JPH02210627A - Optical recording and reproducing device - Google Patents

Optical recording and reproducing device

Info

Publication number
JPH02210627A
JPH02210627A JP63315523A JP31552388A JPH02210627A JP H02210627 A JPH02210627 A JP H02210627A JP 63315523 A JP63315523 A JP 63315523A JP 31552388 A JP31552388 A JP 31552388A JP H02210627 A JPH02210627 A JP H02210627A
Authority
JP
Japan
Prior art keywords
optical
recording
light
optical waveguide
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63315523A
Other languages
Japanese (ja)
Other versions
JPH0810491B2 (en
Inventor
Naohiro Tanno
直弘 丹野
Hitoshi Kawaguchi
仁司 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63315523A priority Critical patent/JPH0810491B2/en
Publication of JPH02210627A publication Critical patent/JPH02210627A/en
Publication of JPH0810491B2 publication Critical patent/JPH0810491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To reproduce a presence/absence signal as to the reflection of light from a pulse laser oscillation device by arraying fine refractive index discontinuous parts where reflected waveguide light is generated in an optical waveguide according to information to the recorded and guiding the light from a pulse laser oscillation device. CONSTITUTION:Laser light pulses are converted by a microlens 41 on the end surface of the waveguide and guided to one channel optical waveguide. The width and intervals of respective channel type optical waveguides are set typically to about 1mum. When a response of 0.5 picosecond is considered on the whole system, refractive index discontinuous parts are at intervals of 50mum and recording of 1Mbit/cm<2> is enabled; when the length of the optical waveguide is 5cm, one light pulse is inputted to read information of 1,000 bit in an extremely short time of 0.7ns. The information recorded in one optical waveguide is read out and then a substrate where many optical waveguides are arrayed or the laser oscillator and an optical detector are moved to read recording information of a next channel out.

Description

【発明の詳細な説明】 [技術分野] 本発明は、反射導波光を生じる屈折率不連続部の有無に
より情報を記録する光導波路を用い、光パルスを導波し
、その反射光パルスから情報を再生する光記録再生装置
に間するものである。
Detailed Description of the Invention [Technical Field] The present invention uses an optical waveguide that records information depending on the presence or absence of a refractive index discontinuity that produces reflected guided wave light, guides a light pulse, and extracts information from the reflected light pulse. It is used in an optical recording and reproducing device for reproducing.

[従来技術] 従来の光記録再生装置は第5図に示すように構成されて
いる。ここで11は半導体レーザ、12〜15はレンズ
、16はフォーカスアクチュエータに設置された集光レ
ンズ、17および18はハーフミラ−19は I/2波
長板、20は整形プリズム、21〜23は光検出器、2
4はレーザビーム記録媒体、たとえばディスク、25は
プリズムによるビームスプリッタであ る。
[Prior Art] A conventional optical recording/reproducing apparatus is configured as shown in FIG. Here, 11 is a semiconductor laser, 12 to 15 are lenses, 16 is a condenser lens installed on the focus actuator, 17 and 18 are half mirrors, 19 is an I/2 wavelength plate, 20 is a shaping prism, and 21 to 23 are photodetectors. vessel, 2
4 is a laser beam recording medium, such as a disk, and 25 is a beam splitter using a prism.

半導体レーザ11からの光は、レンズ12)整形プリズ
ムに、ハーフミラ−17および集光レンズ16を介して
記録媒体24に入射して、記録が行われる。
The light from the semiconductor laser 11 is incident on the recording medium 24 through the lens 12) shaping prism, the half mirror 17, and the condensing lens 16, and recording is performed.

その記録の形態としでは、レーザ光のエネルギーにより
、穴をあけたり、結晶−非結晶状態の相変態を利用する
ことによって、光照射による記録媒体の反射率を変化さ
せて情報を書き込む場合と、磁気バイアスを磁気媒体に
加えておき、レーザ光のオン/オフにより磁化を反転さ
せて情報を書き込む場合とがある。
As for the recording format, information is written by changing the reflectance of the recording medium by light irradiation by making holes with the energy of laser light or by utilizing phase transformation between crystalline and non-crystalline states. In some cases, information is written by applying a magnetic bias to a magnetic medium and reversing the magnetization by turning on and off a laser beam.

従来の光記録媒体は第6図に示すように構成されている
。ここで光記録媒体lOOは、記録媒体を基板として、
基板面に記録された光反射率の低い凹部101と光反射
率の高い平坦部+02を線上に配列し、矢印103の方
向に記録媒体を移動しつつ、記録再生を行うように構成
されている。かかる平坦部102と凹81sIO+より
の光反射率の比は、高々1対 0.3〜0.5程度であ
り光強度の信号対雑音比は決してよくなく改良も困難で
ある。また、このような記録媒体+00では、再生時に
は各凹部101あるいは平坦部102毎に半導体レーザ
を集束照射して、反射光を検出し、記録媒体100の移
動によってのみ時系列信号が再生され、記録媒体100
の移動速度によって再生さらには記録のアクセス時間が
制限されて、高速アクセスが困難であった。
A conventional optical recording medium is constructed as shown in FIG. Here, the optical recording medium lOO uses a recording medium as a substrate,
Concave portions 101 with low light reflectance and flat portions +02 with high light reflectance recorded on the substrate surface are arranged on a line, and recording and reproduction is performed while moving the recording medium in the direction of arrow 103. . The ratio of the light reflectance between the flat portion 102 and the concave portion 81sIO+ is at most about 1:0.3 to 0.5, and the signal-to-noise ratio of light intensity is by no means good and is difficult to improve. In addition, in such a recording medium +00, during reproduction, a semiconductor laser is focused on each concave portion 101 or flat portion 102, reflected light is detected, and the time-series signal is reproduced only by movement of the recording medium 100, and the recording is performed. medium 100
The access time for playback and recording is limited by the moving speed of the player, making high-speed access difficult.

ここで、レーザビーム記録媒体24が穴あけ記録媒体や
相変l形媒体などのように、反射率変化として情報を記
録する媒体である場合には、ディスク24からの反射光
が光検出器21で検出される。
Here, if the laser beam recording medium 24 is a medium that records information as a change in reflectance, such as a perforated recording medium or a phase change l-shaped medium, the reflected light from the disk 24 is detected by the photodetector 21. Detected.

他方、レーザビーム記録媒体24が光磁気ディスクなど
のように磁化反転として情報を記録する媒体では、記録
部による反射光偏光面の回転をアナライザであるプリズ
ムビームスプリッタ25で分離し、その分離された光を
光検出器22および23の差動出力で検出する。
On the other hand, in a medium where the laser beam recording medium 24 records information as magnetization reversal, such as a magneto-optical disk, the rotation of the polarization plane of the reflected light by the recording section is separated by the prism beam splitter 25, which is an analyzer, and the separated Light is detected by differential outputs of photodetectors 22 and 23.

このような記録再生時には、以上の装置をレーザビーム
記録媒体24の面振れに追随させるために、フォーカス
誤差信号に従って集光レンズ16等を光軸方向に移動さ
せて合焦させている。
During such recording and reproduction, in order to cause the above-mentioned device to follow the surface deflection of the laser beam recording medium 24, the condenser lens 16 and the like are moved in the optical axis direction in accordance with the focus error signal to focus.

このような従来方式では、(1)ビットによる光反射方
式を用いているため記録媒体の一点の記録部毎に合焦を
必要とし、光信号の信号対雑音比が悪く、信頼性に劣る
In such a conventional method, (1) since a light reflection method using bits is used, it is necessary to focus on each recorded portion of a recording medium, and the signal-to-noise ratio of the optical signal is poor, resulting in poor reliability.

(ii)  記録媒体の一点の記録部毎に光信号を再生
するため、記録媒体の移動によってのみ時系列信号が再
生され、記録媒体の移動速度によってサイクル時間が制
限される。
(ii) Since the optical signal is reproduced for each recorded portion of the recording medium, the time-series signal is reproduced only by the movement of the recording medium, and the cycle time is limited by the moving speed of the recording medium.

(l1i)  個別の光学部品と機構部品とを絹み合わ
せているため、光軸調整等に時間がかかる他、信頼性に
劣る。
(l1i) Since individual optical components and mechanical components are interwoven, it takes time to adjust the optical axis, and the reliability is poor.

(iv)装置が大型であり、重いため、高速アクセス化
やマルチヘッド化がむずかしいなどの問題点があった。
(iv) Since the device is large and heavy, there are problems such as high-speed access and multi-head configuration are difficult.

[目的] 本発明はこれらの欠点を解決し、大量の情報を超高速で
一括に読み出すことができる光記録再生装置を提供する
ため、反射導波光を生じる微小な屈折率不連続部を、記
録すべき情報に応じて光導波路中に複数個配列し、パル
スレーザ発掘装置からの光を導波し、その反射の有無的
信号を再生するものであり、以下図面について詳細に説
明する。
[Purpose] The present invention solves these drawbacks and provides an optical recording/reproducing device that can read a large amount of information all at once at ultra-high speed. A plurality of them are arranged in an optical waveguide according to the information to be obtained, guide the light from the pulse laser excavation device, and reproduce the presence/absence signal of the reflection.The drawings will be described in detail below.

[発明の構成] 第11!Iは本発明を説明する原理図であフて、30は
光導波路のコア部、31は光導波路のクラッド層となる
基板、32は空気またはクラッド層となる膜、33は記
録されるべき情報に応じて有無が決められる、入射導波
光に対し反射導波光を生ずる微小な屈折率不連続部であ
る0図に示すように、パルス幅Tのパルスレーザ光を光
導波路の光結合部から光導波路に結合し伝搬させる。屈
折率に不連続部があるとその入射導波光は散乱され一部
は導波光として反射される0図に示すようにこの屈折率
不連続部が記録すべき情報(図では0. 1のデジタル
情報で説明されている)に応じて光導波路中に複数個配
置されていれば、屈折率不連続部間の距離を1、光導波
路の実効屈折率をn、光速なCとすると記録されていた
情報で符号化された t=  2nl/c  の時間間
隔の光パルスが戻ってくることになる。したがって、 
1つの屈折率不連続部の長さがcT/nより短く、パル
ス幅Tがtよりも短ければ、反射光間の重なりはなく、
戻ってきた光パルスを検出することにより記録された情
報を読み出すことが出来る。もちろん複数個の点で往復
反射された光信号も混入するがその振幅は極めて小さく
受光にあるレベル以上のしきい値をもたせることにより
容易にとりのぞくことができる。また、光導波路最終端
に光吸収部あるいは光漏れ部を設け、最終端からの反射
光を無視できるようにできる@   Conferen
ce  on  La5ers   and  Ele
ctroopticsMDI(1987)に開示されて
いるように、色素レーザ装置からの光パルスは6フエム
ト(6X 10−”)秒まで短くなっており、この様な
光パルスを用いれば、実効屈折率をn=2として0.5
μ1間隔に屈折率不連続部を設けても読み出すことがで
きる。小型で装置が簡便な半導体レーザでは今のところ
1ピコ(IX 1G−12)秒程度の光パルスが形成さ
れているにすぎないが、色素レーザと全く同様の手法を
用いて、0.1ピコ秒以下の光パルスは将来容易に形成
されるようになる。
[Structure of the invention] Eleventh! I is a principle diagram explaining the present invention, 30 is a core part of an optical waveguide, 31 is a substrate that becomes a cladding layer of the optical waveguide, 32 is air or a film that becomes a cladding layer, and 33 is information to be recorded. As shown in Figure 0, a pulsed laser beam with a pulse width T is optically guided from the optical coupling part of the optical waveguide. It couples to the wave path and propagates. When there is a discontinuity in the refractive index, the incident guided light is scattered and some of it is reflected as guided light.As shown in the figure, this refractive index discontinuity has the information to be recorded (in the figure, it is a digital signal of 0.1). If the distance between the refractive index discontinuities is 1, the effective refractive index of the optical waveguide is n, and the speed of light is C, it will be recorded. The optical pulses encoded with the information obtained at time intervals of t=2nl/c will be returned. therefore,
If the length of one refractive index discontinuity is shorter than cT/n and the pulse width T is shorter than t, there is no overlap between the reflected lights,
The recorded information can be read by detecting the returned light pulses. Of course, optical signals reflected back and forth at a plurality of points are also mixed in, but their amplitude is extremely small and can be easily removed by providing a threshold of a certain level or higher for light reception. In addition, by providing a light absorption part or a light leakage part at the final end of the optical waveguide, it is possible to ignore the reflected light from the final end.
ce on La5ers and Ele
As disclosed in ctrooptics MDI (1987), light pulses from dye laser devices are as short as 6 femto (6X 10-'') seconds, and such light pulses can be used to reduce the effective refractive index to n= 0.5 as 2
Reading can be performed even if refractive index discontinuities are provided at intervals of μ1. Currently, light pulses of about 1 pico (IX 1G-12) seconds can be generated using semiconductor lasers, which are small and have simple equipment; Subsecond light pulses will become easier to form in the future.

次に記録媒体となる光導波路の材料と屈折率不連続部の
作製法について説明する0本発明では光導波路を作成す
る必要があるので、例えばガラス基板上に、基板よりも
屈折率が大きく、レーザ光に対し透明なPMMA等の高
分子材料、屈折率の大きなガラス、AS2S3等のカル
コゲナイド材料、TeOx等の半導体材料を約1μII
FJ付加したものが用いられている。基板として、導波
路よりも屈折率の小さい高分子材料等を用いることがで
きることは言うまでもない、屈折率の不連続部を形成す
る方法としては微小なビットを形成したり、As25s
やTeOにの相変化による屈折率変化を用いることがで
きる。
Next, we will explain the material of the optical waveguide, which is the recording medium, and the method of manufacturing the refractive index discontinuity.In the present invention, it is necessary to create an optical waveguide, so for example, it is necessary to create an optical waveguide on a glass substrate, which has a higher refractive index than the substrate. Polymer materials such as PMMA that are transparent to laser light, glass with a high refractive index, chalcogenide materials such as AS2S3, and semiconductor materials such as TeOx are used at approximately 1 μII.
Those with FJ added are used. It goes without saying that a polymer material with a refractive index smaller than that of the waveguide can be used as the substrate.Methods for forming the refractive index discontinuity include forming minute bits,
A change in refractive index due to a phase change in TeO or TeO can be used.

本構成例では、光記録部となる屈折率不連続部を光導波
路のコア部に設ける場合を示したが、クラッド層に設け
ても本原理と同じ効果が実現できる。
In this configuration example, a case has been shown in which the refractive index discontinuity portion serving as the optical recording portion is provided in the core portion of the optical waveguide, but the same effect as the present principle can be achieved even if the refractive index discontinuity portion is provided in the cladding layer.

[実施例] 第2図は本発明の実施例であって、40は前記光導波路
をチャネル型にし、光ディスクあるいは光カード基板に
多数並置したもの、41は光導波路への結合用マイクロ
レンズ、42は高速の光受光器、43はビームスプリッ
タである。レーザ光パルスはマイクロレンズ41で導波
路端面に集光され1つのチャネル光導波路に導波される
。各チャネル型光導波路の幅及び間隔は典型的には約1
uwに選ばれている。また、高速の光受光器としては例
えばUSA l988 Annual Meeting
 TaF5に開示されている 0.5ピコ秒の応答速度
をもつ光半導体受光器を用いることができる。全体のシ
ステムとして0.5ピコ秒の応答を考えると屈折率の不
連続部の間隔は50μ麿となり、lNb1t/c■2の
記録が可能となり、光導波路の長さを 5c爾とすると
1つの光パルスを入れることにより1000bitの情
報がO,Tnsという極めて短い時間内に読み出すこと
ができる。 1つの光導波路の記録している情報を読み
だしたのち、先導波路を多数並置した基板またはレーザ
発振器と光検出器が移動することにより次のチャネルの
記録情報を逐次読み出すことができる。
[Embodiment] FIG. 2 shows an embodiment of the present invention, in which 40 the optical waveguide is made into a channel type and a large number of them are arranged side by side on an optical disk or optical card substrate, 41 is a microlens for coupling to the optical waveguide, and 42 is a high-speed optical receiver, and 43 is a beam splitter. The laser light pulse is focused on the end face of the waveguide by the microlens 41 and guided into one channel optical waveguide. The width and spacing of each channel-type optical waveguide is typically about 1
Selected by uw. In addition, as a high-speed optical receiver, for example, the USA 1988 Annual Meeting
An optical semiconductor photodetector with a response speed of 0.5 picoseconds as disclosed in TaF5 can be used. Considering a 0.5 picosecond response for the entire system, the interval between the refractive index discontinuities will be 50 μm, making it possible to record lNb1t/c2, and assuming the length of the optical waveguide to be 5c2, one By inputting a light pulse, 1000 bits of information can be read out within an extremely short time of O, Tns. After reading out the information recorded in one optical waveguide, the recorded information in the next channel can be sequentially read out by moving the substrate on which many guiding waveguides are arranged side by side, or the laser oscillator and the photodetector.

本説明では光結合部として光導波路の端面に直接集光す
る場合について述べたが、導波路上に作製したテーパー
や回折格子等ももちろん用いることができる。
In this explanation, a case has been described in which light is directly focused on the end face of an optical waveguide as an optical coupling part, but of course a taper, a diffraction grating, etc. fabricated on the waveguide can also be used.

