JPH02210626A - Optical recording and reproducing device - Google Patents

Optical recording and reproducing device

Info

Publication number
JPH02210626A
JPH02210626A JP63315522A JP31552288A JPH02210626A JP H02210626 A JPH02210626 A JP H02210626A JP 63315522 A JP63315522 A JP 63315522A JP 31552288 A JP31552288 A JP 31552288A JP H02210626 A JPH02210626 A JP H02210626A
Authority
JP
Japan
Prior art keywords
recording
optical
optical waveguide
recording medium
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63315522A
Other languages
Japanese (ja)
Other versions
JP2960426B2 (en
Inventor
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63315522A priority Critical patent/JP2960426B2/en
Publication of JPH02210626A publication Critical patent/JPH02210626A/en
Application granted granted Critical
Publication of JP2960426B2 publication Critical patent/JP2960426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To speed up the operation of the optical recording and reproducing device with simple constitution by using an optical waveguide as a recording medium and reproducing whether or not waveguide light is scattered by a refractive index discontinuous part by plural detectors at the same time. CONSTITUTION:When reproduction is performed, the laser beam 3 from a semiconductor laser 1 for reproduction is guided from an optical coupling part 4 into an optical waveguide recording medium 5 and a part of its waveguide light 7 is scattered by refractive index discontinuous recording parts 9, 9', and 9''' to become leak waveguide light, thereby generating scattered light beams 13, 13' and 13'' outside the waveguide. The scattered light beams are photodetected by photodetectors 17, 17', 17'' and 17''' which are arrayed opposite at intervals and the output of each detector turns on and off or varies according to whether or not there is a bright point, thereby reproducing information recoded on the optical waveguide recording medium 5. The scatter efficiency per bit from the waveguide light 7 to the scattered light 13 is determined by the refractive index ratio, the depth of a pit, and the area of the ellipse at the border of the pit. When a GaAlAs semiconductor laser which generates a continuous output of 10mW is used as a reproduction semiconductor laser 1, the scattered light output per pit is about 0.1muW and sufficient detection is performed by a semiconductor photodetector.

Description

【発明の詳細な説明】 [技術分野] 本発明は、光散乱を生じる屈折率不連続部の有無とフォ
トケミカルホールバーニングによる光吸収透過の有無を
情報の記録とする光導波路を用いた光記録再生装置に間
するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to optical recording using an optical waveguide that records information based on the presence or absence of refractive index discontinuities that cause light scattering and the presence or absence of light absorption and transmission due to photochemical hole burning. It is connected to a playback device.

[従来技術] 従来の光記録媒体は第8図に示すように構成されている
。ここで光記録媒体100は、記録媒体を基板として、
基板面に記録された光反射率の低い凹部101と光反射
率の高い平坦部102を線上に配列し、矢印103の方
向に記録媒体を移動しつつ、記録再生を行うように構成
されている。かかる平坦部102と凹部101よりの光
反射率の比は、高々1対0.3〜0.5程度であり光強
度の信号対雑音比は決してよくなく改良も困難である。
[Prior Art] A conventional optical recording medium is constructed as shown in FIG. Here, the optical recording medium 100 uses a recording medium as a substrate,
Concave portions 101 with low light reflectance and flat portions 102 with high light reflectance recorded on the substrate surface are arranged in a line, and recording and reproduction is performed while moving the recording medium in the direction of arrow 103. . The ratio of the light reflectance from the flat portion 102 to the concave portion 101 is at most about 1:0.3 to 0.5, and the signal-to-noise ratio of light intensity is by no means good and is difficult to improve.

また、このような記録媒体100では、再生時には各凹
部101あるいは平坦部102毎に半導体レーザを集束
照射して、反射光を検出し、記録媒体100の移動によ
ってのみ時系列信号が再生され、記録媒体100の移動
速度によフて再生さらには記録のアクセス時間が制限さ
れて、高速アクセスが困難であった。
In addition, in such a recording medium 100, during reproduction, a semiconductor laser is focused on each concave portion 101 or flat portion 102, reflected light is detected, and the time-series signal is reproduced only by movement of the recording medium 100. Access time for playback and recording is limited depending on the moving speed of the medium 100, making high-speed access difficult.

このような光記録媒体を用いて光記録再生を行うHIt
は電子通信学会技術研究報告vo1.84. No、2
03、MR84−39に開示されている。その光記録再
生装置の概略を第9図に示す。
HIt performs optical recording and reproduction using such an optical recording medium.
IEICE technical research report vol. 1.84. No, 2
03, MR84-39. FIG. 9 shows an outline of the optical recording/reproducing apparatus.

第9図において、Illは半導体レーザ、112〜+1
5はレンズ、116はフォーカスアクチュエータに設置
された集光レンズ、+17および+18はハーフミラ−
1+19はl/2波長板、120は整形プリズム、12
1〜123は光検出器、124はレーザビーム記録媒体
、たとえばディスク、125はプリズムによるビームス
プリッタである。
In FIG. 9, Ill is a semiconductor laser, 112 to +1
5 is a lens, 116 is a condensing lens installed on the focus actuator, +17 and +18 are half mirrors.
1+19 is a l/2 wavelength plate, 120 is a shaping prism, 12
1 to 123 are photodetectors, 124 is a laser beam recording medium, such as a disk, and 125 is a beam splitter using a prism.

半導体レーザ111からの光は、レンズ112.整形プ
リズム+20、ハーフミラ−117および集光レンズ1
16を介して記録媒体+24に入射して、第8図凹部l
otのように一個の記録が行われる。ついでディスク1
24を移動して次の記録が行われ、記録すべき情報に応
じて凹部な設けたり設けなつかたりし、線上にこれらを
配列する。ここで、レーザビーム記録媒体124が穴あ
け記録媒体や相変態形媒体などのように、反射率変化と
して情報を記録する媒体である場合には、ディスク+2
4からの反射光が、ディスク124の移動にともなって
光検出器+21で検出され、その光信号は時系列信号と
して再生される。
The light from the semiconductor laser 111 passes through the lens 112 . Shaping prism +20, half mirror-117 and condensing lens 1
16 to the recording medium +24, and enters the recess l in FIG.
One recording is made as in ot. Then disk 1
24 is moved to perform the next recording, recesses are provided or removed depending on the information to be recorded, and these are arranged on a line. Here, if the laser beam recording medium 124 is a medium that records information as a change in reflectance, such as a perforated recording medium or a phase change medium, the disk +2
4 is detected by a photodetector +21 as the disk 124 moves, and the optical signal is reproduced as a time-series signal.

他方、レーザビーム記録媒体+24が光磁気ディスクな
どのように磁化反転として情報を記録する媒体では、記
録部による反射光偏光面の回転をアナライザであるプリ
ズムビームスプリッタ125で分離し、その分離された
光を光検出器122および123の差動出力で検出する
。この場合も、ディスク+24の移動によって、光信号
が時系列信号として再生される。
On the other hand, in a medium where the laser beam recording medium +24 records information as magnetization reversal, such as a magneto-optical disk, the rotation of the polarization plane of the reflected light by the recording section is separated by the prism beam splitter 125, which is an analyzer, and the separated Light is detected by differential outputs of photodetectors 122 and 123. In this case as well, the optical signal is reproduced as a time-series signal by moving the disk +24.

このような記録再生時には、線上に記録された!!l#
1llolや平坦部+02の配列がディスク124面の
中心部に向かって渦巻状になり、以上の装!+26をこ
れら配列に従い自動追尾させる必要が生じてくる。さら
には、以上の装置126を、レーザビーム記録媒体12
4の面賑れに追随させるために、フォーカス誤差信号に
従って集光レンズ116等を配列毎に光軸方向に移動さ
せて合焦させている。
During such recording and playback, it was recorded on a line! ! l#
The array of 1lol and flat part +02 spirals toward the center of the disk 124 surface, and the above arrangement! It becomes necessary to automatically track +26 according to these arrangements. Furthermore, the above device 126 may be used as a laser beam recording medium 12.
In order to follow the surface blur of No. 4, the condenser lens 116 and the like are moved in the optical axis direction for each array according to the focus error signal to focus.

このような従来方式では、(1)光反射方式を用いてい
るため記録媒体の一点の記録部毎に合焦を必要とし、光
信号の信号対雑音比が悪く、信頼性に劣る。
In such conventional methods, (1) since a light reflection method is used, it is necessary to focus on each recording portion of a recording medium, and the signal-to-noise ratio of the optical signal is poor, resulting in poor reliability.

(ii)  記録媒体の一点の記録部毎に光信号を再生
するため、記録媒体の移動によってのみ時系列信号が再
生され、記録媒体の移動速度によってサイクル時間が制
限される。
(ii) Since the optical signal is reproduced for each recorded portion of the recording medium, the time-series signal is reproduced only by the movement of the recording medium, and the cycle time is limited by the moving speed of the recording medium.

(iii)レーザ発振器と光検出器の一体化のため、装
置が大型で重くなり、高速アクセスや、マルチヘッド化
が困難である。
(iii) Since the laser oscillator and photodetector are integrated, the device becomes large and heavy, making it difficult to achieve high-speed access and to use multiple heads.

(iv)  光学部品や機構部品が多く、光軸調整が複
雑であることや、光路における光損失が多いなどの問題
点があった。
(iv) There are problems such as a large number of optical parts and mechanical parts, complicated optical axis adjustment, and high optical loss in the optical path.

[目的] そこで、本発明の目的は、上述の欠点を除去して、光散
乱を生じる複数の輝点の配列となる光記録部を有するこ
とを特徴とする光導波路記録媒体を用いた光記録再生装
置を提供することにある。
[Objective] Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and to provide optical recording using an optical waveguide recording medium characterized by having an optical recording section that is an array of a plurality of bright spots that cause light scattering. The purpose is to provide a playback device.

本発明の他の目的は、−個のレーザ発振器よりの光を用
いて、複数の輝点を同時に生じせしめ、複数の光検出器
の配置により、複数の記録情報を並列に再生可能とする
光記録再生装置を提供することにある。
Another object of the present invention is to generate a plurality of bright spots simultaneously using light from - laser oscillators, and by arranging a plurality of photodetectors, it is possible to reproduce a plurality of pieces of recorded information in parallel. The purpose of the present invention is to provide a recording/playback device.

本発明の更に他の目的は、上述の光記録再生装置を用い
ることにより、上述した諸問題点を解決し、任意のサイ
クルで高速アクセスも可能で、波長多重高密度記録も実
現でき、並列に膨大な情報を再生できる割には、簡単な
構成で、しかも記録部の一点毎の追随も不用な光記録再
生装置を提供することにある。
Still another object of the present invention is to solve the above-mentioned problems by using the above-mentioned optical recording/reproducing device, to enable high-speed access in any cycle, to realize wavelength multiplexing high-density recording, and to realize parallel It is an object of the present invention to provide an optical recording/reproducing device which is capable of reproducing a huge amount of information, has a simple configuration, and does not require point-by-point tracking of a recording section.

〔発明の構成〕[Structure of the invention]

このような目的を達成するために、本発明光記録再生装
置は、記録すべき情報に応じて光導波路に輝点となる屈
折率不連続部を、複数個配列して設けた記録部を有する
所定の長さの光導波路を、複数個配置したテープやディ
スクあるいはカードの記録媒体と、その一つの光結合部
に対向してqtmし配置したレーザ発振器と、その同じ
光導波路の記録部に対向してFIM配置した複数の光検
出器とを、それぞれ支持する部材とを具備したことを特
徴とする。
In order to achieve such an object, the optical recording and reproducing apparatus of the present invention has a recording section in which a plurality of refractive index discontinuous parts that become bright spots are arranged in an optical waveguide according to the information to be recorded. A recording medium such as a tape, disk, or card in which a plurality of optical waveguides of a predetermined length are arranged, a laser oscillator placed qtm facing one of the optical coupling parts, and a laser oscillator placed qtm facing the recording part of the same optical waveguide. The present invention is characterized in that it includes a member that supports each of a plurality of photodetectors arranged in an FIM manner.

[実施例] 以下に、図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

第1図は本発明光記録再生装置の原理図を示し、ここで
、 lは再生用半導体レーザ、 2はレンズ、3はレー
ザビーム、 4は光結合部で、たとえば本例では回折格
子結合法を用いである。 5は光導波路記録媒体、 6
は光導波路基板、 7は導波光、 8は光記録部材、 
9.gl、911+は屈折率不連続記録部、lOは空気
またはクラッド層となる膜、13.13’。
FIG. 1 shows a principle diagram of the optical recording and reproducing apparatus of the present invention, where l is a semiconductor laser for reproduction, 2 is a lens, 3 is a laser beam, and 4 is an optical coupling part, for example, in this example, a diffraction grating coupling method is used. is used. 5 is an optical waveguide recording medium, 6
is an optical waveguide substrate, 7 is a waveguide light, 8 is an optical recording member,
9. gl, 911+ is a refractive index discontinuous recording section, lO is air or a film serving as a cladding layer, 13.13'.

+3”は散乱光、16は未記録部、17.17’、17
目17”″は光検出器、21は光検出器支持材である。
+3" is scattered light, 16 is unrecorded area, 17.17', 17
Eye 17'' is a photodetector, and 21 is a photodetector support.

光導波路のコア部である光導波路記録媒体5及びクラッ
ド層基板6は高分子材料(例えば、PMMA、PCなど
)で作成し、光導波路記録媒体5の光屈折率を基板6の
それより数%高くして光導波路を形成しである0本例の
先導波路は、たとえば高さと幅が約0.8μ園の多モー
ド導波リッジ型であるが、この導波路を基板6へ埋め込
む埋め込み型でもよい、光記録部材8は、再生専用型の
場合は、たとえば光導波路材と同じ高分子材料を用いる
The optical waveguide recording medium 5, which is the core part of the optical waveguide, and the cladding layer substrate 6 are made of a polymer material (for example, PMMA, PC, etc.), and the optical refractive index of the optical waveguide recording medium 5 is set to be several percent higher than that of the substrate 6. The guide waveguide in this example is a multimode waveguide ridge type with a height and width of approximately 0.8 μm, but it may also be an embedded type waveguide in which the waveguide is embedded in the substrate 6. In the case of a read-only type optical recording member 8, for example, the same polymeric material as the optical waveguide material is used.

追加記録型の場合は、集光したレーザ光により穴のあく
材料である有機色素高分子薄膜などを、消去・再書き込
み型の場合はカルコゲナイド系の相転移材料などを用い
ることができる。
In the case of an additional recording type, an organic dye polymer thin film, which is a material that is perforated by a focused laser beam, can be used, and in the case of an erasing/rewriting type, a chalcogenide-based phase change material can be used.

本構成例では、光記録部となる屈折率不連続部を光導波
路のコア部に設ける場合を示したが、クラッド層に設け
ても本原理と同じ効果が実現できる。
In this configuration example, a case has been shown in which the refractive index discontinuity portion serving as the optical recording portion is provided in the core portion of the optical waveguide, but the same effect as the present principle can be achieved even if the refractive index discontinuity portion is provided in the cladding layer.

光結合部4は本例の回折格子結合法のほか、テーパ法や
導波路端面結合法でもよい。
In addition to the diffraction grating coupling method of this example, the optical coupling section 4 may be formed by a taper method or a waveguide end face coupling method.

第2図は光導波路記録媒体5の平面図を示し、複数個配
列して設けた屈折率不連続記録部9,9′91′は、た
とえば楕円形のビットで形成されていることを示してい
る。このビットが光導波路中に空気との境界を作ること
により、導波光7がこの境界(屈折率不連続記録部9と
なる)で散乱され散乱光+3が生じる。このビットが輝
点となる。
FIG. 2 shows a plan view of the optical waveguide recording medium 5, and shows that a plurality of discontinuous refractive index recording parts 9, 9'91' arranged in an array are formed of, for example, elliptical bits. There is. Since this bit creates a boundary with air in the optical waveguide, the guided light 7 is scattered at this boundary (which becomes the refractive index discontinuous recording section 9), and scattered light +3 is generated. This bit becomes a bright spot.

記録時には、記録専用付加レーザ発振装置を具備し、あ
るいは前記レーザ発振装置を併用し、そのレーザ出力を
記録すべき情匂に応じ変調し、前記記録媒体5に上述の
材料に応じ屈折率不連続部9、gl、gl+1の有無と
して記録する。
At the time of recording, an additional laser oscillation device exclusively for recording is provided, or the laser oscillation device is used together, the laser output is modulated according to the emotion to be recorded, and the recording medium 5 is provided with a refractive index discontinuity according to the above-mentioned material. It is recorded as the presence or absence of part 9, gl, and gl+1.

再生時には、再生用半導体レーザlからのレーザビーム
3を光結合部4より光導波路記録媒体5中に導波し、そ
の導波光7の一部が屈折率不連続記録部g 、 g r
 、 g l l +で散乱され漏れ導波光として、導
波路外に散乱光13.13’、13”を生じる。該散乱
光は、複数個配列して隔離対向して設けた光検出器17
2口!、1711.17111により受光され、輝点の
有無に応じ各検出器からの出力がオン、オフあるいは増
減することにより、光導波路記録媒体5に記録された情
報が再生される。
During reproduction, the laser beam 3 from the reproduction semiconductor laser l is guided into the optical waveguide recording medium 5 through the optical coupling part 4, and a part of the guided light 7 is transmitted to the refractive index discontinuous recording parts g, g r
, g l l + and generates scattered light 13.13', 13'' outside the waveguide as leaked waveguide light.
2 bites! , 1711.17111, and the information recorded on the optical waveguide recording medium 5 is reproduced by turning on, off, or increasing or decreasing the output from each detector depending on the presence or absence of a bright spot.

導波光7から散乱光13への!ビット当りの散乱効率は
、ビットの境界での屈折率比とビットの探さと楕円形の
面積で決まり、本例では散乱効率l0−6を得るために
、屈折率比1.35でビットの探さを0.1μ層、楕円
の長軸を1.6μm、短軸を0.8μIとした。たとえ
ば、連続出力l〇−讐のGaAlAs半導体レーザを再
生用半導体レーザ1に用いると、各ビット当りの散乱光
出力はおよそ0.1μνであり、半導体光検出器で十分
検出可能なものとなる0本実施例では、Si半導体光検
出器を用い、複数個1次元に配列して光検出器17.1
7’、17’”17+11を構成しである。
From guided light 7 to scattered light 13! The scattering efficiency per bit is determined by the refractive index ratio at the bit boundary, the bit search, and the area of the ellipse. The layer was 0.1μ, the long axis of the ellipse was 1.6μm, and the short axis was 0.8μI. For example, if a GaAlAs semiconductor laser with a continuous output of l〇−1 is used as the reproducing semiconductor laser 1, the scattered light output per each bit is approximately 0.1μν, which is sufficiently detectable with a semiconductor photodetector. In this embodiment, a plurality of Si semiconductor photodetectors are used, and a plurality of photodetectors 17.1 are arranged in one dimension.
7', 17''' constitutes 17+11.

さらには、たとえば超短ピコ秒パルスのピーク出力10
0■Vの半導体レーザを用いると、各輝点に於ける散乱
出力は、およそ1μ讐となり、検出出力の増大が期待で
きる。超短ピコ秒パルスの発生にツイテは、INT、J
、ELECTRONIC5,1986,VOL、60.
NO,1,5−21頁に詳しく間示しである。
Furthermore, for example, the peak output of ultrashort picosecond pulses is 10
If a 0V semiconductor laser is used, the scattered output at each bright spot will be approximately 1μ, and an increase in detection output can be expected. Tweet about the generation of ultra-short picosecond pulses is INT, J
, ELECTRONIC5, 1986, VOL, 60.
No. 1, pages 5-21 provide detailed information.

現在、半導体光検出器の周波数応答特性を 20GHz
以上にすることは比較的容易である。この技術について
は、すてに開示されており、たとえば昭和63年電子情
報通信学会秋季全国大会講演論文集、c−1−53頁に
記載されている。再生用半導体レーザlにおよそパルス
幅20ピコ秒の発振器を用い、現技術を用いて構成した
 1,5万個の半導体光検出器からの信号を増幅した後
、[LSIバッファメモリーに格納する。その結果、バ
ッファメモリーからの時系列信号転送サイクル時間は 
1ビット当り轟小5xlO−”秒まで可能になる。した
がって、本実施例で示すように、 1.5万個を単位と
した分の情報は、 7.5μ秒で呼び出すことができ、
この最小時間以上であれば任意のサイクル時間で時系列
情報として再生できる。
Currently, the frequency response characteristics of semiconductor photodetectors are 20GHz.
It is relatively easy to do the above. This technique has already been disclosed, for example, in the Proceedings of the 1988 Autumn National Conference of the Institute of Electronics, Information and Communication Engineers, page c-1-53. An oscillator with a pulse width of approximately 20 picoseconds is used for the reproducing semiconductor laser l, and after amplifying the signals from 1.5 million semiconductor photodetectors configured using current technology, the signals are stored in the LSI buffer memory. As a result, the time series signal transfer cycle time from the buffer memory is
It is possible to read up to 5xlO-'' seconds per bit. Therefore, as shown in this example, information in units of 15,000 pieces can be retrieved in 7.5 microseconds.
As long as it is longer than this minimum time, it can be reproduced as time series information with any cycle time.

各光検出器の最適受光面積は、輝点の形状と輝点からの
距離dで決まる。散乱光13のビーム断面の光強度分布
は、輝点からのフレネル回折積分より計算することがで
き、第1次ベッセル間数で表示できる。その結果、本実
施例の楕円形の輝点形状では、最適受光面積は 1.6
x5.Oμ■2で、受光可能距ladは2−3μ−と見
積られた。隣接する輝点からの雑音光は、本実施例では
10分の1以下で、信号対雑音比は 1対 0.1以下
である。第1図の各光検出器17.17’、I7”、1
7”’の断面横幅が1.6μ−で、これらの間隙は0.
4μmである。
The optimal light-receiving area of each photodetector is determined by the shape of the bright spot and the distance d from the bright spot. The light intensity distribution of the beam cross section of the scattered light 13 can be calculated from the Fresnel diffraction integral from the bright spot, and can be expressed as a first-order Bessel interval number. As a result, with the elliptical bright spot shape of this example, the optimal light receiving area is 1.6
x5. At Oμ■2, the light receiving distance lad was estimated to be 2-3μ-. In this embodiment, the noise light from adjacent bright spots is less than 1/10, and the signal-to-noise ratio is less than 1:0.1. Each photodetector 17.17', I7'', 1 in FIG.
7''' cross-sectional width is 1.6μ-, and the gap between them is 0.
It is 4 μm.

光導波路記録媒体5の複数個配列し設けた屈折率不連続
記録部9.9’、9”’の全体の長さを30mm′とし
た。未記録部を含めたピッチ長は2μ閏であり、屈折率
不連続部の有無の総数は1.5XIO’個である。
The entire length of the discontinuous refractive index recording portions 9.9', 9'', arranged in the optical waveguide recording medium 5, was 30 mm'.The pitch length including the unrecorded portion was 2μ. , the total number of refractive index discontinuities is 1.5XIO'.

したがって、 1個の光検出器からの光信号の有無を、
 1ビツトとすれば本光導波路記録媒体5の 1個の記
録容量は 1.5万ビツトで、本光導波路記録媒体5に
対向して隔離配置しである総数 1,5万個の光検出器
I7,17’、IT′1.17”’により並列に 1.
5万ビツトの情報を再生する。1.5万個の光検出器は
半導体基板上に信号増幅器と供に 1次元に配列して一
体化して構成できる。
Therefore, the presence or absence of an optical signal from one photodetector is
Assuming 1 bit, the recording capacity of each optical waveguide recording medium 5 is 15,000 bits, and a total of 15,000 photodetectors are arranged in isolation facing the optical waveguide recording medium 5. I7,17', IT'1.17''' in parallel 1.
Regenerate 50,000 bits of information. 15,000 photodetectors can be arranged and integrated in one dimension along with a signal amplifier on a semiconductor substrate.

かかる光導波路記録媒体5中における導波光7の光減衰
率は 1,5万個のビットでも、光結合部4より入射し
た導波光の100分の1,5程度であり、各光検出器に
はほぼ同程度の光が入力する。
The optical attenuation rate of the guided light 7 in such an optical waveguide recording medium 5 is about 1.5/100 of the guided light incident from the optical coupling section 4 even when there are 150,000 bits. approximately the same amount of light enters.

第3図示は波長多重光導波路記録媒体の一実施例である
。22はフォトケミカルホールバーニング材で光導波路
の屈折率不連続記録部9.9’、9119″°の表面に
数μ慣厚さで塗布しである0本光導波路ではピッチ毎に
全てビットを設けである。フォトケミカルホールバーニ
ング材としては、たとえばGaAlAs半導体レーザの
発振波長0.111μ讃帯で使用可能なプロトン化82
PCなどを用い、波長多重度10以上が容易に実現され
る。この材料については既にChemical Phy
sics Letters、vol、114.(198
5)491頁に開示されている。
The third diagram shows an embodiment of a wavelength multiplexed optical waveguide recording medium. 22 is a photochemical hole burning material that is applied to the surface of the refractive index discontinuous recording portion 9.9', 9119'' of the optical waveguide to a thickness of several μm. As a photochemical hole burning material, for example, protonated 82 which can be used at the oscillation wavelength of GaAlAs semiconductor laser in the 0.111μ band is used.
A wavelength multiplicity of 10 or more can be easily achieved using a PC or the like. This material has already been described in Chemical Phys.
sics Letters, vol, 114. (198
5) Disclosed on page 491.

波長可変半導体レーザあるいは波長の異なる複数のレー
ザ発振器を用い、各波長毎に記録すべき情報に応じて屈
折率不連続記録部9.91,911.9111の表面部
を照射しフォトケミカルホールバーニング部23.23
’、23”、23”’を形成して、波長多重高密度記録
する。再生時には、記録時と同一波長を用いレーザ発振
器よりの光を導波して、ビット毎に光散乱を生じせしめ
る。しかるにフォトケミカルホールバーニング部23.
23’、23”、23”’の内、各波長毎に、記録時に
レーザ照射を受けた部は光吸収飽和のために散乱光を透
過し、レーザ照射を受けなかった部は散乱光を吸収する
0例えば、第3図上部に示すように、各波長λ1.λ2
.・・・・・λ0毎に、散乱光の透過(↑印)と不透過
(0印)が記録された情報にしたがフて生じる。その結
果、前記光検出器により並列に例えば0と1のデジタル
情報で光信号が検出され、記録された情報が各波長毎多
重に再生される。
Using a wavelength tunable semiconductor laser or a plurality of laser oscillators with different wavelengths, the surface portions of the refractive index discontinuous recording portions 9.91, 911.9111 are irradiated according to the information to be recorded for each wavelength to create a photochemical hole burning portion. 23.23
', 23'', 23''' are formed to perform high-density wavelength multiplexing recording. During reproduction, light from a laser oscillator is guided using the same wavelength as during recording, causing light scattering for each bit. However, the photochemical hole burning section 23.
For each wavelength among 23', 23", and 23"', the part that was irradiated with the laser during recording transmits the scattered light due to light absorption saturation, and the part that was not irradiated with the laser absorbs the scattered light. For example, as shown in the upper part of FIG. 3, each wavelength λ1 . λ2
.. ...For each λ0, transmission (↑ mark) and non-transmission (0 mark) of scattered light occur according to the recorded information. As a result, an optical signal is detected in parallel by the photodetector as digital information of, for example, 0 and 1, and the recorded information is multiplexed and reproduced for each wavelength.

第4図は本発明光記録再生装置の光デジタルテープでの
一実施例を示し、27は光デジタルテープで、たとえば
第1図記載の光記録導波va5あるいは第3図記載の波
長多重記録可能な光記録導波路5を複数個斜めに並置し
たものである。  28.28’は該テープ繰り出し回
転支持棒、30.30’は該テープ繰り込み回転支持棒
、32は記録専用半導体レーザ発振器ヘッド、33はヘ
ッド走行支持機、34 、34 ’は回転支持具、35
.35’は支持台である。37は再生用半導体レーザ発
振器ヘッド、38.38’は光検出器位置決め機構部、
40は支持具である。記録専用半導体レーザ発振器ヘッ
ド32と再生用半導体レーザ発振器ヘッド37にはいず
れも該光導波路記録部を自動トラッキングするサーボ機
構を内蔵している。
FIG. 4 shows an embodiment of the optical recording and reproducing apparatus of the present invention using an optical digital tape, and 27 is an optical digital tape capable of recording, for example, the optical recording waveguide VA5 shown in FIG. 1 or the wavelength multiplexing shown in FIG. A plurality of optical recording waveguides 5 are arranged diagonally in parallel. 28.28' is the tape feeding rotation support rod, 30.30' is the tape feeding rotation support rod, 32 is a recording-only semiconductor laser oscillator head, 33 is a head running support machine, 34 and 34' are rotation support tools, and 35
.. 35' is a support stand. 37 is a reproduction semiconductor laser oscillator head, 38.38' is a photodetector positioning mechanism section,
40 is a support. Both the recording semiconductor laser oscillator head 32 and the reproducing semiconductor laser oscillator head 37 have a built-in servo mechanism for automatically tracking the optical waveguide recording section.

本実施例では、光デジタルテープ27は、テープ幅がた
とえば20mmで、光記録導波路5は斜め配向し配置し
て、記録部長30麿箇で 1.5万ビツトを確保してい
る。記録時には、軽量な記録専用半導体レーザ発振器ヘ
ッド32のみが走行するシステムである故に、走行速度
20■7sec以上、周波数でIOMHz以上での記録
が容易である0本デジタル記録では、例えばテープ全長
を10mとすると、総容量150Gbitを収録できる
。再生時には、再生用半導体レーザ発振器ヘッド37よ
り、再生したい光記録導波路の光結合部ヘレーザ光を導
波し、光検出器位置決め機構部38 、38 ’のサー
ボ機構を駆動して光検出器支持材21を微動し !次元
に配列した複数個の光検出器17.17’、17”、+
7”’を該導波路記録部5に対向して隔離配置し、該記
録部よりの散乱光を同時に検出し、並列に情報を再生す
る0次に、テープを移動して、異なる光記録導波路より
同様に記録再生を逐次行って行く、並列に再生する信号
を出来るだけ増やすために、本実施例では該光導波路の
配置をテープに対して斜め配置とした。
In this embodiment, the optical digital tape 27 has a tape width of, for example, 20 mm, and the optical recording waveguide 5 is arranged obliquely to secure 15,000 bits over a recording length of 30 mm. During recording, since the system is run only by the lightweight recording-only semiconductor laser oscillator head 32, it is easy to record at a running speed of 20 x 7 seconds or more and a frequency of IOMHz or more. Therefore, a total capacity of 150 Gbit can be recorded. During reproduction, a laser beam is guided from the reproduction semiconductor laser oscillator head 37 to the optical coupling part of the optical recording waveguide to be reproduced, and the servo mechanisms of the photodetector positioning mechanisms 38 and 38' are driven to support the photodetector. Move material 21 slightly! A plurality of photodetectors 17.17', 17'', +
7"' is placed in isolation facing the waveguide recording section 5, the scattered light from the recording section is simultaneously detected, and information is reproduced in parallel. Next, the tape is moved and a different optical recording guide is placed. In this embodiment, the optical waveguide is arranged diagonally with respect to the tape in order to increase as much as possible the number of parallelly reproduced signals that are recorded and reproduced sequentially from the waveguide.

該光導波路に記録された情報がビデオ信号の場合はビデ
オ情報を、コンピュータの磁気テープの様にファイルメ
モリーとして使用する場合はファイル情報を記録再生す
る。
When the information recorded on the optical waveguide is a video signal, the video information is recorded, and when the optical waveguide is used as a file memory like a magnetic tape for a computer, file information is recorded and reproduced.

第5図は本発明光記録再生装置の光ディスクでの一実施
例を示し、41は光再生へラドアーム、42は支持バネ
、43は光デイスク基盤材である。光導波路記録媒体5
は各々光導波路基板6に第5図示の様に光ディスクの中
心より放射状に配置した。
FIG. 5 shows an embodiment of an optical disc of the optical recording/reproducing apparatus of the present invention, where 41 is an optical reproducing arm, 42 is a support spring, and 43 is an optical disc base material. Optical waveguide recording medium 5
are arranged radially from the center of the optical disk as shown in FIG. 5 on the optical waveguide substrate 6.

光再生ヘッドアーム41は、再生用半導体レーザ発振器
ヘッド37と、 1次元に配列した複数個の半導体光検
出器を支持した光検出器支持材21と該支持材21を支
持した光検出器位置決め機構部38 、38 ’とによ
り構成されている。
The optical reproducing head arm 41 includes a reproducing semiconductor laser oscillator head 37, a photodetector support member 21 that supports a plurality of semiconductor photodetectors arranged one-dimensionally, and a photodetector positioning mechanism that supports the support member 21. 38 and 38'.

本実施例の光ディスクでは、予め光導波路記録媒体5に
光記録がなされており、再生専用の装置である。−個の
光導波路記録媒体5の記録部の長さは30s■で、第1
図記載の項で記述した半導体光検出器の装置の構成を用
いて再生がなされる。光導波路記録部の最終端には光吸
収あるいは光漏れ部さらには反射部等を設ける。  本
実施例では光導波路記録媒体5を、光デイスク円盤に放
射状に配置するため、内周より外周での該記録媒体導波
路間の空隙がひろがり、光デイスク基盤に無駄が生じる
欠点があった。光導波路記録媒体5を曲線状にして巴形
に配置することもできるが空隙を全くなくすのは困難で
ある。
In the optical disc of this embodiment, optical recording has been made in advance on the optical waveguide recording medium 5, and the optical disc is a reproduction-only device. - The length of the recording section of the optical waveguide recording medium 5 is 30 s■, and the length of the first
Regeneration is performed using the configuration of the semiconductor photodetector device described in the section with figures. A light absorption or light leakage part, a reflection part, etc. are provided at the final end of the optical waveguide recording part. In this embodiment, since the optical waveguide recording medium 5 is arranged radially on the optical disk disk, the gap between the recording medium waveguides is wider at the outer circumference than at the inner circumference, resulting in waste of the optical disk substrate. Although the optical waveguide recording medium 5 can be arranged in a curved shape, it is difficult to completely eliminate voids.

そのような欠点をなくした本発明光記録再生装置のエン
ドレステープでの一実施例を第61!Iに示す。第6図
で、44は光記録媒体エンドレステープ、46.46’
はテープ回転支持棒、47.47’はテープ案内棒、4
8はテープ位置決め回転支持棒である。
An example of an endless tape of the optical recording/reproducing apparatus of the present invention that eliminates such drawbacks is shown in the 61st! Shown in I. In Figure 6, 44 is an optical recording medium endless tape, 46.46'
is the tape rotation support rod, 47.47' is the tape guide rod, 4
8 is a tape positioning rotation support rod.

光導波路記録媒体5は光記録媒体エンドレスチー144
の移動方向に直角に配向して配置しであるので、空隙の
無駄がなく高密度記録が可能となった0本例では、光記
録媒体エンドレステープ44の総長を2601とし、光
導波路記録媒体5の記録部の長さを30m1とし、第1
図記載の光記録方法で1個のビット当りの面積を1x2
μs2としたので、総記録容量は3.9ギガビツトであ
る。再生の方法は、第5図記載の光再生へラドアーム4
1を第6図に点線で記載したように配置して、光導波路
記録媒体5に記録された情報を再生する。
The optical waveguide recording medium 5 is an optical recording medium Endreschi 144.
In this example, the total length of the optical recording medium endless tape 44 is set to 260 mm, and the optical waveguide recording medium 5 The length of the recording section is 30m1, and the first
The area per bit is 1x2 using the optical recording method shown in the figure.
Since it is μs2, the total recording capacity is 3.9 gigabits. The regeneration method is as follows:
1 are arranged as indicated by dotted lines in FIG. 6, and information recorded on the optical waveguide recording medium 5 is reproduced.

第7図は本発明光記録再生装置の光カードでの一実施例
で、49は光カード基盤材である。先導波路記録媒体5
は光導波路基板6に複数個並置され、光カード基盤材4
9に固着しである。光カードに於ける光記録再生装置は
第4図記載の記録再生の装置を光カードの光導波路記録
媒体5の配置に合わせて構成する。光カードの記録部の
総面積を、たとえば30x50畷■として、前記に準じ
て記録し、記録容量750メガビツトが実現できる。
FIG. 7 shows an embodiment of an optical card of the optical recording/reproducing apparatus of the present invention, and 49 is an optical card base material. Leading waveguide recording medium 5
are arranged in parallel on the optical waveguide substrate 6, and the optical card base material 4
It is fixed at 9. The optical recording/reproducing device for the optical card is configured by the recording/reproducing device shown in FIG. 4 in accordance with the arrangement of the optical waveguide recording medium 5 of the optical card. By setting the total area of the recording section of the optical card to, for example, 30 x 50 square meters and recording according to the above method, a recording capacity of 750 megabits can be achieved.

〔効果] 以上から明らかなように、本発明光記録再生装置では、
従来の光ディスクなどにおける光反射方式と異なる原理
にもとすき、光導波路を記録媒体として導波光の屈折率
不連続部よりの散乱の有無を、複数の光検出器により同
時に並列に再生することを特徴とするため、現在の光記
録再生装置を越える性能の装置を提供できる。
[Effects] As is clear from the above, the optical recording and reproducing apparatus of the present invention has the following effects:
Based on a principle different from the light reflection method used in conventional optical discs, etc., we used an optical waveguide as a recording medium to simultaneously reproduce the presence or absence of scattering of guided light from refractive index discontinuities using multiple photodetectors in parallel. Because of these characteristics, it is possible to provide a device with performance exceeding that of current optical recording and reproducing devices.

しかも、記録時には、専用の記録用半導体レーザ発振器
のみを走行ヘッドにするため、大幅な小型化と軽量化で
高速アクセスができる特徴がある。
Moreover, during recording, only a dedicated recording semiconductor laser oscillator is used as the traveling head, so it has the advantage of being significantly smaller and lighter, and capable of high-speed access.

さらに、再生時には、所定の記録部の再生信号について
は、従来装置に比べ、数桁以上の高速再生サイクルが実
現でき、高密度記録も可能で安価で信頼性の高い、コン
ピュータ一対応光デジタル記録再生装置やハイビジョン
対応ビデオ記録再生装置、大容量光カード記録再生装置
等を提供できる特徴がある。
Furthermore, during playback, the playback signal of a predetermined recording section can achieve a playback cycle several orders of magnitude faster than conventional devices, and is capable of high-density recording, as well as inexpensive and highly reliable computer-compatible optical digital recording. It is characterized by being able to provide playback devices, high-definition video recording and playback devices, large-capacity optical card recording and playback devices, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光記録再生装置の原理図、第2図は光導
波路記録媒体5の平面図、第3図は波長多重光導波路記
録媒体の側断面図、第4図は本発明光記録再生装置の光
デジタルテープでの一実施例を示す構成図、 第5図は本発明光記録再生装置の光ディスクでの一実施
例を示す構成図、 第6図は本発明光記録再生装置のエンドレステープでの
一実施例を示す構成図、 第7図は本発明光記録再生装置の光カード記録媒体の一
例図 第8図は従来の元肥8媒体の例を示す平面図、第9図は
従来の光記録再生装置の構成例を示す線図である。 ・・・再生用半導体レーザ、 2 ・・・集光レンズ、 3 トレーザビーム、 4 ・・・光結合部、 5 ・・・光導波路記録媒体、 6 ・・・光導波路基板、 7 ・・・導波光、 8 ・−・光記録部材、 9.91,9111  ・・・屈折率不連続記録部、1
3.13’、+3”  ・・・散乱光、16   ・・
・未記録部。 17.17’、+7”、17LL’  ・・・光検出器
、21  ・・・光検出器支持亭才、 22I・・フォトケミカルホールバーニング材、 23.23’、23′′、23”’ ・・・フォトケミカルホール バーニング部、 27  ・・・光デジタルテープ、 28.28’・・・該テープ繰り出し回転支持棒、30
.30’・・・該テープ繰り込み回転支持棒、32  
・・・記録専用半導体レーザ発振器へ ラド33  ・
・・ヘッド走行支持機、 34 、34 ’  ・・・回転支持具、35.35″
  ・・・支持台、 37  ・・・再生用半導体レーザ発振器ヘフド、38
 、38 ’  ・拳・光検出器位置決め機構部、40
   ・・・支持具、 5.5’、5”・・・光導波路記録媒体41  ・・・
光再生へラドアーム、 4211・・支持バネ、 43  ・・・光デイスク基盤材、 44  ・・・光記録媒体エンドレステープ、46.4
6’・・・テープ回転支持棒、47.47’・・・テー
プ案内棒、 48  ・・・テープ位置決め回転支持棒、・争・光カ
ード基盤材。 +00  ・・・光記録媒体、 101  ・・・光反射の低い凹部、 102  ・・φ光反射率の高い平坦部、+03  ・
・・移動方向矢印、 111  ・・・半導体レーザ、 112−115  ・φφレンズ、 116  ・・・フォーカスアクチュエータ、117.
118 −φ・ハーフミラ− 119・Φ・l/2波長板、 120  ・・・整形プリズム、 121−123  ・・・光検出器、 124  ・・・レーザビーム記録媒体、125  ・
・・プリズムビームスプリッタ。 126  ・・・装置一体 第1図 図面の浄2:
FIG. 1 is a principle diagram of the optical recording and reproducing apparatus of the present invention, FIG. 2 is a plan view of the optical waveguide recording medium 5, FIG. 3 is a side sectional view of the wavelength multiplexing optical waveguide recording medium, and FIG. 4 is the optical recording medium of the present invention. FIG. 5 is a block diagram showing an embodiment of the optical recording and reproducing apparatus of the present invention for an optical disc; FIG. 6 is an endless diagram of the optical recording and reproducing apparatus of the present invention. FIG. 7 is a diagram showing an example of an optical card recording medium of the optical recording/reproducing apparatus of the present invention; FIG. 8 is a plan view showing an example of a conventional 8-media medium; FIG. 9 is a diagram of a conventional optical card recording medium. FIG. 2 is a diagram showing an example of the configuration of an optical recording/reproducing device. ... Semiconductor laser for reproduction, 2 ... Condensing lens, 3 Laser beam, 4 ... Optical coupling section, 5 ... Optical waveguide recording medium, 6 ... Optical waveguide substrate, 7 ... Waveguide light, 8 --- Optical recording member, 9.91,9111 --- Refractive index discontinuous recording section, 1
3.13', +3"...scattered light, 16...
・Unrecorded section. 17.17', +7'', 17LL'...Photodetector, 21...Photodetector support plate, 22I...Photochemical hole burning material, 23.23', 23'', 23'''・... Photochemical hole burning section, 27 ... Optical digital tape, 28.28' ... Tape feeding rotation support rod, 30
.. 30'...The tape retraction rotation support rod, 32
...to the recording-only semiconductor laser oscillator RAD33 ・
・・Head traveling support device, 34, 34′ ・・Rotating support device, 35.35″
...Support stand, 37 ...Semiconductor laser oscillator for reproduction Hefd, 38
, 38' - Fist/photodetector positioning mechanism section, 40
... Support, 5.5', 5" ... Optical waveguide recording medium 41 ...
Radar arm for optical reproduction, 4211... Support spring, 43... Optical disk base material, 44... Optical recording medium endless tape, 46.4
6'...Tape rotation support rod, 47.47'...Tape guide rod, 48...Tape positioning rotation support rod, ・Optical card base material. +00...Optical recording medium, 101...Concave portion with low light reflection, 102...Flat portion with high φ light reflectance, +03.
... Movement direction arrow, 111 ... Semiconductor laser, 112-115 - φφ lens, 116 ... Focus actuator, 117.
118 -φ half mirror 119 φ・l/2 wavelength plate, 120 ... shaping prism, 121-123 ... photodetector, 124 ... laser beam recording medium, 125
...Prism beam splitter. 126 ...Drawing 2 of the device integrated Figure 1:

Claims (1)

【特許請求の範囲】 1)光導波路外への漏れ導波光である光散乱を生じる微
小な屈折率不連続部の有無を、記録すべき情報に応じて
光導波路に複数個配列し設けた記録部を有する光導波路
記録媒体と、 該記録媒体である光導波路の一部に設けた光結合部に対
向して配置したレーザ発振装置と、該記録媒体である光
導波路の記録部に対向して配置した該散乱光を受光する
光検出器と、 それぞれを支持する部材とを具備したことを特徴とする
光記録再生装置。 2)特許請求の範囲第1項記載の光記録再生装置におい
て、該記録媒体である光導波路の記録部を所定の長さと
し、テープやディスクあるいはカード基板に該光導波路
を複数個配置し、その一つの該光導波路の前記光結合部
より、前記レーザ発振装置よりの光を導波し、該光導波
路の屈折率不連続部が導波光の一部を散乱して該散乱光
の輝点となることを利用し、該光導波路の所定の長さ内
にある輝点の有無の数に等しい複数の光検出器を光導波
中の記録部に対向して配置し、輝点の有無に応じ各光検
出器からの出力がオン、オフあるいは増減することによ
り、該光導波路記録媒体に記録された情報を再生し、次
に当該基板あるいは前記レーザ発振装置と光検出器を移
動し、異なる該光導波路より同様に逐次再生して行くこ
とを特徴とする光記録再生装置。 3)特許請求の範囲1項記載の光記録再生装置において
、記録時には、記録専用付加レーザ発掘装置を具備し、
あるいは前記レーザ発掘装置を併用し、そのレーザ出力
を記録すべき情報に応じ変調し、前記記録媒体に屈折率
不連続部の有無として記録し、再生時には、特許請求の
範囲第2項記載の再生方法にて前記記録された情報を再
生することを特徴とする光記録再生装置。 4)特許請求の範囲1項記載の光記録再生装置において
、光導波路中の屈折率不連続部の配列を全て輝点となる
ように予め作った光導波路の輝点面にフォトケミカルホ
ールバーニングを生じる材料を設け、記録時には、可変
波長レーザ発掘装置あるいは波長の異なる複数のレーザ
発振装置を用い、記録すべき情報に応じ各波長毎に当該
光導波路の輝点面に相当する部分の該材料を照射し、フ
ォトケミカルホールバーニングを生じせしめ、波長多重
記録を行い、再生時には、記録時に用いたと同じ複数の
波長を発するレーザ発掘装置よりの光を各波長毎に当該
光結合部より導波せしめ、依って各輝点よりの光が該材
料のフォトケミカルホールバーニングの有無に応じて透
過あるいは吸収となるを、特許請求の範囲第2項記載の
再生の方法と同様に対向して配置した複数の光検出器で
検出し、記録された情報を各波長毎に多重に再生するこ
とを特徴とする光記録再生装置。
[Claims] 1) Recording of the presence or absence of minute refractive index discontinuities that cause light scattering, which is guided light leaking out of the optical waveguide, by arranging a plurality of them in the optical waveguide according to the information to be recorded. an optical waveguide recording medium having a section, a laser oscillation device disposed facing an optical coupling section provided in a part of the optical waveguide which is the recording medium, and a laser oscillation device disposed facing the recording section of the optical waveguide which is the recording medium. An optical recording and reproducing device comprising: a disposed photodetector that receives the scattered light; and a member that supports each of the photodetectors. 2) In the optical recording/reproducing device according to claim 1, the recording portion of the optical waveguide serving as the recording medium has a predetermined length, and a plurality of the optical waveguides are arranged on a tape, a disk, or a card substrate, and The light from the laser oscillation device is guided through the optical coupling part of one of the optical waveguides, and the refractive index discontinuity of the optical waveguide scatters a part of the guided light to form a bright spot of the scattered light. Taking advantage of the fact that The information recorded on the optical waveguide recording medium is reproduced by turning on, off, or increasing or decreasing the output from each photodetector, and then the substrate or the laser oscillation device and the photodetector are moved, and a different An optical recording and reproducing device characterized by sequentially reproducing data from an optical waveguide. 3) In the optical recording and reproducing apparatus according to claim 1, when recording, an additional laser excavation device exclusively for recording is provided,
Alternatively, the laser excavation device is used in combination, the laser output is modulated according to the information to be recorded, and the presence or absence of the refractive index discontinuity is recorded on the recording medium, and at the time of reproduction, the reproduction according to claim 2 An optical recording/reproducing apparatus characterized in that the recorded information is reproduced by a method. 4) In the optical recording/reproducing device according to claim 1, photochemical hole burning is performed on the bright spot surface of the optical waveguide, which is prepared in advance so that all the refractive index discontinuous parts in the optical waveguide are arranged as bright spots. At the time of recording, a variable wavelength laser excavation device or multiple laser oscillation devices with different wavelengths are used to extract the material in the portion corresponding to the bright spot surface of the optical waveguide for each wavelength according to the information to be recorded. irradiate to cause photochemical hole burning, perform wavelength multiplexing recording, and at the time of reproduction, light from a laser excavation device that emits the same multiple wavelengths as used during recording is guided through the optical coupling part for each wavelength, Therefore, the light from each bright spot is transmitted or absorbed depending on the presence or absence of photochemical hole burning in the material. An optical recording and reproducing device that detects information using a photodetector and multiplexes and reproduces recorded information for each wavelength.
JP63315522A 1988-12-13 1988-12-13 Optical recording medium and optical recording / reproducing device Expired - Fee Related JP2960426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315522A JP2960426B2 (en) 1988-12-13 1988-12-13 Optical recording medium and optical recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315522A JP2960426B2 (en) 1988-12-13 1988-12-13 Optical recording medium and optical recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH02210626A true JPH02210626A (en) 1990-08-22
JP2960426B2 JP2960426B2 (en) 1999-10-06

Family

ID=18066356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315522A Expired - Fee Related JP2960426B2 (en) 1988-12-13 1988-12-13 Optical recording medium and optical recording / reproducing device

Country Status (1)

Country Link
JP (1) JP2960426B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546992A (en) * 1991-08-14 1993-02-26 Sharp Corp Optical reproducing device
US5218594A (en) * 1990-03-08 1993-06-08 Pioneer Electric Corporation Recording medium with an optical waveguide and player for playing the same
EP0556260B1 (en) * 1990-11-08 1999-07-14 BRITISH TELECOMMUNICATIONS public limited company Optical memory
US6556531B1 (en) 1998-02-16 2003-04-29 Nippon Telegraph And Telephone Corporation Multi-layered holographic read-only memory and data retrieval method
US6654532B1 (en) 1998-07-07 2003-11-25 Nippon Telegraph And Telephone Corporation Read-only laminated information recording medium and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218594A (en) * 1990-03-08 1993-06-08 Pioneer Electric Corporation Recording medium with an optical waveguide and player for playing the same
EP0556260B1 (en) * 1990-11-08 1999-07-14 BRITISH TELECOMMUNICATIONS public limited company Optical memory
JPH0546992A (en) * 1991-08-14 1993-02-26 Sharp Corp Optical reproducing device
US6556531B1 (en) 1998-02-16 2003-04-29 Nippon Telegraph And Telephone Corporation Multi-layered holographic read-only memory and data retrieval method
US6811728B2 (en) 1998-02-16 2004-11-02 Nippon Telegraph & Telephone Corporation Multi-layered holographic read-only memory and data retrieval method
US7570567B2 (en) 1998-02-16 2009-08-04 Nippon Telegraph And Telephone Multi-layered holographic read-only memory and data retrieval method
US6654532B1 (en) 1998-07-07 2003-11-25 Nippon Telegraph And Telephone Corporation Read-only laminated information recording medium and manufacturing method therefor

Also Published As

Publication number Publication date
JP2960426B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US5218594A (en) Recording medium with an optical waveguide and player for playing the same
US5493561A (en) Optical information recording medium and information recording and reproducing method thereof
CA2079620A1 (en) Holographic elements for an optical recording system
JPH0248983B2 (en)
JPH0518186B2 (en)
JPS6247841A (en) Storage carrier for optical information
JPH0581977B2 (en)
JPH02210626A (en) Optical recording and reproducing device
US5684781A (en) Optical pickup for recording/reproducing double-sided disc
KR100813942B1 (en) Method for high rate optical recording and apparatus thereof
JPH02244445A (en) Optical information recording medium and optical information recording and reproducing device
JPS6093646A (en) Recording and reproducing device of optical memory
JPS59193556A (en) Optical card
JPH02210627A (en) Optical recording and reproducing device
JPS5971143A (en) Optical recorder and reproducer
JPH01273230A (en) Optical recording and reproducing device
JPS63117336A (en) Optical recording and reproducing device
JP2783523B2 (en) Master recording method and recording / reproducing method of information recording medium
KR100378601B1 (en) Optical multi-recording apparatus using solid immersion lens
JPS61192047A (en) Optical disc
JPH0469819A (en) Optical disk device
JPS60197935A (en) Erasable optical recording and reproducing device
JPH0721882B2 (en) Magneto-optical recording / reproducing device
JPS60171639A (en) Tracking device of optical head
JPH0335428A (en) Information recorder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees