JPH02211051A - Rotor of superconducting rotary electric machine - Google Patents

Rotor of superconducting rotary electric machine

Info

Publication number
JPH02211051A
JPH02211051A JP63320423A JP32042388A JPH02211051A JP H02211051 A JPH02211051 A JP H02211051A JP 63320423 A JP63320423 A JP 63320423A JP 32042388 A JP32042388 A JP 32042388A JP H02211051 A JPH02211051 A JP H02211051A
Authority
JP
Japan
Prior art keywords
wedge
conductive bar
short
rotor
circuit ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63320423A
Other languages
Japanese (ja)
Other versions
JPH0578266B2 (en
Inventor
Susumu Maeda
進 前田
Akifumi Izumi
泉 昭文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP63320423A priority Critical patent/JPH02211051A/en
Publication of JPH02211051A publication Critical patent/JPH02211051A/en
Publication of JPH0578266B2 publication Critical patent/JPH0578266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To disperse a heating section in the direction of an axis and to make the distribution of temperature uniform in the vicinity of the end of a wedge by slipping connections of the wedge and conductive bars to a short-circuit ring in the direction of the axis between the connections to constitute a rotor. CONSTITUTION:A plurality of conducting bars 31 are so arranged to the extremely outer peripheral part of a rotor that they are placed in the circumferential direction, extending them in the direction of the axis of the rotor, and each end of them is short-circuited by a short-circuit ring 32. The conducting bars 31 are housed in a metallic support cylinder 3 and are held by a wedge 5 against centrifugal force. A connection 34 of the conducting bar 31 and the short-circuit ring 32 is formed a little to the axial center, and a connection 8 of the wedge 5 and the short-circuit ring 32 is separated from the connection 34. Accordingly, the connections 34 and 8 as a heating section are so dispersed that the centralization of heating can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導回転電機の回転子、特にそのダンパ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotor for a superconducting rotating electric machine, and particularly to a damper thereof.

[従来の技術] 第10図に示すものは、例えば、特開昭57−1015
59号公報に示されている従来の回転子を示す斜視図で
あり、第11図は第1O図の溝に沿った断面図(溝延長
線上の断面)を、また、第12図は第11図のXI−X
I線による断面図を示す。
[Prior art] What is shown in FIG.
11 is a perspective view showing a conventional rotor shown in Publication No. 59, FIG. 11 is a sectional view along the groove of FIG. 1O (cross section on the groove extension line), and FIG. Figure XI-X
A sectional view taken along the I line is shown.

図において、符号(1)は界磁巻線外周を囲んで配置さ
れかつ軸方向に延びている導電バー(2)は導電バー(
1)の端部を短絡する短絡環、(3)は導電バー(1)
を収納する軸方向に延びている溝を円周上に配置してい
る金属製の支持円筒、(4)は短絡環(2)を回転子の
回転による遠心力に抗して保持する保持環であり、これ
らによってかご形ダンパ付常温ダンパ(10)が構成さ
れている。ここで、導電バー(1)を遠心力に抗して、
支持円筒(3)の溝内に保持する方式としては、ウェッ
ジ(5)を用いる方式が一般的であり、このウェッジの
材料としては、導電バー(1)や短絡環(2)と同程度
の低い電気抵抗率を有する金属材料が使用される。
In the figure, a conductive bar (2) arranged around the outer periphery of the field winding and extending in the axial direction is designated by a symbol (1).
1) is a shorting ring that shorts the ends of (3) is a conductive bar (1)
(4) is a holding ring that holds the shorting ring (2) against the centrifugal force caused by the rotation of the rotor. These constitute a room temperature damper (10) with a squirrel cage damper. Here, the conductive bar (1) is resisted against centrifugal force,
The general method for holding the supporting cylinder (3) in the groove is to use a wedge (5), and the material for this wedge is similar to that of the conductive bar (1) and the shorting ring (2). Metal materials with low electrical resistivity are used.

また、短絡環(2)には、上記支持円筒(3)に形成の
溝内へ突出する突出部(6)が設けられており、導電バ
ー(1)と段階状に重ねて取り付けられると共に、この
重ねられた部分をウニ、ジ(5)により押さえている。
Further, the shorting ring (2) is provided with a protrusion (6) that protrudes into the groove formed in the support cylinder (3), and is attached to overlap the conductive bar (1) in a stepwise manner. This overlapped part is held down by sea urchin and ji (5).