第31!Iは本発明の他の実施例であり、50は積層ド
ラム型光記録媒体、51はレンズ、52は受光器、53
はビームスプリッタ、54は再生用レーザ発振器である
。積層ドラム型光記録媒体50は、屈折率の不連続によ
り情報を記録した光導波路を付加したテープが重ね合わ
され3次元メモリを構成している。 1枚のテープの厚
みを1μ■、光導波部を横方向と同様に1μ麿とすれば
、5Gb+t/cm’の3次元メモリが実現されること
になる0例えば、直径160m画厚み20■冒のドラム
ではおよそ2000Gbitとなる。再生時には、各光
導波路端面光結合部に、レーザビームを集光して記録さ
れた情報を呼び出し、ドラム50を回転して逐次信号を
再生して行く。
31st! I is another embodiment of the present invention, 50 is a laminated drum type optical recording medium, 51 is a lens, 52 is a light receiver, 53
54 is a beam splitter, and 54 is a reproduction laser oscillator. The laminated drum type optical recording medium 50 constitutes a three-dimensional memory in which tapes having optical waveguides on which information is recorded due to discontinuity of refractive index are superimposed. If the thickness of one tape is 1 μm and the optical waveguide is 1 μm thick in the same way as in the lateral direction, a 3D memory of 5 Gb + t/cm' will be realized. drum has approximately 2000 Gbit. At the time of reproduction, a laser beam is focused on each optical waveguide end face optical coupling portion to retrieve the recorded information, and the drum 50 is rotated to sequentially reproduce the signal.

第4図は本発明のさらに他の実施例で、積層板型光記録
再生装置の構成を示し、60は記録用レーザ発信装置、
61.61’はレンズ、62は積層板型3次元光記録媒
体、63は光記録部、64は2連レ一ザビーム発振器、
65はビームスプリッタ、66は複合光検出器である。
FIG. 4 shows still another embodiment of the present invention, showing the configuration of a laminated plate type optical recording and reproducing device, in which 60 is a recording laser transmitter,
61 and 61' are lenses, 62 is a laminate type three-dimensional optical recording medium, 63 is an optical recording section, 64 is a double laser beam oscillator,
65 is a beam splitter, and 66 is a composite photodetector.

積層板型3次元光記録媒体62は第2図に記載のチャネ
ル光導波ga型記録媒体40を配置した光ディスクある
いは光カードを多層にして形成する0本例では、例えば
、積層板型3次元光記録媒体62の立体寸法を5xlO
x1cmとすると、その記録容量は250Gb i t
である。
The laminate type three-dimensional optical recording medium 62 is formed by multilayering optical disks or optical cards in which the channel optical waveguide GA type recording medium 40 shown in FIG. The three-dimensional dimension of the recording medium 62 is 5xlO
x1cm, its recording capacity is 250Gb it
It is.

記録時には、図示のように記録したい層の導波′路の記
録部に記録用レーザビームを合焦して、光導波路に沿っ
て移動しつつ記録部材に相変化などを起こして、屈折率
不連続部を記録すべき情報に応じて記録する。異なる層
に記録するときは、記録用レーザ発振装置60およびレ
ンズ62あるいは積層板型3次元光記録媒体62を上下
して合焦位置を変え、所定の記録を行う0合焦されてい
ない部分は光エネルギー密度が低いので記録され難いこ
とを利用する。
During recording, as shown in the figure, a recording laser beam is focused on the recording part of the waveguide of the layer to be recorded, and as it moves along the optical waveguide, it causes a phase change in the recording member, thereby changing the refractive index. Record the continuous portion according to the information to be recorded. When recording on a different layer, the recording laser oscillation device 60 and lens 62 or the laminated three-dimensional optical recording medium 62 are moved up and down to change the focusing position, and the areas that are not in focus are It takes advantage of the fact that it is difficult to record because the optical energy density is low.

再生時には、本例では、2連レ一ザビーム発振四64を
用い、同時に2つの光導波路に導波して再生光を取り出
し、複合光検出@66を用いて並列高速再生を2つの導
波路毎にアクセスしつつ実現できる。アクセスは2連レ
一ザビーム発振器64および複合光検出器66あるいは
積層板型3次元光記録媒体62を移動しつつ行う、現在
すでに、2〜5連レ一ザビーム半導体発振器は市販され
ており、それらを用いれば3連ビ一ム以上での並列高速
再生も実現できる。
During reproduction, in this example, a double laser beam oscillator 464 is used to simultaneously guide the wave to two optical waveguides to extract the reproduced light, and a composite optical detector @66 is used to perform parallel high-speed reproduction for each of the two waveguides. This can be achieved while accessing. Access is performed while moving the dual laser beam oscillator 64 and the composite photodetector 66 or the laminate-type three-dimensional optical recording medium 62.Currently, two to five laser beam semiconductor oscillators are commercially available. By using , parallel high-speed playback with three or more consecutive beams can be realized.

光導波路材料として前述のように相変化材料等を用いる
ことができるので、第4図記載のように記録専用付加レ
ーザ発振装置を設け、そのレーザ出力を記録すべき情報
に応じ変調し、前記記録媒体に屈折率不連続部の有無と
して記録することにより追記型が、さらに消去ビームを
導入することにより書き換え型も可能となる。
Since a phase change material or the like can be used as the optical waveguide material as described above, an additional laser oscillation device for recording is provided as shown in FIG. 4, and its laser output is modulated according to the information to be recorded. A write-once type is possible by recording the presence or absence of refractive index discontinuities on the medium, and a rewritable type is also possible by further introducing an erasing beam.

[効果] 以上説明したように、本発明の光記録再生装置は一発の
パルス光を入射するのみで大量の情報が超高速で読み出
せる利点をもち、また3次元の高密度メモリが実現でき
る利点をもつので、コンピュータ一対応大容量高速記録
再生装置として、あるいはハイビジョン対応大容量高速
ビデオ再生装置などとして、さらには大容量光カード記
録再生装置として極めて有用な装置を提供できる特徴が
あ る。
[Effects] As explained above, the optical recording/reproducing device of the present invention has the advantage of being able to read out a large amount of information at an ultra-high speed by only inputting a single pulse of light, and can also realize a three-dimensional high-density memory. Because of these advantages, it is possible to provide an extremely useful device as a high-capacity, high-speed recording and reproducing device compatible with computers, a high-capacity, high-speed video reproducing device compatible with high-definition, and furthermore, as a large-capacity optical card recording and reproducing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、 第2図は本発明の一実施例、 第3図は本発明の他の実施例、 第4図は本発明の更に他の実施例、 第5図は従来の光記録再生装置の構成例、第6図は従来
の光記録媒体の例、 30・ 31 番 32・ 33・ ・光導波路コア部、 ・光導波路のクラッド部(基板)、 ・光導波路のクラッド部、 ・屈折率の不連続部、 40・ 41争 43・ ・チャネル光導波路型 ・結合レンズ、 ・受光器、 ・ビームスプリッタ、 記録媒体、 50・ ; 51 ・ 52・ 54φ ・積層ドラム型光記録媒体、 ・レンズ、 ・受光器、 ・ビームスプリッタ、 ・レーザ発振器、 60Φ 61.61’ − 620・ 64・ 65φ 66争 ・記録用レーザ発信装置、 ・レンズ、 ・積層板型3次元光記録媒体、 ・光記録部、 ・2連レ一ザビーム発振器、 ・ビームスプリッタ、 ・複合光検出器、 図面の浄書 11 ・ 12〜15・ 16@ 17、  18会 19・ 20・ 21〜23・ 24・ ・半導体レーザ、 ・レンズ、 ・集光レンズ、 ・ハーフミラ− ・l/2波長板、 ・整形プリズム、 ・光検出器、 ・記録媒体、 ・ビームスプリッタ− 100・ 101 Φ 102 ・ 103Φ ・光記録媒体、 ・光反射率の低い凹部、 ・光反射率の高い平坦部、 ・移動方向矢印である。
FIG. 1 is a detailed explanation of the present invention, FIG. 2 is an embodiment of the present invention, FIG. 3 is another embodiment of the present invention, FIG. 4 is a further embodiment of the present invention, Figure 5 shows an example of the configuration of a conventional optical recording/reproducing device, and Figure 6 shows an example of a conventional optical recording medium. Cladding part of optical waveguide, ・Refractive index discontinuity, 40・41 conflict 43・・Channel optical waveguide type・Coupling lens, ・Photodetector, ・Beam splitter, Recording medium, 50・; 51・52・54φ・Lamination Drum-type optical recording medium, ・Lens, ・Photoreceiver, ・Beam splitter, ・Laser oscillator, 60Φ 61.61' - 620, 64, 65φ 66mm ・Recording laser transmitter, ・Lens, ・Laminated plate type three-dimensional Optical recording medium, ・Optical recording section, ・Double laser beam oscillator, ・Beam splitter, ・Combined photodetector, Drawing engraving 11 ・ 12 - 15 ・ 16 @ 17, 18 Meeting 19 ・ 20 ・ 21 - 23 ・24. ・Semiconductor laser, ・Lens, ・Condensing lens, ・Half mirror, ・l/2 wavelength plate, ・Shaping prism, ・Photodetector, ・Recording medium, ・Beam splitter 100・101 Φ 102 ・ 103Φ ・Light Recording medium, ・Concave portion with low light reflectance, ・Flat portion with high light reflectance, ・Movement direction arrow.

Claims (1)

【特許請求の範囲】 1)光導波路内に反射導波光を生じる微小な屈折率不連
続部の有無を、記録すべき情報に応じて光導波路に複数
個配列し設けた記録部を有する光導波路記録媒体と、 該記録媒体である光導波路の一部に設けた光結合部に対
向して配置したパルスレーザ発振装置および光検出器と
、 それぞれを支持する部材とを具備し、 該光導波路の光結合部より、前記パルスレーザ発掘装置
からの光を光導波路内に導波し、該光導波路の屈折率不
連続部がその入射導波光の一部を反射し、その反射導波
光が伝搬距離に相当する時間の後、光結合部へ戻り、該
光結合部に配置した光検出器により受光され、記録情報
が再生されることを特徴とする光記録再生装置。 2)特許請求の範囲第1項記載の光記録再生装置におい
て、該記録媒体である光導波路の記録部を所定の長さと
し、テープ、カードあるいはディスク基板上に該光導波
路を複数個配置し、その一つの該光導波路の前記光結合
部より、前記パルスレーザ発振装置からの光を導波し、
該光導波路の屈折率不連続部により反射される導波光の
量が増減することにより、該光導波路記録媒体に記録さ
れた情報を再生し、次にテープ、カード、ディスクある
いはパルスレーザ発振装置及び光検出器を移動し、異な
る該光導波路より同様に逐次再生していくことを特徴と
する光記録再生装置。 3)特許請求の範囲第1項記載の光記録再生装置におい
て、光導波路記録媒体が配置されたテープ、ディスクあ
るいはカードが2つ以上積層されていることを特徴とす
る光記録再生装置。 4)特許請求の範囲第1項記載の光記録再生装置におい
て、記録時には、記録専用付加レーザ発振装置を具備し
、あるいは前記レーザ発振装置を併用し、そのレーザ光
を記録すべき情報に応じ変調し、前記記録媒体に集光し
あるいは前記記録媒体が積層されている場合は記録すべ
き目的の層の記録媒体に合焦して、屈折率不連続部の有
無として記録し、再生時には、特許請求の範囲第1項記
載の再生方法にて前記記録された情報を再生することを
特徴とする光記録再生装置。
[Claims] 1) An optical waveguide having a plurality of recording sections arranged in the optical waveguide to determine the presence or absence of minute refractive index discontinuities that generate reflected guided light within the optical waveguide, depending on the information to be recorded. A recording medium, a pulse laser oscillation device and a photodetector arranged opposite to an optical coupling part provided in a part of the optical waveguide that is the recording medium, and a member that supports each of the optical waveguides. The light from the pulsed laser excavation device is guided into the optical waveguide by the optical coupling part, and the refractive index discontinuity of the optical waveguide reflects a part of the incident guided light, and the reflected guided light has a propagation distance. An optical recording/reproducing apparatus characterized in that after a time corresponding to , the light returns to the optical coupling part, the light is received by a photodetector disposed in the optical coupling part, and the recorded information is reproduced. 2) In the optical recording/reproducing device according to claim 1, the recording portion of the optical waveguide serving as the recording medium has a predetermined length, and a plurality of the optical waveguides are arranged on a tape, card, or disk substrate, Guide the light from the pulsed laser oscillation device through the optical coupling part of one of the optical waveguides,
By increasing or decreasing the amount of guided light reflected by the refractive index discontinuity of the optical waveguide, the information recorded on the optical waveguide recording medium is reproduced, and then the information recorded on the optical waveguide recording medium is reproduced. An optical recording and reproducing apparatus characterized in that a photodetector is moved and reproduction is performed sequentially in the same manner from different optical waveguides. 3) An optical recording and reproducing apparatus according to claim 1, characterized in that two or more tapes, disks, or cards on which optical waveguide recording media are arranged are stacked. 4) In the optical recording and reproducing apparatus according to claim 1, during recording, the recording-only additional laser oscillation device is provided, or the laser oscillation device is used together, and the laser beam is modulated according to the information to be recorded. Then, when the recording medium is laminated, the light is focused on the recording medium of the target layer to be recorded, and the presence or absence of the refractive index discontinuity is recorded, and at the time of reproduction, the patent An optical recording and reproducing apparatus characterized in that the recorded information is reproduced by the reproducing method according to claim 1.
JP63315523A 1988-12-13 1988-12-13 Optical recording medium and recording / reproducing apparatus Expired - Fee Related JPH0810491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315523A JPH0810491B2 (en) 1988-12-13 1988-12-13 Optical recording medium and recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315523A JPH0810491B2 (en) 1988-12-13 1988-12-13 Optical recording medium and recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JPH02210627A true JPH02210627A (en) 1990-08-22
JPH0810491B2 JPH0810491B2 (en) 1996-01-31

Family

ID=18066369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315523A Expired - Fee Related JPH0810491B2 (en) 1988-12-13 1988-12-13 Optical recording medium and recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JPH0810491B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546992A (en) * 1991-08-14 1993-02-26 Sharp Corp Optical reproducing device
US5218594A (en) * 1990-03-08 1993-06-08 Pioneer Electric Corporation Recording medium with an optical waveguide and player for playing the same
JPH05197955A (en) * 1991-04-26 1993-08-06 Naohiro Tanno Medium and device for stereo-scopic optical recording
US5285274A (en) * 1991-04-26 1994-02-08 Pioneer Electronic Corporation Optical waveguide recording medium and apparatus for playing the same
EP0556260B1 (en) * 1990-11-08 1999-07-14 BRITISH TELECOMMUNICATIONS public limited company Optical memory
US6064785A (en) * 1997-09-30 2000-05-16 Pioneer Electronic Corporation Optical wave guide path recording medium and optical reproducing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218594A (en) * 1990-03-08 1993-06-08 Pioneer Electric Corporation Recording medium with an optical waveguide and player for playing the same
EP0556260B1 (en) * 1990-11-08 1999-07-14 BRITISH TELECOMMUNICATIONS public limited company Optical memory
JPH05197955A (en) * 1991-04-26 1993-08-06 Naohiro Tanno Medium and device for stereo-scopic optical recording
US5283777A (en) * 1991-04-26 1994-02-01 Pioneer Electronic Corporation Three-dimensional optical recording medium and optical information recording apparatus using the same
US5285274A (en) * 1991-04-26 1994-02-08 Pioneer Electronic Corporation Optical waveguide recording medium and apparatus for playing the same
JPH0546992A (en) * 1991-08-14 1993-02-26 Sharp Corp Optical reproducing device
US6064785A (en) * 1997-09-30 2000-05-16 Pioneer Electronic Corporation Optical wave guide path recording medium and optical reproducing apparatus

Also Published As

Publication number Publication date
JPH0810491B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5218594A (en) Recording medium with an optical waveguide and player for playing the same
US5283777A (en) Three-dimensional optical recording medium and optical information recording apparatus using the same
EP0414380B1 (en) Optical recording and reproducing apparatus and adaptor for use with said apparatus
US4621353A (en) Optical memory system providing improved focusing control and improved beam combining and separating apparatus
US5119355A (en) Optical information processing apparatus
JPH0248983B2 (en)
CN102456360A (en) Method of parallel bit-wise holographic data storage using a parallel light source
JPH0518186B2 (en)
Rubin et al. Multilevel volumetric optical storage
JP5100010B2 (en) Optical information reproducing device
US5907525A (en) Magneto-optical disk, optical pickup, and magneto-optical disk drive
JPH02210627A (en) Optical recording and reproducing device
CN101261852B (en) Information recording and retrieval method, and its apparatus
JPS5982646A (en) Optomagnetic storage device
JPH056546A (en) Information reproducing device and information recording and reproducing device
US4888759A (en) Laser optical memory system having beam combining and separating apparatus for combining and separating reading and writing laser beams
US6229783B1 (en) Optical recording device having a medium with two superimposed levels and method for reading
JP2960426B2 (en) Optical recording medium and optical recording / reproducing device
JPS59193556A (en) Optical card
JP2863431B2 (en) Magneto-optical recording / reproducing device
JPS59193558A (en) Optical card
JP2629812B2 (en) Optical playback pickup
JPH06282889A (en) Magneto-optical memory cell
JPH10149593A (en) Magneto-optical memory element
KR100378601B1 (en) Optical multi-recording apparatus using solid immersion lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees