JPH0221142A - Super clean chamber of constant temperature - Google Patents

Super clean chamber of constant temperature

Info

Publication number
JPH0221142A
JPH0221142A JP17104788A JP17104788A JPH0221142A JP H0221142 A JPH0221142 A JP H0221142A JP 17104788 A JP17104788 A JP 17104788A JP 17104788 A JP17104788 A JP 17104788A JP H0221142 A JPH0221142 A JP H0221142A
Authority
JP
Japan
Prior art keywords
air
chamber
constant temperature
passage
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17104788A
Other languages
Japanese (ja)
Other versions
JPH0449015B2 (en
Inventor
Satoru Ikekoifuna
悟 池鯉鮒
Masanori Inoue
正憲 井上
Takaki Yoshida
隆紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP17104788A priority Critical patent/JPH0221142A/en
Publication of JPH0221142A publication Critical patent/JPH0221142A/en
Publication of JPH0449015B2 publication Critical patent/JPH0449015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

PURPOSE:To provide a chamber in which there is no fluctuation of temperature spacially and temporally by providing means to mix the air flow in channel in a channel between a blower and HEPA filter. CONSTITUTION:In order to bring the temperature distribution in a chamber within + or -0.01 deg.C it is necessary to mix sufficiently the air flow between a blower 9 and HEPA filter 2. In order to mix sufficiently the air flow in a channel in front of the HEPA filter it is recommendable to arrange a minute mixing device 21 which disturbs minutely the air flow flowing through the channel on the downstream side of a rough mixing device 20 which mixes mutually the air flows which flow through the channel at a remote position. For the rough mixing device 20 a laminate consisting of small channels which bundles respectively independent small channels a, b, c, and laminating at least part of the small channels which are inclined so as to displace mutually the positions of air intake ports and the positions of air outlet ports is preferable, and for the minute mixing device 21 a filling material 26 with a large cavity ratio is preferable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、清浄空間内において時間的および空間的な温
度の分布幅が±0.01°C以内といった超恒温状態を
維持する超恒温清浄チャンバーに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is an ultra-constant temperature cleaning system that maintains an ultra-constant temperature state in which the temporal and spatial temperature distribution width is within ±0.01°C within a clean space. Concerning the chamber.

〔発明の背景と従来技術〕[Background of the invention and prior art]

超LSIの微細加工は、II小投影露光法や電子線・X
線露光法等のようにステップ・アンド・リピート方式が
主流になっている。これはウェハを多数回移動させなが
ら露光する方式で、その移動を行なうXY子テーブルは
精密位置決め装置がついている。現在9位置決めのため
の検出器で最も精度が高いものは光源にHe−Neをレ
ーザーを使用したレーザー干渉測長器である。
Ultra-LSI microfabrication is performed using the II small projection exposure method, electron beam/X
Step-and-repeat methods, such as line exposure methods, have become mainstream. This is a method in which the wafer is exposed while being moved many times, and the XY child table that performs the movement is equipped with a precision positioning device. Currently, the most accurate detector for positioning is a laser interferometer that uses a He-Ne laser as a light source.

レーザー波長は真空中においてのみ一定となり空気中で
は屈折率の変化に伴って変化する。従って、レーザ測長
器の精度を保つためには、空気の屈折率が変化しないよ
うに、つまり温度、湿度。
The laser wavelength remains constant only in vacuum, and changes in air as the refractive index changes. Therefore, in order to maintain the accuracy of the laser length measuring device, the refractive index of the air must not change, that is, the temperature and humidity must be controlled.

圧力を一定に保つように、その測定環境を制御しなけれ
ばならない。例えば16Mbit DRMは最小線巾0
.5μmになり、それに伴って位置合わせ精度は0.1
μmが要求される。温度についての制御について見ると
、温度と屈折率との関係は。
The measurement environment must be controlled to keep the pressure constant. For example, 16Mbit DRM has a minimum line width of 0.
.. 5μm, and the alignment accuracy is accordingly 0.1
μm is required. Regarding temperature control, what is the relationship between temperature and refractive index?

(n+ s/n−1) X 10’ −(0,931+
0.006(σ”−3)−0,003(t−zO)) 
x(t−20)ただしr  n1m’工業標準状態の空
気の屈折率グ:真空波長の逆数(μm) また、測定の前後で屈折率がΔnだけ変化したとすると
、その誤差Δdは。
(n+ s/n-1) X 10' -(0,931+
0.006(σ”-3)-0,003(t-zO))
x (t-20) where r n1m'Refractive index of air in industrial standard state G: Reciprocal of vacuum wavelength (μm) Also, if the refractive index changes by Δn before and after the measurement, the error Δd is.

Δd−(Δn/n)d。Δd−(Δn/n)d.

ただし、do:変化後の光路長 であり9例えば10clIの長さのものを0.1μm以
下の精度で測定するためには、温度制御は±0.01℃
以下でなければならない。
However, do is the optical path length after the change.9For example, in order to measure a 10clI length with an accuracy of 0.1μm or less, temperature control is ±0.01℃.
Must be less than or equal to

従来、清浄域空間において、空間的にも時間的にも設定
温度±0.01℃の範囲に収まる超恒温状態を維持させ
ることは困難であった。例えば、昭和62年5月27〜
29日の第6回空気清浄とコンタミネーションコントロ
ール研究大会において、加嶋正−氏等による「超恒クリ
ーンブースの開発J、同同報誓書81〜84頁紹介され
たが、その成果は設置空間における温度分布を±0.0
5℃とするものであった。
Conventionally, in a clean area space, it has been difficult to maintain an ultra-constant temperature state within a set temperature range of ±0.01° C. both spatially and temporally. For example, from May 27, 1988
At the 6th Air Purification and Contamination Control Research Conference held on the 29th, Mr. Tadashi Kashima and others presented ``Development of Super Constant Clean Booth'' on pages 81 to 84 of the same report. Temperature distribution at ±0.0
The temperature was set at 5°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

恒温清浄チャンバーについては商標名「サーマルチャン
バー」の開発成果とともに出願人らもその性能向上に努
めてきた。しかし、温度分布を空間的にも時間的にも±
0.01℃とするには1例え空気冷却器および加熱器で
の熱交換量の制御を正確に行っても、それだけでは達成
できないことがわかった。すなわち、冷却温度、加熱温
度、風量などを一定する技術、さらには層流方式で整流
された空気をチャンバー内に供給する技術、断熱技術等
はそれなりに達成されているが、温度分布を±0、Of
”Cとするには、それだけでは十分ではなく。
As for the constant temperature clean chamber, the applicant and others have been working to improve its performance along with the development results under the trade name "Thermal Chamber." However, it is difficult to control the temperature distribution both spatially and temporally.
It has been found that even if the amount of heat exchange in the air cooler and heater is accurately controlled, it is not possible to achieve the temperature of 0.01°C. In other words, although the technology to maintain constant cooling temperature, heating temperature, air volume, etc., the technology to supply rectified air into the chamber using a laminar flow method, and the insulation technology have been achieved to a certain extent, it is difficult to maintain temperature distribution by ±0. ,Of
``That alone is not enough to get a C.

さらに他の要因が存在することがわかった。It turns out that there are other factors as well.

したがって9本発明の目的とするところは、その他の要
因を究明すると共に温度分布±0.01°Cを空間的に
も時間的にも達成する超恒温清浄チャンバーを得ること
にある。
Therefore, it is an object of the present invention to investigate other factors and to obtain an ultra-constant temperature clean chamber that achieves a temperature distribution of ±0.01°C both spatially and temporally.

〔発明の構成〕[Structure of the invention]

前記の目的を達成せんとする本発明の要旨とするところ
は、空気冷却器、空気加熱器および送風機を備えた調和
空気送気ダクトをチャンバーの室外に設置し、該調和空
気送気ダクトから所定温度に調節された空気をIIEP
Aフィルタを経て該チャンバー内に吹出すと共に該チャ
ンバー内の空気の一部または全部を該調和空気送気ダク
トに還気するようにした恒温清浄チャンバーにおいて、
該送風機とII E P^フィルタとの間の通路に2通
路内気流を混合する手段を設けたこと1更には、空気冷
却器および/または空気加熱器の上流側に、粗さが通路
断面内で相違するメツシュからなる熱交換tk調整ユニ
ットを設置したことを特徴とする。
The gist of the present invention, which aims to achieve the above object, is to install a conditioned air supply duct equipped with an air cooler, an air heater, and a blower outside a chamber, IIEP temperature-controlled air
In a constant temperature clean chamber in which air is blown into the chamber through an A filter and part or all of the air in the chamber is returned to the conditioned air supply duct,
Means for mixing the air flows in the two passages is provided in the passage between the blower and the II E P^ filter.1 Furthermore, on the upstream side of the air cooler and/or the air heater, roughness within the passage cross section is provided. It is characterized by installing a heat exchange tk adjustment unit consisting of different meshes.

すなわち9本発明者らは数多くの試験研究を重ねた結果
1例え定風量で熱量供給を一定にする制tffllを行
っても、チャンバー内の温度分布を±0.01°Cにす
ることには限界があり、これは、熱交換器を通過した空
気流れが±0.01°Cを超える気流分布をもつことに
起因することが判明した。II E P Aフィルタ背
後の給気プレナムに流れる気流自身が断面的にも時間的
にも温度分布をもつのである。これは、熱交換器に通過
する空気が熱交換面で異なる速度分布をもったり、ミク
ロ的には熱交換面の各位置で熱交換量が異なったり、送
風機吐出側で気流の速度分布が変動すること等によるこ
とがわかった。したがって、送風機とH[!P^フィル
タとの間で気流を十分に混合することと、熱交換器での
熱交換量が熱交換面で相違しないように調節することが
重要となる。
In other words, as a result of numerous tests and studies conducted by the present inventors, it was found that even if the temperature distribution in the chamber is controlled to be ±0.01°C even if a tffll system is used to maintain a constant heat supply with a constant air flow rate. It has been found that there is a limitation, which is due to the airflow through the heat exchanger having an airflow distribution greater than ±0.01°C. The airflow flowing into the supply air plenum behind the II EP A filter itself has a temperature distribution both in cross section and in time. This is because the air passing through the heat exchanger has a different velocity distribution on the heat exchange surface, microscopically the amount of heat exchange differs at each position on the heat exchange surface, and the velocity distribution of the air flow changes on the blower discharge side. It turns out that it depends on what you do. Therefore, the blower and H[! It is important to sufficiently mix the airflow with the P^ filter and to adjust the heat exchange amount in the heat exchanger so that it does not differ on the heat exchange surface.

It E P Aフィルタ前の通路内気流を混合する手
段としては1通路を流れる離れた位置の気流同士を互い
に混合する粗混合手段と9通路を流れる気流を細かく乱
す綿混合手段とを用い、粗混合手段の下流側に綿混合手
段を配置するのがよい、そのさい粗混合手段としては、
各々独立した小通路を束ねた小通路の積層体であって、
該小通路の少なくとも一部を、その空気取入口と出口の
位置が互いに変位するように、傾斜させて積層したもの
が好適であり、綿混合手段は空間率の大きな充填物が好
適である。熱交換器の上流側に設置する熱交換量調整ユ
ニットとしては2通路断面を横切る方向に張り渡された
フレームによって多数の開口を形成し、この開口に粗さ
の異なるメツシュ体を取外し自在に設置したものが好適
である。
The means for mixing the airflow in the passage in front of the It E P A filter includes a coarse mixing means that mixes the airflows at distant positions flowing through one passage with each other, and a cotton mixing means that finely disturbs the airflow flowing through nine passages. It is preferable to arrange the cotton mixing means downstream of the mixing means. In this case, as the coarse mixing means,
A laminate of small passages each consisting of a bundle of independent small passages,
It is preferable that at least a part of the small passages be stacked in an inclined manner so that the positions of the air intake and outlet are displaced from each other, and the cotton mixing means is preferably packed with a large void ratio. The heat exchange amount adjustment unit installed on the upstream side of the heat exchanger has a frame stretched across the cross section of the two passages to form numerous openings, and mesh bodies with different roughness can be removably installed in these openings. It is preferable that

〔実施例〕〔Example〕

以下に図面の実施例に従って本発明の内容を具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically explained below according to the embodiments shown in the drawings.

第1図は1本発明に従う超恒温清浄チャンバーの実施例
を示したものであり、対向する面が互いに平行な6面に
よって室空間を形成したチャンバー1内に、1側面に面
状に設置したH[!PAフィルタ2を経て温度調整され
た清浄空気を吹出し、チャンバー1内の空気はII E
 P Aフィルタ2と対向する側面に設けた吸込口3か
らレタンチャンバー4に取入れることによって、水平層
流型気流パターンをもつ恒温清浄室を構成しである。な
お9本発明は垂直層流型気流パターンのものに対しても
同様に適用できるものであるが1図示の例で本発明の詳
細な説明する。
Fig. 1 shows an embodiment of an ultra-constant temperature clean chamber according to the present invention, in which a chamber 1 is installed in a planar manner on one side in a chamber 1 in which a chamber space is formed by six parallel faces. H [! Temperature-adjusted clean air is blown out through the PA filter 2, and the air inside the chamber 1 is
By introducing the rethane into the rethane chamber 4 through the suction port 3 provided on the side facing the PA filter 2, a constant temperature clean room having a horizontal laminar airflow pattern is constructed. Although the present invention can be similarly applied to a vertical laminar airflow pattern, the present invention will be described in detail with reference to one example.

レタンチャンバー(排気プレナム)4からHEPAフィ
ルタ2背後の給気プレナム5に通ずるダクト6をチャン
バー1の室外に設け、このダクト6内に空気冷却器7.
空気加熱器8および送風機9を配置する。ダクト6内に
はレタンチャンバー4からの運気と共に系外空気の取入
口IOから系外空気が必要に応じて取入れられるように
なっている。
A duct 6 leading from the rethane chamber (exhaust plenum) 4 to the air supply plenum 5 behind the HEPA filter 2 is provided outside the chamber 1, and an air cooler 7.
An air heater 8 and a blower 9 are arranged. Into the duct 6, air from the rethane chamber 4 as well as outside air is taken in from the outside air intake port IO as needed.

ダクト6は断熱材を用いて構成され、系外空気との間で
熱の出入が実質上起こらないようにしである。
The duct 6 is constructed using a heat insulating material, and is designed to substantially prevent heat from entering or exiting between the duct 6 and the air outside the system.

空気冷却器7はフィンチューブ熱交換器でありこれに密
閉型水冷コンデンシングユニット11カラ冷媒を循環供
給する。そのさい、低圧ゲージ12および高圧ゲージ1
3によって検出される空気冷却器7前後の冷媒圧が一定
となるように制御され、これによって空気冷却器7の冷
媒温度が一定に維持される。14はこの制御のための圧
力スイッチを示している。空気冷却器7の下流側に設置
される空気加熱器8は電気ヒータであり、その通電■を
制御することによってここを通過する空気温度を制御す
る。これは、チャンバー1のH[!PAフィルタの吹出
面近傍に置かれた温度センサー15の検出値を温度コン
トローラ16が受けてサイリスタ17を制御することに
よって行なう、このようにして空気冷却器7で−たん冷
却された空気を空気加熱器8で再加熱することによって
設定温度に調節するのであるが、空気加熱器8において
精密な温度調整を行なうことによって恒温を得ることが
できる。ここまでは従来の技術である。しかし、これだ
けではたとえ空気冷却器7および空気加熱器8の制御を
精密に行ってもチャンバ−1内空間の温度分布を±0.
01℃以内とすることは不可能である。
The air cooler 7 is a fin-tube heat exchanger, and a closed type water-cooled condensing unit 11 circulates and supplies the empty refrigerant thereto. At that time, low pressure gauge 12 and high pressure gauge 1
3, the refrigerant pressure before and after the air cooler 7 is controlled to be constant, and thereby the refrigerant temperature of the air cooler 7 is maintained constant. 14 indicates a pressure switch for this control. An air heater 8 installed on the downstream side of the air cooler 7 is an electric heater, and by controlling its energization (2), the temperature of the air passing therethrough is controlled. This is chamber 1's H [! The temperature controller 16 receives the detected value of the temperature sensor 15 placed near the blowing surface of the PA filter and controls the thyristor 17 to heat the air that has been cooled by the air cooler 7 in this way. The set temperature is adjusted by reheating in the air heater 8, and constant temperature can be obtained by precisely adjusting the temperature in the air heater 8. This is conventional technology. However, with this alone, even if the air cooler 7 and air heater 8 are precisely controlled, the temperature distribution within the chamber 1 will be within ±0.
It is impossible to keep the temperature within 0.01°C.

その一つは、送風機9から吐出された空気の流れが温度
分布をもつこと、その一つは空気冷却器7や空気加熱器
8での熱交換量がフィンの位置によってミクロ的に異な
ることである。前者の要因は、ダクト6内および給気プ
レナム5を空気が流れる間の自然な空気の混合によって
成る程度減少するし、後者の要因は空気加熱器8で再加
熱されるさいに成る程度消失する。したがって、チャン
バー1内の空間の温度分布を±0.1℃以内とすること
ができる。しかし±O1旧℃以内を定常的に達成するこ
とは難しい0本発明は、送風機9とHEPAフィルタ2
との間の気流通路に設置した気流混合手段20.21に
よって前者の要因を、そして空気冷却器7の上流側に設
置した熱交換量調整ユニット23によって後者の要因を
除去することによって。
One of these is that the flow of air discharged from the blower 9 has a temperature distribution, and the other is that the amount of heat exchanged in the air cooler 7 and air heater 8 differs microscopically depending on the position of the fins. be. The former factor is reduced to a certain degree by the natural air mixing during the flow of air in the duct 6 and through the supply air plenum 5, and the latter factor is reduced to a certain extent by reheating in the air heater 8. . Therefore, the temperature distribution of the space within the chamber 1 can be kept within ±0.1°C. However, it is difficult to consistently achieve a temperature within ±O1 old °C.
The former factor is eliminated by the air flow mixing means 20.21 installed in the air flow passage between the air cooler 7 and the latter factor is eliminated by the heat exchange amount adjustment unit 23 installed upstream of the air cooler 7.

チャンバー1内の温度分布を±0.01”C以内とする
ことに成功したものである。
The temperature distribution within the chamber 1 was successfully kept within ±0.01''C.

第2図は、気流混合手段20の例を示した斜視図である
0図示のように、これは各々独立した多数の小通路を束
ねた積層体であって、その小通路の少なくとも一部を、
その空気取入口と出口の位置が互いに変位するように傾
斜させて積層することによって9通路を流れる離れた位
置の気流同士を互いに混合するようにしたものである。
FIG. 2 is a perspective view showing an example of the air flow mixing means 20. As shown in FIG. ,
By slanting and stacking the air inlets and outlets so that they are displaced from each other, the air currents flowing through the nine passages at separate locations are mixed with each other.

すなわち図示の矢印の方向の通路的主気流に対して、そ
の通路−杯に小通路の積層体を設置し、その小通路の一
部を傾斜させることによって、その傾斜した小通路を通
過した気流が入口の位置とは異なる位置の出口から流出
するようにして通路内での流れ位置を強制的に変更する
と同時に出口側で気流の混合が生ずるようにしたもので
ある。第2図の例において、小通路の積層体は(a)、
[有])、(C)の三つの単位の組合せからなっている
。(a)は主気流方向と平行な小通路だけを一列に並べ
た直進部ユニット(第2図では小通路の列が縦に並ぶよ
うに設置しである。以下の(ハ)、(C)でも同じ)、
(ロ)は小通路の入口の位置が下方にあり出口の位置が
上方となるように傾斜小通路を縦に一列に並べた上昇部
ユニット、(ロ)は小通路の入口の位置が上方にあり出
口の位置が下方となるように傾斜小通路を縦に一列に並
べた下降部ユニットであり、これらを第3図〜第5図に
側面的に示した。(a)、(ロ)、(C)ともほぼ同じ
断面積をもつ小通路の列からなるが、(ロ)と(C)は
小道路を傾斜させている関係上、その傾斜小通路の数は
(a)の約半分である。第2図では(ロ)と(C)のユ
ニットを適当に配置することによって2通路内の主気流
の一部を下から上へ、上から下へと部分的に強制的に導
くことによって気流の粗混合を行わせるようにしたもの
であるが、この上下方向の偏向に変えて左右方向への偏
向、或いは上下と左右の両方向への偏向を行なうことも
できる。このように構成した気流混合手段20によると
、送風機9から吐出したダクト内気流の温度分布を圧損
なく低減することができる。この場合、小通路の断面を
一層小さくシ、傾斜ユニットを交叉させながら多数配置
すれば、それだけ温度分布を小さくすることが可能であ
るが、これだけではミクロ断面での温度分布を完全に無
くすることには限界がある。
In other words, with respect to the main air flow in the direction of the arrow shown in the figure, by installing a stack of small passages in the passage-cup and slanting a part of the small passages, the airflow that has passed through the inclined small passages can be reduced. The air flows out from an outlet at a position different from the inlet position, so that the flow position within the passage is forcibly changed, and at the same time, mixing of air flows occurs on the outlet side. In the example of FIG. 2, the laminate of the small passage is (a),
It consists of a combination of three units: [Yes]) and (C). (a) is a straight-travel unit in which only small passages parallel to the main airflow direction are arranged in a row (in Fig. 2, the rows of small passages are arranged vertically.The following (c) and (C) But the same)
(b) is an elevated unit in which inclined small passages are arranged vertically in a row so that the entrance position of the small passage is downward and the position of the exit is upward; (b) is a rising unit with the entrance position of the small passageway upward. This is a descending unit in which inclined small passages are vertically arranged in a row so that the dovetail exit is located downward, and these are shown in side view in FIGS. 3 to 5. (a), (b), and (C) are all made up of rows of small passages with approximately the same cross-sectional area, but (b) and (C) have a number of inclined small passages because the small roads are inclined. is about half of (a). In Figure 2, by appropriately arranging the units (B) and (C), a part of the main airflow in the two passages is forcibly guided partially from the bottom to the top and from the top to the bottom. However, instead of this vertical deflection, it is also possible to perform horizontal deflection, or deflection in both vertical and horizontal directions. According to the airflow mixing means 20 configured in this way, the temperature distribution of the airflow inside the duct discharged from the blower 9 can be reduced without pressure loss. In this case, it is possible to reduce the temperature distribution by making the cross section of the small passage smaller and arranging a large number of inclined units in an intersecting manner, but this alone cannot completely eliminate the temperature distribution in the micro cross section. has its limits.

このため、この気流混合手段20の下流側に細混合手段
21を配置するのがよい。第6図はこの細混合手段21
の例を示したものであり、これは9通路断面を塞ぐ大き
さのフレーム枠25に掛目の大きな胴を張り渡して容器
形状のものを作り、この中に空間率の大きな充填物26
を詰めたものである。この充填物26は小断面気流を乱
すものであればよいが1本発明者らの実験によると実公
昭−53−17312号公報で提案された合成樹脂製籠
型充填体(製造元住友化学株式会社:商品名サミットリ
ング)が好適であることがねかりた。この充填体は数請
m径のポリプロピレン梼脂の線状体が立体的に入り組み
ダイヤモンドに似た全体外形(外形寸法的7〜8car
)を存する空隙率の大きな充填物であり、もともと冷却
塔等での空気−水の接触状態を良好にするために開発さ
れたものである。本発明においてはこのような充填物2
6をダクト内に配置することによって、細断面において
気流の混合が図れることが判明し、先の気流混合手段2
0でも除去しきれなかった細断面の気流の温度分布を無
くしたものである。
For this reason, it is preferable to arrange the fine mixing means 21 on the downstream side of the air flow mixing means 20. Figure 6 shows this fine mixing means 21.
This is an example in which a container-shaped body is made by stretching a large-grained body over a frame 25 that is large enough to close the cross section of 9 passages, and a filling material 26 with a large void ratio is placed inside the container-shaped body.
It is packed with. This packing 26 may be of any type as long as it disturbs the air flow with a small cross-section; however, according to experiments conducted by the present inventors, a synthetic resin cage-shaped packing proposed in Japanese Utility Model Publication No. 53-17312 (manufactured by Sumitomo Chemical Co., Ltd. :Product name: Summit Ring) was found to be suitable. This filling body is made up of three-dimensional polypropylene resin linear bodies several meters in diameter, and has an overall external shape similar to a diamond (7 to 8 car in external dimensions).
), and was originally developed to improve air-water contact in cooling towers and the like. In the present invention, such a filling 2
It has been found that by arranging the airflow mixing means 2 in the duct, it is possible to mix the airflow in the narrow cross section.
This eliminates the temperature distribution of the airflow on a narrow cross section, which could not be completely removed even with zero.

他方、空気冷却器7や空気加熱器8での熱交換量がフィ
ンの位置によってミクロ的に異なることに起因する気流
の温度分布発生原因の除去に対しては、第7図に示すよ
うな熱交換量調整ユニットを空気冷却器7の上流側に設
置する。これは、粗さの異なるメツシュユニット28を
多数準備し、これらをフレーム29の任意の位置に嵌め
込めるようにしたものである。図示の例では9個の粗さ
の異なるメツシュユニット28をフレーム29に嵌め込
めるようにした例を示している。このようにして。
On the other hand, in order to eliminate the cause of the temperature distribution of airflow caused by microscopic differences in the amount of heat exchange in the air cooler 7 and the air heater 8 depending on the position of the fins, the heat exchanger as shown in FIG. An exchange amount adjustment unit is installed upstream of the air cooler 7. This is a device in which a large number of mesh units 28 having different roughnesses are prepared, and these can be fitted into arbitrary positions of a frame 29. In the illustrated example, nine mesh units 28 having different roughness can be fitted into a frame 29. In this way.

空気冷却器7に入る前の空気通路にメツシュ粗さの分布
を適切に調節した熱交換量調整ユニットを配置すると、
空気冷却器前の出口空気の空間的温度分布を減少させる
ことができる。そのさい、粗さ分布の調節は、チャンバ
ー1内の温度分布の測定値に応じて現場合わせで行なう
のが実際には都合がよい。
If a heat exchange amount adjustment unit that appropriately adjusts the mesh roughness distribution is placed in the air passage before entering the air cooler 7,
The spatial temperature distribution of the outlet air before the air cooler can be reduced. In this case, it is actually convenient to adjust the roughness distribution on-site according to the measured value of the temperature distribution within the chamber 1.

〔発明の作用効果〕[Function and effect of the invention]

本発明者の行った代表的な試験結果により本発明の作用
効果を説明する。
The effects of the present invention will be explained based on typical test results conducted by the present inventor.

試験に供したチャンバーは平面寸法1480 X 17
20■、天井高さ1500mm、 HEPAフィルタの
吹出寸法1620 X 10104Oであり、熱源は密
閉型水冷コンデンシングユニットAC200V x 3
φX 1 、 IKW (50Ilz)および電気ヒー
タ(ベアN i−Cr)である、またチャンバーの周囲
はビニールカーテンで覆った。
The chamber used for the test has a planar dimension of 1480 x 17
20cm, ceiling height 1500mm, HEPA filter outlet size 1620 x 10104O, heat source is a sealed water-cooled condensing unit AC200V x 3
φX 1 , IKW (50Ilz) and an electric heater (Bare Ni-Cr), and the chamber was covered with a vinyl curtain.

(比較例) 第8図(a)および0))は1本発明に従う気流混合手
段20.21を設置せず、また熱交換量調整ユニット2
3も使用しなかった場合の調和空気送気ダクト内の各位
置でのダクト内空気温度分布および風速分布を示したも
のである(HEPAフィルタ面からの吹出風速−0,4
m/s)。各図表の枠はダクト断面を示し、測定位置は
図表中のO印の位置であり、〜は温度変動中、()内数
値はその点における平均温度、〔〕内数値はその点にお
ける平均風速を示している。
(Comparative Example) In Fig. 8(a) and 0)), the air flow mixing means 20 and 21 according to the present invention are not installed, and the heat exchange amount adjusting unit 2
This figure shows the air temperature distribution and wind speed distribution in the conditioned air supply duct at each position in the conditioned air supply duct when 3 is not used.
m/s). The frame in each diagram indicates the duct cross section, the measurement position is the O mark position in the diagram, ~ is during temperature fluctuation, the value in parentheses is the average temperature at that point, and the value in brackets is the average wind speed at that point. It shows.

第8図の結果から、空気冷却器前はレタンチャンバーを
通過したあとの空気冷却器入口部の測定値であるが、す
でに平均値のバラツキΔTNAXが0.12°Cになっ
ていることがわかる。また空気冷却器および電気ヒータ
で熱の授受があるとΔT HAMは2.5〜3.、O’
C程度と増加するが、ファンによる混合効果によってフ
ァン出口部では0.5°C程度に減少している。また、
ファン出口からダクト内への急拡大と距離による混合効
果でダクト中流では0.08°C1下流では0.04°
CとΔT MAXは減少している。また平均変動中(T
f、v、)  もファン出口から下流まで0.10→0
.08→0.07℃と減少している。しかし2本発明が
意図する温度分布±0.01°CはHEPAフィルタ背
後でも達成できない。
From the results in Figure 8, it can be seen that the average value variation ΔTNAX is already 0.12°C, which is the measured value at the inlet of the air cooler after passing through the rethane chamber. . Also, when heat is exchanged with the air cooler and electric heater, ΔT HAM is 2.5 to 3. ,O'
However, due to the mixing effect of the fan, the temperature decreases to about 0.5°C at the fan outlet. Also,
Due to the rapid expansion from the fan outlet into the duct and the mixing effect due to distance, the midstream of the duct is 0.08°C, and the downstream is 0.04°.
C and ΔT MAX are decreasing. Also, the average is changing (T
f, v,) is also 0.10 → 0 from the fan outlet to downstream
.. The temperature decreased from 0.8℃ to 0.07℃. However, the temperature distribution of ±0.01°C intended by the present invention cannot be achieved even behind the HEPA filter.

(本発明例) 第2図に示したとおりの気流混合手段20と第6図に示
したとおりの気流混合手段21をファン吐出側のダクト
内に配置し、空気冷却器7の前に第7図に示したとおり
の熱交換1! iPI整ユニット23を配置した以外は
比較例と同じ試験を行った。なお熱交換ffi調整ユニ
ット23のメツシュユニットは50メツシユと150メ
ツシユのものを使用した。また気流混合手段21の充填
物には本文に説明した商品名サミットリング(ダイヤモ
ンド型:空隙率94.5χ)を使用した。第9図(a)
および(b)に、比較例と同様の測定を行った結果を示
した。
(Example of the present invention) Air flow mixing means 20 as shown in FIG. 2 and air flow mixing means 21 as shown in FIG. Heat exchange 1 as shown in the diagram! The same test as in the comparative example was conducted except that the iPI adjustment unit 23 was arranged. The mesh units of the heat exchange ffi adjustment unit 23 were 50 mesh and 150 mesh. Further, as the filling material for the air flow mixing means 21, Summit Ring (trade name, diamond type, porosity: 94.5χ), which was explained in the text, was used. Figure 9(a)
and (b) show the results of measurements similar to those of the comparative example.

この第9図(a)および(b)の結果から、空気冷却器
の前ではΔT 1lAXは0.07°Cとなっているこ
とがわかる。そして空気冷却器および電気ヒータを通過
する際に熱の授受によって空気温度分布は大きくなるが
、熱交換量調整ユニットの効果でΔTM。
From the results shown in FIGS. 9(a) and 9(b), it can be seen that ΔT 11AX is 0.07°C in front of the air cooler. The air temperature distribution increases due to heat exchange when passing through the air cooler and electric heater, but due to the effect of the heat exchange amount adjustment unit, the temperature distribution is reduced by ΔTM.

は1.5〜2.0℃の範囲に抑えられている。その後フ
ァン出口ではファンによる混合効果で0.4℃に減少し
、ファンからダクトへの急拡大と距離による混合効果で
ダクト中流では0.06°Cに減少し、気流混合手段2
0と21を通過したあとのダクト下流ではΔTIIAX
は0.01°Cまで減少したことがわかる。
is suppressed to a range of 1.5 to 2.0°C. After that, at the fan exit, the temperature decreases to 0.4°C due to the mixing effect of the fan, and due to the mixing effect due to the rapid expansion and distance from the fan to the duct, the temperature decreases to 0.06°C in the midstream of the duct.
ΔTIIAX downstream of the duct after passing through 0 and 21
It can be seen that the temperature decreased to 0.01°C.

また、平均変動中(Tf、v、)  もファン出口から
下流まで0.04→0.03→0.01°Cと減少し、
比較例のそれらと比較すると本発明の効果が明らかであ
る。
In addition, the average fluctuation temperature (Tf, v,) decreased from 0.04 to 0.03 to 0.01°C from the fan outlet to downstream.
The effects of the present invention are clear when compared with those of comparative examples.

第1θ図および第11図は前記の比較例および本発明例
の各測定位置におけるΔT MAXとTf、v、値とを
グラフで示したものである。各プロットの横軸の位置は
図の上部に示すダクトの位置(測定位置)に相当する0
図中の混合セルとは気流混合手段20を、混合充填物と
は気流混合手段21である。
FIG. 1θ and FIG. 11 are graphs showing ΔT MAX and Tf, v, values at each measurement position of the comparative example and the example of the present invention. The position of the horizontal axis of each plot is 0, which corresponds to the duct position (measurement position) shown at the top of the figure.
The mixing cell in the figure is the air current mixing means 20, and the mixing filling is the air current mixing means 21.

また、比較例および本発明例の場合のチャンバー内にお
ける時間的および空間的温度分布を測定した結果、外乱
がない状態で設定値23°Cにおいて比較例ではΔTI
IIAXの最大値は0.041°Cであり。
In addition, as a result of measuring the temporal and spatial temperature distribution inside the chamber in the case of the comparative example and the inventive example, it was found that ΔTI in the comparative example at a set value of 23°C without disturbance.
The maximum value of IIAX is 0.041°C.

Tf、、、値は0.032°Cであったが9本発明例で
は±0.01°Cの温度分布が達成され且つTf、、、
値は0.007℃が確認された。
The value of Tf was 0.032°C, but in the example of the present invention, a temperature distribution of ±0.01°C was achieved, and Tf...
The value was confirmed to be 0.007°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従う超恒温清浄チャンバーの実施例を
示す略断面図、第2図は本発明に従う粗気流混合手段の
例を示す全体斜視図、第3図は第2図の直進部ユニット
の側断面図、第4図は第2図の上昇部ユニットの側断面
図、第5図は第2図の下陣部ユニットの側断面図、第6
図は本発明に従う細気流混合手段の例を示す斜視図、第
7図は本発明に従う熱交換ti11整ユニツユニット示
す分解斜視図、第8図(a)および第8図(ロ)は比較
例の恒温清浄チャンバーにおけるダクトの各位置断面で
の温度分布および風速分布の実測値を示す図、第9図(
a)および第9図(ロ)は本発明の超恒温清浄チャンバ
ーにおけるダクトの各位置断面での温度分布および風速
分布の実測値を示す図、第10図は該比較例のダクトの
各位置断面での温度平均値のバラツキと平均変動中を示
す図、第11図は該本発明例のダクトの各位置断面での
温度平均値のバラツキと平均変動中を示す図である。 1・・チャンバー、  2・・■EP^フイルり。 3・・吸込口、  4・・レタンチャンバー5・・給気
チャンバー、  6・・調和空気送気ダクト、  7・
・空気冷却器、  8・・空気加熱器。 9・・送風機、10・・系外空気取入口、11・・水冷
コンデンシングユニット、15・・温度センサ、   
20・・粗気流混合手段、21・・細気流混合手段、2
3・・熱交換量調整ユニット。 26・・空隙率の大きな充填物。 第6図 第7図 鷹8図(b) 第8図(al 第9図(al 手続補正群(自発) 昭和63年7月28日
FIG. 1 is a schematic sectional view showing an embodiment of the ultra-constant temperature cleaning chamber according to the present invention, FIG. 2 is an overall perspective view showing an example of the rough air flow mixing means according to the present invention, and FIG. 3 is the straight-advance unit of FIG. 2. FIG. 4 is a side sectional view of the ascending section unit of FIG. 2, FIG. 5 is a side sectional view of the lower section unit of FIG. 2, and FIG.
The figure is a perspective view showing an example of a fine air flow mixing means according to the present invention, FIG. 7 is an exploded perspective view showing a heat exchange ti11 conditioning unit according to the present invention, and FIGS. 8(a) and 8(b) are comparative examples. Figure 9 (
Figures a) and 9(b) are diagrams showing the measured values of the temperature distribution and wind speed distribution at each position cross section of the duct in the ultra-constant temperature clean chamber of the present invention, and Figure 10 is a diagram showing the measured values of the temperature distribution and wind speed distribution at each position cross section of the duct of the comparative example. FIG. 11 is a diagram showing the variation in the temperature average value at each cross section of the duct according to the present invention and the state in which the average temperature is fluctuating. 1...chamber, 2...■EP^fil. 3. Suction port, 4. Rethane chamber 5. Air supply chamber, 6. Conditioned air supply duct, 7.
・Air cooler, 8...Air heater. 9...Blower, 10...Outside air intake, 11...Water cooling condensing unit, 15...Temperature sensor,
20... Coarse air flow mixing means, 21... Fine air flow mixing means, 2
3. Heat exchange amount adjustment unit. 26... Filling with large porosity. Figure 6 Figure 7 Hawk Figure 8 (b) Figure 8 (al Figure 9 (al) Procedure amendment group (voluntary) July 28, 1988

Claims (7)

【特許請求の範囲】[Claims] (1)空気冷却器、空気加熱器および送風機を備えた調
和空気送気ダクトをチャンバーの室外に設置し、該調和
空気送気ダクトから所定温度に調節された空気をHEP
Aフィルタを経て該チャンバー内に吹出すと共に該チャ
ンバー内の空気の一部または全部を該調和空気送気ダク
トに還気するようにした恒温清浄チャンバーにおいて、
該送風機とHEPAフィルタとの間の通路に、通路内気
流を混合する手段を設けたことを特徴とする超恒温清浄
チャンバー。
(1) A conditioned air supply duct equipped with an air cooler, an air heater, and a blower is installed outside the chamber, and air adjusted to a predetermined temperature is supplied from the conditioned air supply duct to the HEP.
In a constant temperature clean chamber in which air is blown into the chamber through an A filter and part or all of the air in the chamber is returned to the conditioned air supply duct,
An ultra-constant temperature cleaning chamber characterized in that the passage between the blower and the HEPA filter is provided with means for mixing airflow in the passage.
(2)通路内気流を混合する手段は、通路を流れる離れ
た位置の気流同士を互いに混合する粗混合手段と、通路
を流れる気流を細かく乱す細混合手段とからなり、粗混
合手段の下流側に細混合手段を配置してなる請求項1に
記載の超恒温清浄チャンバー。
(2) The means for mixing the airflow in the passage consists of a coarse mixing means that mixes the airflows flowing through the passage at separate positions, and a fine mixing means that finely disturbs the airflow flowing through the passage, and is downstream of the coarse mixing means. 2. The ultra-constant temperature cleaning chamber according to claim 1, further comprising a fine mixing means disposed in the chamber.
(3)粗混合手段は、各々独立した小通路を束ねた小通
路の積層体であって、該小通路の少なくとも一部を、そ
の空気取入口と出口の位置が互いに変位するように、傾
斜させて積層したものである請求項2に記載の超恒温清
浄チャンバー。
(3) The rough mixing means is a stacked body of small passages each having a bundle of independent small passages, and at least a part of the small passages is tilted so that the positions of the air intake and outlet are mutually displaced. 3. The ultra-constant temperature cleaning chamber according to claim 2, wherein the ultra-constant temperature cleaning chamber is formed by laminating layers.
(4)細混合手段は、空間率の大きな充填物からなる請
求項2に記載の超恒温清浄チャンバー。
(4) The ultra-constant temperature cleaning chamber according to claim 2, wherein the fine mixing means comprises a packing having a large void ratio.
(5)空気冷却器、空気加熱器および送風機を備えた調
和空気送気ダクトをチャンバーの室外に設置し、該調和
空気送気ダクトから所定温度に調節された空気をHEP
Aフィルタを経て該チャンバー内に吹出すと共に該チャ
ンバー内の空気の一部または全部を該調和空気送気ダク
トに還気するようにした恒温清浄チャンバーにおいて、
前記の空気冷却器および/または空気加熱器の上流側に
、粗さが通路断面内で相違するメッシュからなる熱交換
量調整ユニットを設置したことを特徴とする超恒温清浄
チャンバー。
(5) A conditioned air supply duct equipped with an air cooler, an air heater, and a blower is installed outside the chamber, and air adjusted to a predetermined temperature is supplied from the conditioned air supply duct to the HEP.
In a constant temperature clean chamber in which air is blown into the chamber through an A filter and part or all of the air in the chamber is returned to the conditioned air supply duct,
An ultra-constant temperature cleaning chamber characterized in that a heat exchange amount adjustment unit made of a mesh whose roughness differs in the cross section of the passage is installed upstream of the air cooler and/or the air heater.
(6)熱交換量調整ユニットは、通路断面を横切る方向
に張り渡されたフレームによって多数の開口を形成し、
この開口に粗さの異なるメッシュ体を取外し自在に設置
したものである請求項5に記載の超恒温清浄チャンバー
(6) The heat exchange amount adjustment unit forms a large number of openings with a frame stretched across the cross section of the passage,
6. The ultra-constant temperature cleaning chamber according to claim 5, wherein a mesh body having different roughness is removably installed in the opening.
(7)空気冷却器、空気加熱器および送風機を備えた調
和空気送気ダクトをチャンバーの室外に設置し、該調和
空気送気ダクトから所定温度に調節された空気をHEP
Aフィルタを経て該チャンバー内に吹出すと共に該チャ
ンバー内の空気の一部または全部を該調和空気送気ダク
トに還気するようにした恒温清浄チャンバーにおいて、
該送風機とHEPAフィルタとの間の通路に、通路内気
流を混合する手段を設け、前記の空気冷却器および/ま
たは空気加熱器の上流側に、粗さが通路断面内で相違す
るメッシュからなる熱交換量調整ユニットを設置したこ
とを特徴とする超恒温清浄チャンバー。
(7) A conditioned air supply duct equipped with an air cooler, an air heater, and a blower is installed outside the chamber, and air adjusted to a predetermined temperature is supplied from the conditioned air supply duct to the HEP.
In a constant temperature clean chamber in which air is blown into the chamber through an A filter and part or all of the air in the chamber is returned to the conditioned air supply duct,
In the passage between the blower and the HEPA filter, means for mixing the airflow in the passage are provided, upstream of the air cooler and/or the air heater, comprising a mesh whose roughness differs within the passage cross-section. An ultra-constant temperature clean chamber featuring a heat exchange amount adjustment unit.
JP17104788A 1988-07-11 1988-07-11 Super clean chamber of constant temperature Granted JPH0221142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17104788A JPH0221142A (en) 1988-07-11 1988-07-11 Super clean chamber of constant temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17104788A JPH0221142A (en) 1988-07-11 1988-07-11 Super clean chamber of constant temperature

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5206850A Division JP2732345B2 (en) 1993-07-30 1993-07-30 Super constant temperature clean chamber

Publications (2)

Publication Number Publication Date
JPH0221142A true JPH0221142A (en) 1990-01-24
JPH0449015B2 JPH0449015B2 (en) 1992-08-10

Family

ID=15916098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17104788A Granted JPH0221142A (en) 1988-07-11 1988-07-11 Super clean chamber of constant temperature

Country Status (1)

Country Link
JP (1) JPH0221142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085607A (en) * 2005-09-21 2007-04-05 Hitachi Plant Technologies Ltd Precision temperature control device
JP2009127987A (en) * 2007-11-27 2009-06-11 Takasago Thermal Eng Co Ltd Building layout

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222025U (en) * 1988-07-29 1990-02-14
JPH0315955U (en) * 1989-06-30 1991-02-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222025U (en) * 1988-07-29 1990-02-14
JPH0315955U (en) * 1989-06-30 1991-02-18

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085607A (en) * 2005-09-21 2007-04-05 Hitachi Plant Technologies Ltd Precision temperature control device
JP4492504B2 (en) * 2005-09-21 2010-06-30 株式会社日立プラントテクノロジー Precision temperature control device
JP2009127987A (en) * 2007-11-27 2009-06-11 Takasago Thermal Eng Co Ltd Building layout

Also Published As

Publication number Publication date
JPH0449015B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US4449816A (en) Method for measuring the number of hyperfine particles and a measuring system therefor
FI91319C (en) Mixing section between supply air and return air of the air conditioning system
Saad et al. Confined multiple impinging slot jets without crossflow effects
KR102408073B1 (en) Device and method for controlling a supply air flow at an air treatment system
JPH10135132A (en) Gas-circulating system, circulating method of gas and lithography equipment
CZ309563B6 (en) Wind tunnel
JP2002525551A (en) Air treatment system in air conditioning system
JPH0221142A (en) Super clean chamber of constant temperature
JPH0136055B2 (en)
JPH0317284B2 (en)
JP2732345B2 (en) Super constant temperature clean chamber
JP4796584B2 (en) Antigen exposure chamber system
Pietrzyk Experimental study of the interaction of dense jets with a crossflow for gas turbine applications
CN102538161B (en) Air conditioning system and the air conditioning system of information processing equipment room
JPH0262014B2 (en)
CN104535106B (en) Cross-flow filler testing platform used for cooling tower
Freitag et al. Particle image velocimetry measurements of the internal air flow in active chilled beams
JP2536188B2 (en) Air purifier
Borowski et al. Air Distribution Assessment-Ventilation Systems with Different Types of Linear Diffusers
JPS61213648A (en) Air enthalpy method testing instrument for air conditioner
Cheong Tracer gas technology for airflow measurements in HVAC systems
JPH08189692A (en) Air conditioner
JPS60207037A (en) Method and apparatus for measuring number of ultrafine particles
Müller et al. A particle streak tracking system (PST) to measure flow fields in ventilated rooms
TWI814319B (en) Adjustment method of air-outlet duct and air-outlet uniformity thereof