従って、短絡環(2)と導電バー(1)との接続は上記
階段状部分の接触部(7)において行なわれ、また、ウ
ェッジ(5)との接続は、突出部分(6)の接触部(7
)に対して反対側延びる接触部(8)において行なわれ
る。
Therefore, the connection between the shorting ring (2) and the conductive bar (1) is made at the contact portion (7) of the stepped portion, and the connection with the wedge (5) is made at the contact portion of the protruding portion (6). (7
) is carried out at a contact part (8) which extends opposite to the contact point (8).

なお、支持円筒(3)の内周側には超電界磁巻線とその
支持円筒が設けられているが、第1O図〜第12図では
省略している。
Note that a super-electric field winding and its supporting cylinder are provided on the inner peripheral side of the supporting cylinder (3), but these are omitted in FIGS. 1O to 12.

また、第13図は上記接触(7)(8)の構成を示す斜
視図である。
Moreover, FIG. 13 is a perspective view showing the structure of the contacts (7) and (8).

次に上記従来装置の動作について説明する。Next, the operation of the above-mentioned conventional device will be explained.

系統事故あるいは不平衡負荷の接続等により、発電機の
電機子コイルの電流が不平衡になると、コイル電流に逆
相成分が含まれるため、電機子コイルから回転子と逆方
向に回転する磁界が発生し、常温ダンパの表面に渦電流
が誘起されることになる。
When the current in the generator's armature coil becomes unbalanced due to a system fault or the connection of an unbalanced load, the coil current contains an antiphase component, which causes a magnetic field from the armature coil to rotate in the opposite direction to the rotor. This causes an eddy current to be induced on the surface of the room-temperature damper.

この誘起された渦電流は、主に、かご型ダンパ内を流れ
る。
This induced eddy current mainly flows within the squirrel cage damper.

すなわち、常温ダンパ(10)の中央部では、導電バー
(1)とウェッジ(5)に電流が流れ、端部ではこの電
流が短絡環(2)へと流れ込む。
That is, in the center of the normal temperature damper (10), a current flows through the conductive bar (1) and the wedge (5), and at the ends, this current flows into the short circuit ring (2).

ウェッジ(5)と導電バー(1)とを流れる電流値はほ
ぼ同一レベルであり、系統事故条件によっては数100
0Aにもなることがある。
The current value flowing through the wedge (5) and the conductive bar (1) is approximately the same level, and depending on the system fault conditions, the current value may be several hundred.
It may even reach 0A.

411バー(1)、ウェッジ(5)から短絡環(2)へ
流れる電流の流れ込みは、両者の接触部(7)(8)を
介して導電バー(1)から短絡環(2)への流れ込みは
、この両者の接触部゛(7)を介して行なわれるが、一
方、ウェッジ(5)を流れる電流1i、侵透深さの関係
から、ウェッジ(5)中をウェッジ(5)の端部まで流
れようとする特性をもつため、ウェッジ(5)から短絡
環(2)への電流の流れ込みは、ウェッジ(5)の端部
数cI11の領域において、ウェッジ(5)と短絡環(
2)との接触部(8)を介して行なわれる。
The current flowing from the 411 bar (1) and wedge (5) to the shorting ring (2) flows from the conductive bar (1) to the shorting ring (2) via the contact parts (7) and (8) between the two. However, due to the relationship between the current 1i flowing through the wedge (5) and the penetration depth, the inside of the wedge (5) is passed through the end of the wedge (5). Therefore, the current flows from the wedge (5) to the short circuit ring (2) in the area where the number of ends of the wedge (5) is cI11.
2) via the contact part (8).

このように、ウェッジ(5)、導電バー(1)に流れる
電流は、金属間の接触部(7)(8)を介して短絡環(
2)へ流れ込むため、接触部(7)(8)の電気接触抵
抗により、この接触部(7)(8)で大きな損失を発生
することになる。
In this way, the current flowing through the wedge (5) and the conductive bar (1) passes through the metal contacts (7) and (8) to the short circuit ring (
2), a large loss will occur at the contact portions (7) and (8) due to the electrical contact resistance of the contact portions (7) and (8).

また、短絡環(2)の突出部(6)の根元では、ウェッ
ジ(5)と導電バー(1)との合成電流が、導電バー(
1)の約1/2の厚さである突出部(6)を流れること
になるので、この部分の損失密度は溝内の他の部分の数
倍となる。
In addition, at the base of the protrusion (6) of the shorting ring (2), the combined current of the wedge (5) and the conductive bar (1) flows through the conductive bar (
Since the water flows through the protrusion (6), which is about half the thickness of 1), the loss density in this part is several times that of other parts in the groove.

[発明が解決しようとする課題] 従来の超電導回転電機の回転子の常温ダンパは、以上の
ように構成されており、ウェッジ(5)と短絡環(2)
との接触部であるウェッジ(5)から短絡環(2)への
電流流れ込み部(8)、及び、導電バー(1)と短絡環
(2)との接触部である導電バー(1)から短絡環(2
)への電流流れ込み部(7)が、はぼ溝内の軸方向同一
位置に設けられているため、上記の箇所の接触部(7)
(8)の発熱が、ウェッジ(5)の端部近傍に集中する
ことになり、逆相電流通電時に、過度の温度上昇を引き
起こす恐れがあり、発電機の逆相耐量が、この部分の温
度上昇によって制約されることも考えられ、従って、こ
のような温度上昇を回避すべき課題を従来装置はWして
いた。
[Problems to be Solved by the Invention] A normal temperature damper for a rotor of a conventional superconducting rotating electric machine is configured as described above, and includes a wedge (5) and a short-circuit ring (2).
A current flow part (8) from the wedge (5) which is the contact part with the short circuit ring (2), and from the conductive bar (1) which is the contact part between the conductive bar (1) and the short circuit ring (2). Short circuit ring (2
) is provided at the same position in the axial direction within the dowel groove, so the contact portion (7) at the above location
The heat generated in (8) will be concentrated near the edge of the wedge (5), which may cause an excessive temperature rise when reverse-sequence current is applied, and the generator's reverse-sequence withstand capacity will be reduced by the temperature of this part. It is conceivable that the temperature rise may be a constraint, and therefore, conventional devices have been faced with the problem of avoiding such a temperature rise.

この発明は、上記のような課題を解決するためになされ
たもので、ユエツジ端近傍での過度の発熱を抑制し、逆
相耐量特性に優れた超電導回転電機の回転子を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a rotor for a superconducting rotating electric machine that suppresses excessive heat generation near the end of the rotation shaft and has excellent negative phase withstand characteristics. do.

[課題を解決するための手段] この発明に係る超電導回転電機の回転子の常温ダンパは
、短絡環への導電バー及びウェッジの電気的接触部を相
互間で軸方向にずらして構成しているものである。
[Means for Solving the Problems] A normal temperature damper for a rotor of a superconducting rotating electrical machine according to the present invention is constructed by shifting the electrical contact portions of the conductive bar and the wedge to the short-circuit ring in the axial direction. It is something.

[作 用] この発明における常温ダンパは、短絡環への導電バー及
びウェッジの接触を相互間で軸方向にずらしているので
、接触抵抗による発熱が1箇所に集中することがなく、
また、併せて短絡環の突出部の根元で集中することもな
く、ウェッジ端部での過度の温度上昇も抑制できる。
[Function] In the normal temperature damper of the present invention, the contact of the conductive bar and the wedge with the short-circuit ring is shifted in the axial direction, so that heat generation due to contact resistance is not concentrated in one place.
In addition, the temperature does not concentrate at the base of the protrusion of the short-circuit ring, and excessive temperature rise at the edge of the wedge can be suppressed.

[実施例] 以下、この発明をその一実施例を示す図に基づいて説明
する。
[Example] Hereinafter, the present invention will be explained based on the drawings showing one example thereof.

なお、図中、符号(3)〜(5)、 (8)は上記従来
装置において同一符号で示したものと同等のものである
Note that in the figure, symbols (3) to (5), and (8) are equivalent to those indicated by the same symbols in the above-mentioned conventional device.

第1実施例を示す第1図〜第3図において、符号(U)
は端部を保持環(4)の端部までえんんちょうして構成
した導電バー、(12)はほぼ保持環(4)の幅に相当
する長さを有し、導電バー(11)の延長部同士の間に
設けられている導電スペーサであって、その両側面すな
わち導電バー(11)との接触部(13)はろう付は等
低融合金により接着され、電気的に接続部を構成してい
る。
In FIGS. 1 to 3 showing the first embodiment, the symbol (U)
is a conductive bar whose end extends to the end of the retaining ring (4), and (12) has a length approximately equivalent to the width of the retaining ring (4), and is an extension of the conductive bar (11). It is a conductive spacer provided between the parts, and both sides thereof, that is, the contact part (13) with the conductive bar (11), are bonded by brazing with a low-density alloy to form an electrical connection part. are doing.

なお、短絡環は、導電スペーサ(12)と導電バー(1
1)の延長部とによって代替して構成されている。
In addition, the short circuit ring is a conductive spacer (12) and a conductive bar (1
1).

第1実施例は上記のように構成されるので導電バー(1
1)及びウェッジ(5)に誘起きされた電流は、溝内を
軸方向に流れる。この内、ウェッジ(5)ノミ流は、導
電バー(11)の構成にかかわらず、ウェッジ(5)の
端部まで流れて、ウェッジ(5)と導電バー(11)と
の接触部(8)において発熱が生ずることは従来と同一
である。
Since the first embodiment is configured as described above, the conductive bar (1
1) and the current induced in the wedge (5) flows in the groove in the axial direction. Of these, the wedge (5) chisel flow flows to the end of the wedge (5) regardless of the configuration of the conductive bar (11), and flows to the contact area (8) between the wedge (5) and the conductive bar (11). The fact that heat is generated is the same as in the conventional case.

一方、導電バー(U)は導電バー(ll)の延長部と、
導電スペーサ(12)とにより短絡環を構成しているた
め、従来構造における導電バー(11)と短絡環との接
続はなく、従って、導電バー(11)と短絡環との接触
部(7)を除去することができ、ウェッジ(5)の端部
における接触発熱の集中を除去できる。
On the other hand, the conductive bar (U) is an extension of the conductive bar (ll),
Since the short circuit ring is formed by the conductive spacer (12), there is no connection between the conductive bar (11) and the short circuit ring in the conventional structure, and therefore the contact portion (7) between the conductive bar (11) and the short circuit ring is can be eliminated, and the concentration of contact heat generation at the end of the wedge (5) can be eliminated.

また、導電バー(11)は、断面積を同一にしたまま延
長したために、短絡環突出部の根元における電流集中に
よる発熱の増大も除去できる。
Further, since the conductive bar (11) is extended while keeping the cross-sectional area the same, it is possible to eliminate an increase in heat generation due to current concentration at the root of the short-circuit ring protrusion.

なお・、上記実施例では、導電バー(11)は導電バー
(11)と導電スペーサ(12)との間をろう付は処理
したが、はんだ付は等低融合金による接着でもよいこと
はいうまでもない。
In addition, in the above embodiment, the conductive bar (11) was brazed between the conductive bar (11) and the conductive spacer (12), but soldering may also be performed by adhesion using a low alloy alloy. Not even.

また、ろう付けあるいははんだ付は等低融合金による接
着によらず、導電バー(11)は導電バー(n)と導電
スペーサ(12)との間を電気的に接触させる手段をと
ることにより、短絡環を構成してもよい。
Furthermore, the conductive bar (11) is not brazed or soldered by adhesion using a low alloy metal, but the conductive bar (11) can be electrically contacted between the conductive bar (n) and the conductive spacer (12). A short circuit ring may also be formed.

第3図はその状態を示すものである。FIG. 3 shows this state.

次に第2実施例を示す第4図及び第5図では、第1実施
例の導電スペーサに代えて、導電バー(11)間に挿入
されると共に、導電バー(11)の上部にも覆い被さっ
て導電バー(11)の上面と接触する被覆部(21a)
を有する導電スペーサ(21)を設けているものである
Next, in FIGS. 4 and 5 showing the second embodiment, the conductive spacer is inserted between the conductive bars (11) in place of the conductive spacer of the first embodiment, and is also covered on the top of the conductive bar (11). Covering portion (21a) that covers and contacts the top surface of the conductive bar (11)
A conductive spacer (21) is provided.

