JPS6412170B2 - - Google Patents

Info

Publication number
JPS6412170B2
JPS6412170B2 JP4539279A JP4539279A JPS6412170B2 JP S6412170 B2 JPS6412170 B2 JP S6412170B2 JP 4539279 A JP4539279 A JP 4539279A JP 4539279 A JP4539279 A JP 4539279A JP S6412170 B2 JPS6412170 B2 JP S6412170B2
Authority
JP
Japan
Prior art keywords
rotor
damper
ring
groove
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4539279A
Other languages
Japanese (ja)
Other versions
JPS55139042A (en
Inventor
Motoya Ito
Yukinori Sato
Toshio Saito
Noryoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4539279A priority Critical patent/JPS55139042A/en
Publication of JPS55139042A publication Critical patent/JPS55139042A/en
Publication of JPS6412170B2 publication Critical patent/JPS6412170B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/16Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots for auxiliary purposes, e.g. damping or commutating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】 本発明は回転電機の回転子に係り、特に、ター
ビン発電機の円筒型回転子に適用して好適な回転
電機の回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor for a rotating electric machine, and particularly to a rotor for a rotating electric machine suitable for application to a cylindrical rotor of a turbine generator.

一般に、タービン発電機においては、系統に事
故が発生したり、負荷が三相平衡でない場合には
巻線に不平衡電流が流れる。この電流に含まれる
不平衡成分は一般に逆相電流と呼ばれ、回転子速
度と同期しない磁界をつくるため、回転子導体に
電流を誘導し、回転子の加熱の原因となる。そこ
で、この誘導電流を流すために回転子表面近傍に
専用のダンパ巻線が設けられる。
Generally, in a turbine generator, an unbalanced current flows through the windings when an accident occurs in the system or when the load is not balanced in three phases. The unbalanced component contained in this current is generally called an anti-sequence current and creates a magnetic field that is not synchronized with the rotor speed, inducing current in the rotor conductors and causing rotor heating. Therefore, a dedicated damper winding is provided near the rotor surface to allow this induced current to flow.

第1図に従来一般に採用されているこの種回転
子の導体構成が示されている。図において、符号
1は磁極を示し、2はこの磁極1の表面に形成さ
れた剛性バランス用の周方向溝を示す。符号3は
界磁コイルであり、回転子に形成された多数個の
溝に挿入され、ウエツジ4によつて保持されてい
る。ウエツジ4と界磁コイル3との間にはダンパ
バー5が設けられ、このダンパバー5と一体的に
形成されたダンパリング6によつてダンパバー同
志の間が連絡されている。回転子の端部には、界
磁コイル3やダンパリング6が回転時の遠心力に
より破損しないように保持環7が設けられてい
る。符号8はテイースを示し、符号9は端部環を
示す。このような構造の回転子においては、矢印
で示すように複雑な経路をとりながら誘導電流が
回転子表面を流れるが、この電流の大部分はダン
パバー5からダンパリング6を通つて流れる。
FIG. 1 shows the conductor structure of this type of rotor which has been generally employed in the past. In the figure, reference numeral 1 indicates a magnetic pole, and reference numeral 2 indicates a circumferential groove for rigidity balance formed on the surface of the magnetic pole 1. A field coil 3 is inserted into a number of grooves formed in the rotor and held by a wedge 4. A damper bar 5 is provided between the wedge 4 and the field coil 3, and a damper ring 6 formed integrally with the damper bar 5 communicates between the damper bars. A retaining ring 7 is provided at the end of the rotor to prevent the field coil 3 and damper ring 6 from being damaged by centrifugal force during rotation. Reference numeral 8 indicates a tooth, and reference numeral 9 indicates an end ring. In a rotor having such a structure, an induced current flows on the rotor surface along a complicated path as shown by the arrow, but most of this current flows from the damper bar 5 through the damper ring 6.

第2図はダンパバーおよびダンパリングの全体
を示すもので、このダンパ巻線は磁極部分にダン
パバーを持たず、通常銅等の薄い導体で構成され
ている。そして、誘導電流は図中矢印で示すよう
に、界磁巻線に沿つて流れる傾向にある。すなわ
ち、誘導電流は多数個のダンパバーからダンパリ
ング6に流れ込み、周方向に向きを変えてダンパ
リングを流れ、磁極中心に対称な状態で他方のダ
ンパバーに流れていく。
FIG. 2 shows the entire damper bar and damper ring. This damper winding does not have a damper bar at the magnetic pole portion, and is usually made of a thin conductor such as copper. The induced current tends to flow along the field winding as shown by the arrow in the figure. That is, the induced current flows into the damper ring 6 from a large number of damper bars, changes its direction in the circumferential direction, flows through the damper ring, and flows to the other damper bar in a state symmetrical about the center of the magnetic pole.

このような構造を採用すると、第3図に断面し
て示すように誘導電流の分布は符号A,B,Cで
示すように軸方向位置によつて誘導電流の大きさ
と位相が異なる現象が生じる。このため、ダンパ
リング6には軸方向位置によつて大きさと位相の
異なる電磁加振力が発生し、第3図に点線で示す
ような状態の電磁振動を招く傾向にある。この振
動はダンパリング6を波打たせるように働くた
め、ダンパリング6が機械的に疲労し、長期間の
運転中に繰返しこのような振動が発生すると遂に
はこのダンパリングを破損に至らしめる。このよ
うな現象が信頼性を低下させる大きな原因の1つ
であつた。そしてこの傾向は単期容量の増大に伴
う電気、磁気装荷の増加と共に強まつている。
When such a structure is adopted, as shown in the cross section in Figure 3, the distribution of induced current will have a phenomenon in which the magnitude and phase of the induced current differ depending on the axial position, as indicated by symbols A, B, and C. . Therefore, an electromagnetic excitation force having a different magnitude and phase is generated in the damper ring 6 depending on the axial position, which tends to cause electromagnetic vibration as shown by the dotted line in FIG. 3. Since this vibration acts to cause the damper ring 6 to wave, the damper ring 6 becomes mechanically fatigued, and if such vibration occurs repeatedly during long-term operation, this damper ring will eventually be damaged. This phenomenon was one of the major causes of lower reliability. This trend is becoming stronger as electric and magnetic loading increases with the increase in single-term capacity.

本発明の目的はダンパリングの異常振動を抑制
することができるように構成した回転電機の回転
子を提供するにある。
An object of the present invention is to provide a rotor for a rotating electrical machine that is configured to suppress abnormal vibrations of a damper ring.

本発明によれば上記の目的は磁極付近のダンパ
リングを軸方向に分割し、誘導電流の流れを限定
する構造を採用することにより達成される。
According to the present invention, the above object is achieved by adopting a structure in which the damper ring near the magnetic pole is divided in the axial direction to limit the flow of induced current.

以下、図面に示す実施例と共に本発明を詳細に
説明する。
Hereinafter, the present invention will be explained in detail together with embodiments shown in the drawings.

第4図は本発明の一実施例を示すもので、図中
第1図〜第3図と同一部分は同一符号をもつて示
してある。本実施例にあつては、ダンパリング6
に周方向に沿つて、かつ磁極部分と軸方向に対向
する位置に複数条のスリツト10が穿設されてい
る。図においては3条として例示されているこれ
らスリツト10は、ダンパリングの軸方向の外方
端側が円周距離が長く、内方端側が順次短くなる
ように構成されている。
FIG. 4 shows an embodiment of the present invention, in which the same parts as in FIGS. 1 to 3 are designated by the same reference numerals. In this embodiment, the damper ring 6
A plurality of slits 10 are bored along the circumferential direction and at positions facing the magnetic pole portion in the axial direction. These slits 10, which are illustrated as three slits in the figure, are configured such that the circumferential distance is long on the outer end side in the axial direction of the damper ring, and the circumferential distance is sequentially shorter on the inner end side.

本実施例は以上のような構造を採用しているた
め、誘導電流の流れる経路はスリツト10によつ
て限定されるため、ダンパリング6は第5図に断
面して示すようにダンパリングのスリツト10に
よつて分割された部分のみが独立して振動するよ
うな形態を示す。この状態は第5図に点線で示さ
れている。従つて、ダンパリング6全体は従来の
ように一体となつて振動することはなく、ダンパ
リングの振動は著しく抑制される。
Since this embodiment employs the above-described structure, the path through which the induced current flows is limited by the slit 10, so the damper ring 6 is inserted into the slit of the damper ring as shown in cross section in FIG. It shows a form in which only the parts divided by 10 vibrate independently. This condition is shown in dotted lines in FIG. Therefore, the entire damper ring 6 does not vibrate as a unit as in the conventional case, and the vibration of the damper ring is significantly suppressed.

第6図は本発明の他の実施例を説明するもの
で、本実施例にあつては、ダンパリングにのみ周
方向のスリツトを設けた前記実施例をさらに発展
させ、スリツト10をダンパバー方向にまで延長
して形成したものである。従つて、ダンパバーと
ダンパリングは連続した1つのダンパコイル11
として形成されることになり、それぞれのダンパ
コイル11の大部分は界磁コイルの対応する構成
とされている。このような構造を採用しても第4
図に示す実施例と同様な効果が得られ、さらに組
立作業が簡単となる利点がある。
FIG. 6 explains another embodiment of the present invention. In this embodiment, the above embodiment in which circumferential slits are provided only in the damper ring is further developed, and the slits 10 are arranged in the direction of the damper bar. It was formed by extending it. Therefore, the damper bar and the damper ring are one continuous damper coil 11.
Most of each damper coil 11 has a configuration corresponding to that of the field coil. Even if such a structure is adopted, the fourth
The same effects as the embodiment shown in the figures can be obtained, and there is also the advantage that assembly work is simplified.

ところで、上記実施例はいずれもd軸ダンパ巻
線に対しての実施例であるが、設計の都合上q軸
ダンパコイルを必要とする場合には第7図に示す
ようにダンパコイル11を上述したダンパコイル
と同様に形成して良いのはもちろんである。
By the way, the above embodiments are all embodiments for the d-axis damper winding, but if a q-axis damper coil is required for design reasons, the damper coil 11 can be replaced with the above-mentioned damper coil as shown in FIG. Of course, it may be formed in the same manner as .

以上の説明から明らかなように本発明によれ
ば、磁極付近のダンパリングを軸方向に分割し、
誘導電流の流れを限定する構造を採用しているた
め、ダンパリングの異常振動を抑制することがで
きるように構成した回転電機の回転子を得ること
ができる。
As is clear from the above description, according to the present invention, the damper ring near the magnetic pole is divided in the axial direction,
Since the structure that limits the flow of induced current is adopted, it is possible to obtain a rotor of a rotating electric machine configured to suppress abnormal vibrations of the damper ring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来構造を説明するもので、
第1図は回転子の斜視図、第2図はダンパリング
の斜視図、第3図は第2図の−線拡大断面
図、第4図以下は本発明の実施例を説明するもの
で、第4図は本発明の一実施例を説明する斜視
図、第5図は第4図の−線拡大断面図、第6
図および第7図は本発明のそれぞれ異なつた実施
例を説明する斜視図である。 1……磁極、2……クロススロツト、3……界
磁コイル、4……ウエツジ、5……ダンパバー、
6……ダンパリング、7……保持環、10……ス
リツト。
Figures 1 to 3 explain the conventional structure.
Fig. 1 is a perspective view of the rotor, Fig. 2 is a perspective view of the damper ring, Fig. 3 is an enlarged sectional view taken along the line - - in Fig. 2, and Fig. 4 and subsequent figures illustrate embodiments of the present invention. FIG. 4 is a perspective view illustrating an embodiment of the present invention, FIG. 5 is an enlarged sectional view taken along the - line in FIG.
7 and 7 are perspective views illustrating different embodiments of the present invention. 1... Magnetic pole, 2... Cross slot, 3... Field coil, 4... Wedge, 5... Damper bar,
6...Damper ring, 7...Retaining ring, 10...Slit.

Claims (1)

【特許請求の範囲】 1 回転子の径方向に磁極を構成するように当該
回転子の外周軸方向に穿設した溝と、当該溝内に
挿入される界磁コイルを有し、前記溝のうち所定
の溝内に挿入されるダンパバーと、これらダンパ
バーの端部をダンパバー同志が電気的に連絡され
る十分に巾を有したダンパリングとを備えた回転
電機の回転子において、 前記ダンパリングに、周方向に沿つて、かつ磁
極部分と軸方向に対向する位置に当該軸方向の外
方端側から内方端側にいくに従つて順次短くなる
複数条のスリツトを設けたことを特徴とする回転
電機の回転子。
[Scope of Claims] 1. A rotor having a groove bored in the outer axial direction of the rotor so as to constitute magnetic poles in the radial direction of the rotor, and a field coil inserted into the groove, and a field coil inserted into the groove. In a rotor of a rotating electric machine, the rotor includes a damper bar inserted into a predetermined groove, and a damper ring having a sufficient width to electrically connect the ends of the damper bars to each other, , characterized in that a plurality of slits are provided along the circumferential direction and at positions facing the magnetic pole portion in the axial direction, the slits becoming sequentially shorter from the outer end to the inner end in the axial direction. The rotor of a rotating electric machine.
JP4539279A 1979-04-16 1979-04-16 Rotor of rotary machine Granted JPS55139042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4539279A JPS55139042A (en) 1979-04-16 1979-04-16 Rotor of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4539279A JPS55139042A (en) 1979-04-16 1979-04-16 Rotor of rotary machine

Publications (2)

Publication Number Publication Date
JPS55139042A JPS55139042A (en) 1980-10-30
JPS6412170B2 true JPS6412170B2 (en) 1989-02-28

Family

ID=12717985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4539279A Granted JPS55139042A (en) 1979-04-16 1979-04-16 Rotor of rotary machine

Country Status (1)

Country Link
JP (1) JPS55139042A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078845B2 (en) * 2004-05-26 2006-07-18 General Electric Company Optimized drive train for a turbine driven electrical machine
JP5963665B2 (en) * 2012-12-26 2016-08-03 三菱電機株式会社 2-axis excitation generator
JP2022053571A (en) * 2020-09-25 2022-04-06 隆義 追立 Generator greatly improving power generation efficiency

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413082U (en) * 1990-05-16 1992-02-03

Also Published As

Publication number Publication date
JPS55139042A (en) 1980-10-30

Similar Documents

Publication Publication Date Title
US5023502A (en) Switched reluctance motor rotor
US7342331B2 (en) Multi-plane flexible rotor balancing
EP3193432B1 (en) Stator and electric motor
US4250424A (en) Rotor of synchronous machines
US2236291A (en) Dynamoelectric machine
US5512792A (en) Electric motor with high power and high rotational speed
EP3642935A1 (en) A brushless motor and stator therefor
US5001378A (en) Rotor with reduced windage losses
JP7026529B2 (en) Stator structure and resolver
JP4098939B2 (en) Reluctance motor
US4293787A (en) Stator winding holding structure for rotary electric machine
US3223867A (en) Axial air gap motor
US20060250042A1 (en) Dynamoelectric machine with ring type rotor and stator windings
US10804760B2 (en) Rotor and motor
US2872605A (en) High speed rotor for dynamo electric machines
US4268772A (en) Laminated rotor with cast end windings
JPS6412170B2 (en)
JPH08294242A (en) Skew of rotor core or stator core in electric rotating machine
US2854596A (en) Stator for induction motor
JPH08256461A (en) Permanent magnet motor
EP3869674A1 (en) Rotary electric machine
US6262506B1 (en) Stator for a rotating electrical machine having multiple control windings
JPH08116656A (en) Brushless motor
JPS596756A (en) Induction motor
JP2582880B2 (en) Brushless motor