JPH02211385A - Optical energy piston engine - Google Patents

Optical energy piston engine

Info

Publication number
JPH02211385A
JPH02211385A JP2932289A JP2932289A JPH02211385A JP H02211385 A JPH02211385 A JP H02211385A JP 2932289 A JP2932289 A JP 2932289A JP 2932289 A JP2932289 A JP 2932289A JP H02211385 A JPH02211385 A JP H02211385A
Authority
JP
Japan
Prior art keywords
light
cylinder
piston
gas particles
optical window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2932289A
Other languages
Japanese (ja)
Inventor
Teruo Hiruma
輝夫 晝馬
Masaru Sugiyama
優 杉山
Yoshiyuki Otake
良幸 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2932289A priority Critical patent/JPH02211385A/en
Publication of JPH02211385A publication Critical patent/JPH02211385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a safe optical energy piston engine using the gas particles which are not harmful to a human body by charging the inside of a cylinder having an optical window with the ionized gas particles which generate ionization in reversible manner by the light irradiation and installing an electrode which can collect the ionized gas particles. CONSTITUTION:Light B is irradiated onto the ionized gas particles A in a cylinder 1 through an optical window 6 through which light can pass, and the gas particles A are ionized, and at the same time, an electric field is generated by applying a voltage between electrodes 8 and 8, and the ionized gas particle A is collected onto the electrode 8. Then, the irradiation of the light B and the application of voltage are suspended, and the gas particles A collected onto the electrode 8 are liberated from the electrode 8, and the neutral gas particles A are generated. By the repetition of the reversible reactions, a piston 2 is repetitively applied with the pressure lowering in the cylinder 1 accompanied with the collection and the increase of the pressure accompanied with liberation Therefore, the piston 2 is moved repetitively, and a crankshaft 4 can be revolved through a link 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光の断続的な照射によりシリンダ内に圧力変
動を生じさせてピストンを応動させる光エネルギーピス
トン機関(エンジン、アクチュエータ等)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light energy piston engine (engine, actuator, etc.) that generates pressure fluctuations in a cylinder by intermittent irradiation with light to cause a piston to respond.

〔従来の技術〕[Conventional technology]

光を利用して機械的動力を得るものとして、直接的には
、光の運動エネルギを利用する光子エンジンが知られ、
間接的には、生物などの光合成を利用した化石燃料を含
むバイオマス等の燃焼を熱源とした各種熱機関が知られ
ている。しかし、これらは構造が複雑で高価であり、し
かもエネルギ変換効率が低い欠点を有している。かかる
欠点を大幅に改善するものとして光化学反応を利用した
ものが挙げられる。そして、この種のピストン機関とし
て例えば特公昭57−12030公報に記載のエンジン
が知られている。このエンジンは、シリンダに連通ずる
圧力変動室に二酸化窒素を充填し、圧力変動室の光学窓
を通して二酸化窒素N O2に光の照射を断続的に行う
ものである。そして、このときの二酸化窒素NO2がN
oとOに分解する可逆的化学反応による圧力変動が、シ
リンダ内のピストンを作動させる。
A photon engine that uses the kinetic energy of light is known as a device that uses light to obtain mechanical power.
Indirectly, various heat engines are known that use the combustion of biomass, etc., including fossil fuels, as a heat source, using the photosynthesis of living things. However, these have the drawbacks of complicated and expensive structures and low energy conversion efficiency. One method that can significantly improve these drawbacks is one that utilizes photochemical reactions. As this type of piston engine, for example, the engine described in Japanese Patent Publication No. 57-12030 is known. In this engine, a pressure fluctuation chamber communicating with a cylinder is filled with nitrogen dioxide, and the nitrogen dioxide NO2 is intermittently irradiated with light through an optical window in the pressure fluctuation chamber. At this time, nitrogen dioxide NO2 is N
The pressure fluctuations caused by the reversible chemical reaction that decomposes O and O actuate the piston within the cylinder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記光エネルギーエンジンは、構造が簡単で低コストで
あり、エネルギ変換効率も高い利点を有しているが、二
酸化窒素が人体に有害であるため、その取扱いに注意を
要する問題がある。
The above-mentioned light energy engine has the advantages of a simple structure, low cost, and high energy conversion efficiency, but there is a problem in that nitrogen dioxide is harmful to the human body, so it must be handled with care.

本発明は、低コストや高効率を保持しつつ、人体に無害
な気体分子を用いて安全な光エネルギーピストン機関を
提供することをその目的とする。
An object of the present invention is to provide a safe light energy piston engine using gas molecules that are harmless to the human body while maintaining low cost and high efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成すべく、光を透過可能な光学窓
を有するシリンダ内に、光の照射により可逆的にイオン
化を起こすイオン化気体分子を充填すると共に該イオン
化気体分子を捕集可能な電極を設けたことを特徴とする
In order to achieve the above object, the present invention fills a cylinder having an optical window through which light can pass with ionized gas molecules that are reversibly ionized by irradiation with light, and electrodes that can collect the ionized gas molecules. It is characterized by having the following.

また、光を透過可能な光学窓を有するシリンダ内に、気
体水素分子を充填すると共に水素吸蔵金属を受光可能に
設けたことを特徴とし、この場合、少なくとも前記シリ
ンダの光学窓に対向する内壁の一部を、前記水素吸蔵金
属で構成することが好ましい。
Further, a cylinder having an optical window that can transmit light is filled with gaseous hydrogen molecules and a hydrogen storage metal is provided so as to be able to receive light, and in this case, at least one of the inner walls of the cylinder facing the optical window is It is preferable that a portion of the hydrogen absorbing metal be formed of the hydrogen storage metal.

更に、光を透過可能な光学窓を有するシリンダ内に、光
脱離性を有する脱離性気体分子を充填すると共にゲッタ
ーを受光可能に設けたことを特徴とし、この場合、少な
くとも前記シリンダの光学窓に対向する内壁の一部に、
前記ゲッターを構成することが好ましい。
Furthermore, a cylinder having an optical window through which light can be transmitted is filled with detachable gas molecules having a photo-eliminating property, and a getter is provided to be able to receive light; in this case, at least the optical window of the cylinder is On the part of the inner wall facing the window,
Preferably, the getter is configured.

〔作用〕[Effect]

光学窓を通してシリンダ内のイオン化気体分子に光を照
射し、該気体分子をイオン化させると同時に電極間に印
加して電界を生じさせ、イオン化した気体分子を電極に
捕集する。次いで、光の照射と印加とを止め電極に捕集
されていた気体分子を電極から放出して中性の気体分子
に戻す。これらの可逆的な反応を繰り返させることによ
り、この捕集に伴うシリンダ内の圧力降下と、放出に伴
う圧力上昇とをピストンに繰り返し作用、させることが
でき、その結果、ピストンを往復運動させることができ
る。
Ionized gas molecules in the cylinder are irradiated with light through an optical window to ionize the gas molecules, and at the same time an electric field is applied between the electrodes to collect the ionized gas molecules on the electrodes. Next, the irradiation and application of light is stopped, and the gas molecules that have been collected on the electrodes are released from the electrodes and returned to neutral gas molecules. By repeating these reversible reactions, the pressure drop in the cylinder associated with this collection and the pressure increase associated with release can be applied to the piston repeatedly, resulting in reciprocating movement of the piston. Can be done.

また、水素吸蔵金属に光を照射してこれを加熱すること
により水素吸蔵金属から気体水素分子を放出させる放出
作用と、光の照射を止め水素吸蔵金属を冷却することに
より水素吸蔵金属に気体水素分子を吸蔵させる吸蔵作用
とを繰り返させる。
In addition, by irradiating the hydrogen-absorbing metal with light and heating it, gaseous hydrogen molecules are released from the hydrogen-absorbing metal, and by stopping the irradiation of light and cooling the hydrogen-absorbing metal, gaseous hydrogen is released into the hydrogen-absorbing metal. The occlusion action of occluding molecules is repeated.

このようにすれば、放出反応に伴うシリンダ内の圧力上
昇と、吸蔵反応に伴う圧力降下とをピストンに繰り返し
作用させることができる。
In this way, the pressure increase in the cylinder due to the release reaction and the pressure drop due to the storage reaction can be repeatedly caused to act on the piston.

この場合、シリンダの内壁の一部を水素吸蔵金属で構成
すれば、その分シリンダの材料が省略できると共に、シ
リンダ内部を有効に利用でき、その結果ピストン機関を
低コストでコンパクトに構成することができる。
In this case, if part of the inner wall of the cylinder is made of a hydrogen-absorbing metal, the material for the cylinder can be omitted, and the inside of the cylinder can be used effectively.As a result, the piston engine can be constructed at low cost and compactly. can.

更に、脱離性気体分子が吸着しているゲッターに光を照
射して該気体分子をゲッターから脱離させる脱離反応と
、光の照射を止め該気体分子をゲッターに吸着させる吸
着反応とを繰り返させる。
Furthermore, a desorption reaction in which light is irradiated onto the getter on which desorbable gas molecules are adsorbed to cause the gas molecules to be desorbed from the getter, and an adsorption reaction in which the light irradiation is stopped and the gas molecules are adsorbed on the getter. Have them repeat.

このようにすれば、脱離反応に伴うシリンダ内の圧力上
昇と、吸蔵・反応に伴う圧力降下とをピストンに繰り返
し作用させることができる。
In this way, the pressure increase in the cylinder due to the desorption reaction and the pressure drop due to the occlusion/reaction can be repeatedly caused to act on the piston.

この場合、シリンダの内壁の一部にゲッターを構成すれ
ば、シリンダ内部を有効に利用でき、ピストン機関をコ
ンパクトに構成することができる。
In this case, by configuring a getter on a part of the inner wall of the cylinder, the inside of the cylinder can be used effectively and the piston engine can be configured compactly.

〔実施例〕〔Example〕

第1図(A)及び第1図(B)に基づいて本発明を光エ
ネルギーエンジンに実施した第1の実施例について説明
する。
A first embodiment in which the present invention is implemented in a light energy engine will be described based on FIG. 1(A) and FIG. 1(B).

この光エネルギーエンジンは、筒状に形成したシリンダ
1の内周面にピストン2を備えており、ピストン2は、
シリンダ1に対し往復動自在に緩挿したピストン本体2
aと、ピストンロッド2bとから構成されている。更に
、ピストンロッド2bの尾端には、リンク3を介してク
ランク軸4が連結されており、ピストン2は、シリンダ
1内の圧力変動により往復運動すると共に、リンク3を
介してクランク軸4を回転させる。
This light energy engine is equipped with a piston 2 on the inner peripheral surface of a cylinder 1 formed into a cylindrical shape, and the piston 2 is
Piston body 2 loosely inserted into cylinder 1 so as to be able to reciprocate freely
a, and a piston rod 2b. Further, a crankshaft 4 is connected to the tail end of the piston rod 2b via a link 3, and the piston 2 reciprocates due to pressure fluctuations within the cylinder 1, and also engages the crankshaft 4 via the link 3. Rotate.

また、シリンダ1の内面とピストン本体2aの裏面との
間には、ピストン2の往復動方向に伸縮自在の蛇腹5が
介設されており、蛇腹5は、その両端でそれぞれシリン
ダ1とピストン本体2aとに気密に接合しいる。これに
より、シリンダ1内部の気密性が保持されてシリンダ1
に充填される気体分子Aの漏洩が防止される。また、ピ
ストン2の往復動の際に生ずる摩擦損失を極力小さくす
るため、ピストン本体2aの外径は、シリンダ1の内径
より小径に形成されている。
Furthermore, a bellows 5 that is extendable and retractable in the reciprocating direction of the piston 2 is interposed between the inner surface of the cylinder 1 and the back surface of the piston body 2a, and the bellows 5 has a bellows 5 at both ends that connect the cylinder 1 and the piston body, respectively. 2a and hermetically. As a result, the airtightness inside the cylinder 1 is maintained and the cylinder 1
This prevents leakage of the gas molecules A filled in the container. Furthermore, in order to minimize the friction loss that occurs during the reciprocating movement of the piston 2, the outer diameter of the piston body 2a is formed to be smaller than the inner diameter of the cylinder 1.

気体分子Aは、レーザ光その他の一定の光子密度をもっ
た光Bの照射により可逆的にイオン化を起こすイオン化
気体分子A、例えば酸素、水素、窒素あるいは空気等で
構成する。このイオン化気体分子は、シリンダ1の周壁
に形成した光学窓6を通して図示しない光源から断続的
に照射する光Bにより、光Bが照射された場合にはイオ
ン化され、照射を止めた場合には中性の気体分子Aに戻
される可逆的反応を繰り返す。
The gas molecules A are composed of ionized gas molecules A, such as oxygen, hydrogen, nitrogen, or air, which are reversibly ionized by irradiation with laser light or other light B having a certain photon density. The ionized gas molecules are ionized when the light B is irradiated by the light B that is intermittently irradiated from a light source (not shown) through the optical window 6 formed on the peripheral wall of the cylinder 1, and become ionized when the irradiation is stopped. The reversible reaction is repeated to convert the gas molecules A into a reactive gas molecule.

一方、シリンダ1の内部、すなちわ気体分子Aのふん囲
気中には、互に対面する一対の反射鏡7゜7が設けられ
ており、これにより光学窓6から幾分斜めに入射した光
Bが反射を繰り返して気体分子Aに十分に照射される。
On the other hand, inside the cylinder 1, that is, in the atmosphere of gas molecules A, a pair of reflecting mirrors 7. The light B is repeatedly reflected and is sufficiently irradiated onto the gas molecules A.

また、シリンダ1の内部には、両反射鏡7,7を挾んだ
状態で互に対面する板状の電極8.8が設けられている
。これによりイオン化した気体分子Aが、この両電極8
゜8間に印加して発生する電界により両電極8.8に捕
集される。
Further, inside the cylinder 1, plate-shaped electrodes 8.8 are provided which face each other with both reflecting mirrors 7, 7 sandwiched therebetween. As a result, the ionized gas molecules A are transferred to both electrodes 8.
It is collected by both electrodes 8.8 by the electric field generated by applying it between the two electrodes 8.8.

そして、この先Bの照射と印加とを連動させることによ
り、シリンダ1内において、イオン化した気体分子Aを
電極8に捕集することにより生ずるシリンダ1内の微小
な圧力降下と、電極8,8間への印加を止めて気体分子
Aを電極8がら放出させることにより生ずるシリンダ1
内の微小な圧力上昇とが行われ、ピストン2を応動させ
る。この結果、ピストン2は、図中の下方へ移動する収
縮作動と、図中上方へ移動する膨張作動とを繰り返し、
リンク3を介してクランク軸4を回転させる。
Then, by interlocking the irradiation and application of B, the ionized gas molecules A are collected on the electrode 8 in the cylinder 1, resulting in a minute pressure drop within the cylinder 1, and between the electrodes 8 and 8. Cylinder 1 generated by stopping the application to the electrode 8 and releasing gas molecules A from the electrode 8.
A small pressure increase occurs within the piston 2, causing the piston 2 to respond. As a result, the piston 2 repeats a contraction operation in which it moves downward in the figure and an expansion operation in which it moves upward in the figure.
The crankshaft 4 is rotated via the link 3.

次に、第2図(A)及び第2図(B)に基づいて本発明
を実施した光エネルギーエンジンの第2の実施例につい
て説明する。
Next, a second embodiment of a light energy engine implementing the present invention will be described based on FIGS. 2(A) and 2(B).

この実施例は、第1実施例のイオン化気体分子Aに代え
て気体水素分子Cを用いるものであり、また、水素吸蔵
金属9の水素解離圧が温度によって変化する性質、すな
わち、水素吸蔵金属が加熱された場合に水素分子Cを放
出し、冷却された場合に水素分子Cを吸蔵する作用を利
用するものである。本実施例では、光学窓6に対向する
シリンダ1の内壁の一部が水素吸蔵金属9で構成され、
光学窓6を通して入射する光Bが水素吸蔵金属9の表面
に照射される。そして、水素吸蔵金属9は、光Bの照射
の有無に対応して、吸熱して放出作用を生ずる場合と、
放熱して吸蔵作用を生ずる場合とを断続的に繰り返す。
In this embodiment, gaseous hydrogen molecules C are used in place of the ionized gas molecules A of the first embodiment, and the hydrogen dissociation pressure of the hydrogen storage metal 9 changes depending on the temperature, that is, the hydrogen storage metal It utilizes the effect of releasing hydrogen molecules C when heated and storing hydrogen molecules C when cooled. In this embodiment, a part of the inner wall of the cylinder 1 facing the optical window 6 is made of a hydrogen storage metal 9,
Light B entering through the optical window 6 is irradiated onto the surface of the hydrogen storage metal 9. Depending on whether or not the hydrogen storage metal 9 is irradiated with light B, the hydrogen storage metal 9 absorbs heat and releases heat;
The process of dissipating heat and producing a storage effect is repeated intermittently.

したがって、ピストン2には、光Bの断続的な照射によ
る水素分子Cの放出作用に伴うシリンダ1内の微小な圧
力上昇と、逆の吸蔵作用に伴うシリンダ1内の微小な圧
力降下とを繰り返し作用する。その結果、ピストン2を
シリンダ1内で往復動させることができる。
Therefore, the piston 2 repeatedly undergoes a minute pressure increase inside the cylinder 1 due to the release action of hydrogen molecules C due to intermittent irradiation with the light B, and a minute pressure drop inside the cylinder 1 due to the opposite absorption action. act. As a result, the piston 2 can be reciprocated within the cylinder 1.

なお、この場合照射する光Bは、水素吸蔵金属9に対し
できるだけ広範囲に光Bを照射すべく、マルチビームを
用いたりビーム径を広げるようにすることが好ましい。
Note that in this case, it is preferable to use a multi-beam beam or to widen the beam diameter in order to irradiate the hydrogen storage metal 9 with the light B as widely as possible.

また、水素吸蔵金属9としてはLaNi  5MmNi
  、TiFe及びTiMnなどがある。
Further, as the hydrogen storage metal 9, LaNi 5MmNi
, TiFe, and TiMn.

次に、第3図(A)及び第3図(B)に基づいて本発明
を実施した光エネルギーエンジンの第3の実施例につい
て説明する。
Next, a third embodiment of a light energy engine implementing the present invention will be described based on FIGS. 3(A) and 3(B).

この実施例は、第2実施例の気体水素分子Cに代えて光
脱離性を有する脱離性気体分子りを用いると共に、上記
実施例の水素吸蔵金属9に代えてゲッター10を用いる
ものである。本実施例では、ゲッター10が光学窓6に
対向するシリンダ1の内壁の表面として構成され、光B
が光学窓6を通してゲッター10の表面に照射される。
In this embodiment, a desorbing gas molecule having photodetachability is used in place of the gaseous hydrogen molecule C in the second embodiment, and a getter 10 is used in place of the hydrogen storage metal 9 in the above embodiment. be. In this embodiment, the getter 10 is configured as a surface of the inner wall of the cylinder 1 facing the optical window 6, and the getter 10 is configured as a surface of the inner wall of the cylinder 1 facing the optical window 6,
is irradiated onto the surface of the getter 10 through the optical window 6.

これにより、脱離性気体分子りはゲッター10から脱離
させられる脱離反応を生じ、一方で光Bの照射を止めれ
ばゲッター10に吸着される吸着反応を生ずる。
This causes a desorption reaction in which the desorbable gas molecules are desorbed from the getter 10, while an adsorption reaction in which they are adsorbed by the getter 10 occurs when the irradiation of light B is stopped.

したがってピストン2には、光Bの断続的な照射による
脱離性気体分子りの離脱反応に伴うシリンダ1内の圧力
上昇と、逆の吸着反応に伴う圧力降下とが繰り返し作用
する。
Therefore, the piston 2 is repeatedly subjected to a pressure increase in the cylinder 1 due to the desorption reaction of the desorbable gas molecules due to intermittent irradiation with the light B, and a pressure drop due to the reverse adsorption reaction.

なお、本実施例においても光Bは、上記実施例と同様に
マルチビームを用いたりビーム径を広げたりすることが
好ましい。
Note that in this embodiment as well, it is preferable for the light B to use multiple beams or to widen the beam diameter as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、光エネルギーピストン機
関を従来のような二酸化窒素等の有害物質を用いること
なく安全に構成でき、しかも簡易な構造で低コスト、か
つ高効率に構成できる効果を有する。
As described above, according to the present invention, a light energy piston engine can be constructed safely without using conventional harmful substances such as nitrogen dioxide, and moreover, it can be constructed with a simple structure, low cost, and high efficiency. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の裁断側面図、第2図は本
発明の第2実施例の裁断側面図、第3図は本発明の第3
実施例の裁断側面図である。 1・・・シリンダ、2・・・ピストン、6・・・光学窓
、8・・・電極、9・・・水素吸蔵金属、10・・・ゲ
ッターA・・・イオン化気体分子、B・・・光、C・・
・気体水素分子、D・・・脱離性気体分子。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹第1実施イ列の収陥工径 第1図(A) 第1賢矧例の胎悪工堀 第1図(s) /I−一−N瓢 第 2 史オ理シイやりの月1多ルエオ酒艷第2図(A
) 7′−−−嶌 り 第3実施例の彫服工程 第3図1’A) 2112コミ施イクUの口又庁帽)二〔じ刊号し第2図
(S) 第3実施イ列の収縮工程 第3図(8)
FIG. 1 is a cut side view of a first embodiment of the present invention, FIG. 2 is a cut side view of a second embodiment of the present invention, and FIG. 3 is a cut side view of a third embodiment of the present invention.
FIG. 3 is a cut side view of the embodiment. DESCRIPTION OF SYMBOLS 1... Cylinder, 2... Piston, 6... Optical window, 8... Electrode, 9... Hydrogen storage metal, 10... Getter A... Ionized gas molecule, B... Light, C...
・Gaseous hydrogen molecule, D...Eliminating gas molecule. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshiki Hase Yoshiki's first implementation row Diagram 1 (A) Diagram 1 (s) of the first example of the concave tunnel Diagram 1 (s) 2nd month of 1st month (A
) 7' --- Figure 3 of the carving process of the third embodiment 1'A) 2112 Komi Iku U's mouth and hat) Row contraction process Figure 3 (8)

Claims (1)

【特許請求の範囲】 1、光を透過可能な光学窓を有するシリンダ内に、光の
照射により可逆的にイオン化を起こすイオン化気体分子
を充填すると共に該イオン化気体分子を捕集可能な電極
を設けたことを特徴とする光エネルギーピストン機関。 2、光を透過可能な光学窓を有するシリンダ内に、気体
水素分子を充填すると共に水素吸蔵金属を受光可能に設
けたことを特徴とする光エネルギーピストン機関。 3、少なくとも前記シリンダの光学窓に対向する内壁の
一部を、前記水素吸蔵金属で構成したことを特徴とする
請求項2に記載の光エネルギーピストン機関。 4、光を透過可能な光学窓を有するシリンダ内に、光脱
離性を有する脱離性気体分子を充填すると共にゲッター
を受光可能に設けたことを特徴とする光エネルギーピス
トン機関。 5、少なくとも前記シリンダの光学窓に対向する内壁の
一部に、前記ゲッターを構成したことを特徴とする請求
項4に記載の光エネルギーピストン機関。
[Claims] 1. A cylinder having an optical window through which light can pass is filled with ionized gas molecules that are reversibly ionized by light irradiation, and an electrode capable of collecting the ionized gas molecules is provided. A light energy piston engine characterized by: 2. A light energy piston engine characterized in that a cylinder having an optical window through which light can pass is filled with gaseous hydrogen molecules and a hydrogen storage metal is provided to be able to receive light. 3. The light energy piston engine according to claim 2, wherein at least a part of the inner wall of the cylinder facing the optical window is made of the hydrogen storage metal. 4. A light energy piston engine characterized in that a cylinder having an optical window through which light can be transmitted is filled with detachable gas molecules having a light detachability, and a getter is provided to be able to receive light. 5. The optical energy piston engine according to claim 4, wherein the getter is formed on at least a part of the inner wall of the cylinder facing the optical window.
JP2932289A 1989-02-08 1989-02-08 Optical energy piston engine Pending JPH02211385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2932289A JPH02211385A (en) 1989-02-08 1989-02-08 Optical energy piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2932289A JPH02211385A (en) 1989-02-08 1989-02-08 Optical energy piston engine

Publications (1)

Publication Number Publication Date
JPH02211385A true JPH02211385A (en) 1990-08-22

Family

ID=12272992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2932289A Pending JPH02211385A (en) 1989-02-08 1989-02-08 Optical energy piston engine

Country Status (1)

Country Link
JP (1) JPH02211385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231981A (en) * 2006-07-26 2013-11-14 Spacedesign Corp Method and apparatus for communicating radiation pressure provided by light wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231981A (en) * 2006-07-26 2013-11-14 Spacedesign Corp Method and apparatus for communicating radiation pressure provided by light wave

Similar Documents

Publication Publication Date Title
JP2008201671A (en) Lower-energy hydrogen method and structure
EP1862430A1 (en) Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system
KR20220017880A (en) magnetohydrodynamic hydrogen electric generator
EP1551032A1 (en) Hydrogen condensate and method of generating heat therewith
JPH02211385A (en) Optical energy piston engine
EP1426333A1 (en) Substance occluding material and electrochemical device using it, and production method for substance occluding material
WO2001068526A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068525A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP4686865B2 (en) Hydrogen storage / release device
JP2005113361A (en) Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system
WO2006069254A2 (en) Device and method for producing hydrogen without the formation of carbon dioxide
US20040018138A1 (en) Carbonaceous material, hydrogenoccluding material, hydrogen-occluding apparatus, fuel cell, and method of hydrogen occlusion
EP1638885A2 (en) Field-assisted gas storage materials and fuel cells comprising the same
WO2019180297A1 (en) Device for generating hydrogen gas from water and hydrogen gas production installation and electrical energy generation system that comprise the generator device
CN106458577A (en) Elementary element
Hattendorff et al. cw laser action in Nd (Al, Cr) 3 (BO3) 4
Grigorieva et al. Ways to produce renewable energy from carbon dioxide
JPH02275397A (en) Nuclear fusion apparatus
JP3533067B2 (en) Method for producing gas storage material
WO2001068524A1 (en) Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
JP2001302223A (en) Carbonaceous material for hydrogen storage and its manufacturing method, hydrogen storing carbonaceous material and its manufacturing method, battery using the hydrogen storing carbonaceous material and fuel cell using the hydrogen storing carbonaceous material
CN101971478A (en) Solar energy conversion device and method
JP4745569B2 (en) Method for storing hydrogen in carbon materials
JP2673335B2 (en) Method and apparatus for generating power using adsorption / desorption of gas
CN116251438A (en) Negative ion graphene combined waste gas purifying equipment