このような構成においては、導電バー(11)を流れる
渦電流は、導電バー(ti)内を軸方向に流れた後、導
電バー(11)の延長部に人って、電気的接触面(22
)を介して、隣接する導電スペーサ(21)へ流れ込み
、順次円周方向へ流れる。
In such a configuration, the eddy currents flowing through the conductive bar (11), after flowing axially within the conductive bar (ti), reach the extension of the conductive bar (11) and reach the electrical contact surface ( 22
), it flows into the adjacent conductive spacer (21), and sequentially flows in the circumferential direction.

従って、接触抵抗による発熱を、ウェッジ(5)の端部
から分散できると共に、従来構造における短絡環(2)
の突出部根元における電流集中を除去することができる
Therefore, heat generated by contact resistance can be dispersed from the edge of the wedge (5), and the short circuit ring (2) in the conventional structure can be dispersed.
It is possible to eliminate current concentration at the base of the protrusion.

次に、第3実施例を第6図及び第7図により説明する。Next, a third embodiment will be explained with reference to FIGS. 6 and 7.

符号(31)は、従来の導電バー(1)に対して、数C
1以上長さを短くした導電バーであり、また、(32)
は、従来の短絡環(2)に比べて、溝への突出部(33
)の長さを、導電バー(31)の短縮に応じて長(した
短絡環である。従って、導電バー(31)と短絡環(3
2)との軸方向中央寄りに移動することになって、ウェ
ッジ(5)と短絡環(32)との接触部(8)とは離れ
るようになっている。
The code (31) is a number C for the conventional conductive bar (1).
It is a conductive bar whose length is shortened by 1 or more, and (32)
Compared to the conventional short circuit ring (2), the protrusion into the groove (33
) is lengthened according to the shortening of the conductive bar (31). Therefore, the conductive bar (31) and the short-circuit ring (3
2), the wedge (5) is moved toward the center in the axial direction, and is separated from the contact portion (8) between the wedge (5) and the short-circuit ring (32).

この実施例は、このように構成されているので、導?l
tバー(31)及びウェッジ(5)に誘起された電流は
、溝内を軸方向に流れる。
Since this example is configured in this way, how can it be explained? l
The current induced in the t-bar (31) and wedge (5) flows in the groove in the axial direction.

この内、ウェッジ(5)に流れる電流は、導電バー(3
1)と短絡環(5)との接触位置にかかわらず、つ、エ
ツジ(5)の端部まで流れ、ウェッジ(5)と短絡環(
32)との接触部(8)において短絡環(32)に流れ
込んで発熱が生じることは従来と同一である。
Of these, the current flowing through the wedge (5) is
Regardless of the contact position between the wedge (5) and the short-circuit ring (5), the flow reaches the end of the edge (5), and the wedge (5) and the short-circuit ring (
It is the same as in the conventional case that heat is generated by flowing into the short circuit ring (32) at the contact portion (8) with the short circuit ring (32).

しか、し、一方、導電バー(31)と短絡環(32)と
の接触部(34)は、溝内の軸方向中央側へ移動してい
る。ため、接触抵抗による発熱も、この接触部(34)
において発生し、従って、軸方向に分散することになり
、ウェッジ(5)と短絡環(32)との間の接触部(8
)において生ずる発熱と・は発熱場所が異なり、従って
、局部的な発熱の集中を防止できる。
However, on the other hand, the contact portion (34) between the conductive bar (31) and the shorting ring (32) has moved toward the center in the axial direction within the groove. Therefore, heat generation due to contact resistance also occurs at this contact part (34).
occurs at the contact point (8
The heat generated in ) is different from the heat generated in . Therefore, local concentration of heat can be prevented.

なお、上記第3実施例では、導電バー(31)と短絡環
(32)との接触部(34)を溝内の軸方向中央側へ移
動させたが、第4実施例を示す第8図及び第9図に示す
ように、接触部(41)を端部側へ移動させてもよい。
In the third embodiment, the contact portion (34) between the conductive bar (31) and the shorting ring (32) was moved toward the center in the axial direction within the groove. And as shown in FIG. 9, the contact portion (41) may be moved toward the end.

すなわち、図において、符号(42)は、接触部(41
)を接触部(8)より端部側へ延長して設け、その長さ
Qを短絡環(43)の幅と同一長さとした導電バーであ
り、また、短絡環(43)は、その内径側に導電バー(
42)の延長部が人って、接触部(41)により導電バ
ー(42)と電気的接続が行われる溝(44)を備えて
いる。
That is, in the figure, the reference numeral (42) indicates the contact portion (41
) is extended from the contact part (8) to the end side, and its length Q is the same as the width of the shorting ring (43), and the shorting ring (43) is a conductive bar whose inner diameter Conductive bar on the side (
The extension of 42) is provided with a groove (44) in which an electrical connection is made with the conductive bar (42) by means of a contact (41).

この第4実施例は、上記のように構成されているので、
導電バー(42)を流れる渦電流は、接触部(41)を
介して短絡IJiI(43)に流れ込み、その発熱部は
接触部(41)となり、接触抵抗による発熱部分が軸方
向に移動して、ウェッジ(5)からの電流が、従来と同
様に、接触部(8)似おいて導電バー(42)に流れ込
むのに対して、発熱位置を分散している。
Since this fourth embodiment is configured as described above,
The eddy current flowing through the conductive bar (42) flows into the short circuit IJiI (43) via the contact part (41), and its heat generating part becomes the contact part (41), and the heat generating part due to contact resistance moves in the axial direction. Although the current from the wedge (5) flows into the conductive bar (42) near the contact portion (8) as in the conventional case, the heat generating positions are distributed.

[発明の効果] 以上のように、この発明によれば、短絡環へのウェッジ
及び導電バーの接触部が、相互間で軸方向にずらされて
構成されているので、ウェッジ及び導電バーと短絡環と
の間で生ずる発熱が軸方向に分散されて、ウェッジ端部
での発熱集中を抑制いすることができ、従って、ウェッ
ジ端部近傍での温度分布を均一化でき、その結果、逆相
電流耐量に優れた常温ダンパを有する超電導回転電機の
回転そが得られる効果を有している。
[Effects of the Invention] As described above, according to the present invention, the contact portions of the wedge and the conductive bar to the short-circuit ring are shifted in the axial direction from each other. The heat generated between the ring and the ring is dispersed in the axial direction, suppressing the concentration of heat generation at the edge of the wedge. Therefore, the temperature distribution near the edge of the wedge can be made uniform, and as a result, the reverse phase This has the effect of allowing the rotation of a superconducting rotating electric machine having a normal temperature damper with excellent current withstand capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例による常温ダンパ端部を
示す溝に沿った断面図、第2図は第1図の1−1線によ
る断面図、第3図は第1図のダンパ回路構成を示す斜視
図、第4図は第2実施例による常温ダンパの端部を示す
溝に沿った断面図、第5図は第4図のダンパ回路構成を
示す右側面図、第6図は第3実施例による常温ダンパ端
部を示す溝に沿った断面図、第7図は第6図の分解斜視
図、第8図は第4実施例による常温ダンパ端部を示す溝
に沿った断面図、第9図は第8図の分解斜視図、第1O
図は従来の回転子の常温ダンパの構成を示す斜視図、第
11図は第10図の溝に沿った断面図、第12図は第1
1図の■−■線による断面図、第13図は第11図の分
解斜視図である。 (3)・・支持円筒、(5)・・ウェッジ、(8)(1
3)(22)(34)(41)・・接触部、(11)(
31)(42)・・導電バー、(12)(21) 、・
・導電スペーサ、(32)(43)・・短絡環、(33
)・・突出部。 なお、各図中、同一符号は同−又は相当部分を示す。 第1図 第2閏
FIG. 1 is a sectional view taken along the groove showing the end of a normal temperature damper according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line 1-1 in FIG. 1, and FIG. 3 is a sectional view of the damper shown in FIG. FIG. 4 is a perspective view showing the circuit configuration; FIG. 4 is a sectional view taken along the groove showing the end of the normal temperature damper according to the second embodiment; FIG. 5 is a right side view showing the damper circuit configuration of FIG. 4; FIG. 7 is an exploded perspective view of FIG. 6, and FIG. 8 is a cross-sectional view along the groove showing the end of the room temperature damper according to the fourth embodiment. A sectional view, FIG. 9 is an exploded perspective view of FIG.
The figure is a perspective view showing the structure of a conventional rotor room temperature damper, Figure 11 is a sectional view taken along the groove in Figure 10, and Figure 12 is a
1, and FIG. 13 is an exploded perspective view of FIG. 11. (3)... Support cylinder, (5)... Wedge, (8) (1
3)(22)(34)(41)...Contact part, (11)(
31)(42)...conductive bar, (12)(21),...
・Conductive spacer, (32) (43)...Short ring, (33
)...Protrusion. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 2nd leap

Claims (1)

【特許請求の範囲】[Claims] コイル取付軸に装着された超電導界磁コイルと、この超
電導界磁コイルを囲繞すると共に回転子最外周に軸方向
に向けて設けられている複数個の溝を有する支持円筒と
、上記溝内に挿入されている導電バーと、上記導電バー
を上記溝内に固定するウェッジと、上記導電バーの両端
を各両端部ごとに短絡するリング状の導電体からなる短
絡環とより構成されているかご形ダンパ回路付常温ダン
パを有する超電導回転電機の回転子において、上記短絡
環へのウェッジ及び導電バーの接触部が、相互間で軸方
向にずらされていることを特徴とする超電導回転電機の
回転子。
A superconducting field coil mounted on a coil mounting shaft, a support cylinder surrounding the superconducting field coil and having a plurality of grooves provided in the outermost circumference of the rotor in the axial direction, A cage comprising an inserted conductive bar, a wedge that fixes the conductive bar in the groove, and a shorting ring made of a ring-shaped conductor that short-circuits both ends of the conductive bar at each end. A rotor of a superconducting rotating electrical machine having a room-temperature damper with a type damper circuit, wherein the contact portions of the wedge and the conductive bar to the short-circuit ring are offset from each other in the axial direction. Child.
JP63320423A 1988-12-21 1988-12-21 Rotor of superconducting rotary electric machine Granted JPH02211051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320423A JPH02211051A (en) 1988-12-21 1988-12-21 Rotor of superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320423A JPH02211051A (en) 1988-12-21 1988-12-21 Rotor of superconducting rotary electric machine

Publications (2)

Publication Number Publication Date
JPH02211051A true JPH02211051A (en) 1990-08-22
JPH0578266B2 JPH0578266B2 (en) 1993-10-28

Family

ID=18121293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320423A Granted JPH02211051A (en) 1988-12-21 1988-12-21 Rotor of superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPH02211051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550417A (en) * 1995-07-03 1996-08-27 Dresser-Rand Company Amortisseur winding arrangement, in a rotor for electrical, rotating equipment
JP2019030128A (en) * 2017-07-31 2019-02-21 アイシン精機株式会社 Superconducting rotor and superconducting motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550417A (en) * 1995-07-03 1996-08-27 Dresser-Rand Company Amortisseur winding arrangement, in a rotor for electrical, rotating equipment
US5606211A (en) * 1995-07-03 1997-02-25 Dresser-Rand Company Amortisseur winding arrangement, in a rotor for electrical, rotating equipment
JP2019030128A (en) * 2017-07-31 2019-02-21 アイシン精機株式会社 Superconducting rotor and superconducting motor

Also Published As

Publication number Publication date
JPH0578266B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
EP1168574B1 (en) Electrical machine
EP0196086B1 (en) Rotary electric machine coil assemblies
US4385251A (en) Flux shield for an inductor-alternator machine
US2487258A (en) Shaded pole motor
EP0025292B1 (en) Dynamoelectric machine having enhanced unbalanced stator current capability
US3575622A (en) Rotor resistor assembly for ac induction motors
JPH02211051A (en) Rotor of superconducting rotary electric machine
US3448310A (en) Dynamo-electric machines of the reluctance type
JPH0721096Y2 (en) Rotor of squirrel cage induction motor
USRE25305E (en) Electric rotating machinery
US1286138A (en) Rotor for dynamo-electric machines.
US2242008A (en) Dynamoelectric machine
US2242005A (en) Dynamoelectric machine
JPWO2017110360A1 (en) Stator, rotating electric machine, and stator manufacturing method
JP2006296064A (en) Rotor of rotary electric machine
JPS596756A (en) Induction motor
JPS6412170B2 (en)
JP4514439B2 (en) Rotating electric machine
JPH088751B2 (en) Rotating machine rotor
US3349264A (en) Field coil connection for fourpole rotors
JP2019030217A (en) Rotor for dynamo-electric generator and dynamo-electric generator
JPH01126156A (en) Rotor of superconductive rotary electric machine
JPH02211050A (en) Rotor of superconducting rotary electric machine
JPS5836167A (en) Eddy current joint
JPH01126158A (en) Rotor of superconductive rotary electric machine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees