2 ABPC thick! (P92Ia/ml) FIG, 3

Claims (3)

【特許請求の範囲】[Claims] (1)各種濃度の薬剤を含有する培地にて細菌を培養し
、前記細菌の酸化還元能を利用して、前記細菌の前記薬
剤に対する感受性を測定する細菌の薬剤感受性測定方法
であって、 酸化還元指示薬を前記培地に添加し、その色調変化の度
合または蛍光強度を光学的に測定することにより、前記
細菌の前記薬剤に対する感受性を測定することを特徴と
する細菌の薬剤感受性測定方法。
(1) A method for measuring drug sensitivity of bacteria, in which bacteria are cultured in a medium containing drugs at various concentrations, and the susceptibility of the bacteria to the drug is measured using the redox ability of the bacteria, the method comprising: A method for measuring drug sensitivity of bacteria, which comprises adding a reducing indicator to the medium and optically measuring the degree of color change or fluorescence intensity to measure the sensitivity of the bacteria to the drug.
(2)前記酸化還元指示薬はレサズリンであり、該レサ
ズリンのレゾルフィンへの還元に基づく色調変化の度合
を検出するにあたり、550〜600nmの範囲の少な
くとも1点の波長における吸光度を測定することにより
行う請求項1に記載の細菌の薬剤感受性測定方法。
(2) The redox indicator is resazurin, and the degree of color tone change due to the reduction of resazurin to resorufin is detected by measuring absorbance at at least one wavelength in the range of 550 to 600 nm. Item 1. The method for measuring bacterial drug susceptibility according to item 1.
(3)前記酸化還元指示薬はレサズリンであり、該レサ
ズリンのレゾルフィンへの還元の度合を検出するにあた
り、励起光を照射し、波長580〜590nmの蛍光強
度を測定することにより行う請求項1に記載の細菌の薬
剤感受性測定方法。
(3) The redox indicator is resazurin, and the degree of reduction of resazurin to resorufin is detected by irradiating excitation light and measuring fluorescence intensity at a wavelength of 580 to 590 nm. A method for measuring drug susceptibility of bacteria.
JP3137989A 1989-02-10 1989-02-10 Measurement of drug sensibility of bacterium Pending JPH02211899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137989A JPH02211899A (en) 1989-02-10 1989-02-10 Measurement of drug sensibility of bacterium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137989A JPH02211899A (en) 1989-02-10 1989-02-10 Measurement of drug sensibility of bacterium

Publications (1)

Publication Number Publication Date
JPH02211899A true JPH02211899A (en) 1990-08-23

Family

ID=12329620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137989A Pending JPH02211899A (en) 1989-02-10 1989-02-10 Measurement of drug sensibility of bacterium

Country Status (1)

Country Link
JP (1) JPH02211899A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501959A (en) * 1989-01-17 1996-03-26 Alamar Biosciences Laboratory, Inc. Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents
WO2001098531A1 (en) * 2000-06-20 2001-12-27 Ortho-Mcneil Pharmaceutical, Inc. Resazurin-based cytotoxicity assay
US6982152B2 (en) 2002-04-17 2006-01-03 Promega Corporation Cytotoxicity assay
WO2011010139A1 (en) * 2009-07-20 2011-01-27 Mast Group Limited Assay and assay device
WO2017126542A1 (en) * 2016-01-22 2017-07-27 国立研究開発法人農業・食品産業技術総合研究機構 Method for measuring oxidoreductase activity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501959A (en) * 1989-01-17 1996-03-26 Alamar Biosciences Laboratory, Inc. Antibiotic and cytotoxic drug susceptibility assays using resazurin and poising agents
WO2001098531A1 (en) * 2000-06-20 2001-12-27 Ortho-Mcneil Pharmaceutical, Inc. Resazurin-based cytotoxicity assay
US6982152B2 (en) 2002-04-17 2006-01-03 Promega Corporation Cytotoxicity assay
WO2011010139A1 (en) * 2009-07-20 2011-01-27 Mast Group Limited Assay and assay device
WO2017126542A1 (en) * 2016-01-22 2017-07-27 国立研究開発法人農業・食品産業技術総合研究機構 Method for measuring oxidoreductase activity
JPWO2017126542A1 (en) * 2016-01-22 2018-02-01 国立研究開発法人農業・食品産業技術総合研究機構 Method for measuring oxidoreductase activity
CN108474020A (en) * 2016-01-22 2018-08-31 国立研究开发法人农业·食品产业技术综合研究机构 The activity determination method of oxidoreducing enzyme
EP3406732A4 (en) * 2016-01-22 2019-10-30 National Agriculture and Food Research Organization Method for measuring oxidoreductase activity
US10907191B2 (en) 2016-01-22 2021-02-02 National Agriculture And Food Research Organization Method for measuring activity of oxidoreductase
CN108474020B (en) * 2016-01-22 2022-08-02 国立研究开发法人农业·食品产业技术综合研究机构 Method for measuring activity of oxidoreductase

Similar Documents

Publication Publication Date Title
JP3095833B2 (en) Method and kit for detecting microbial metabolism
US9822389B2 (en) Method for the characterization of microorganisms on solid or semi-solid media
Le Gall et al. Proposal of a quantitative PCR-based protocol for an optimal Pseudomonas aeruginosa detection in patients with cystic fibrosis
US6387648B1 (en) Method for adjusting and disinfecting liquids
US10458916B2 (en) Rapid tests for the detection of inhibitors of enzymes and human exposure to the same
JPH02211899A (en) Measurement of drug sensibility of bacterium
CN115261439A (en) Helicobacter pylori drug sensitivity kit and detection method thereof
JP3936660B2 (en) Rapid antibiotic susceptibility testing
Guilbault [11] Fluorometric determination of dehydrogenase activity using resorufin
JPH10210998A (en) Test of bacterium
RU2348041C1 (en) Method for diagnostics of aspirin resistance in patients with coronary heart disease
US20120015390A1 (en) Methods for the Detection and Treatment of Aberrant Prion Disease
US11597961B2 (en) Rapid colorimetric diagnostic test for C. difficile
CN117110256B (en) Urine tyrosine detection reagent and detection method based on N-GQDs fluorescence quenching principle
JP3653575B2 (en) Direct colorimetric determination of D-arabinitol in blood
JP2005160399A (en) Method for determining histamine
JPH02211898A (en) Detection of growth of bacterium and medium used therefor
JP4495809B2 (en) Bacteria identification method
TR2021004295A2 (en) SPECTROPHOTOMETRIC ANALYSIS METHOD FOR DETERMINATION AND TRACKING OF PHENYLANAINE IN BLOOD
JPH0698026B2 (en) Method for measuring polyamines
JP2004049085A (en) Method for assaying microorganism proliferation and activity of microorganism and method for -sensitivity examination
JP2007222182A (en) Method for examining bacterium
JPH02234697A (en) Measuring method of living body sample
JPS63134000A (en) Quantitative determination of polyamine
Sutarlie et al. Palm-T2: A Colorimetric Paper Sensor for Detecting Heterocyclic Amine/Carbonyl, Lactate, Moisture, Trimethylamine and Tryptophan Derivatives in Wound Infections