JPH0220949B2 - - Google Patents

Info

Publication number
JPH0220949B2
JPH0220949B2 JP58137728A JP13772883A JPH0220949B2 JP H0220949 B2 JPH0220949 B2 JP H0220949B2 JP 58137728 A JP58137728 A JP 58137728A JP 13772883 A JP13772883 A JP 13772883A JP H0220949 B2 JPH0220949 B2 JP H0220949B2
Authority
JP
Japan
Prior art keywords
resistor
conductor
dummy load
inner conductor
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58137728A
Other languages
Japanese (ja)
Other versions
JPS6030100A (en
Inventor
Teruhiro Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58137728A priority Critical patent/JPS6030100A/en
Publication of JPS6030100A publication Critical patent/JPS6030100A/en
Publication of JPH0220949B2 publication Critical patent/JPH0220949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波加熱用ダミーロードに係り、特
に核融合装置のプラズマ追加熱として使用される
高周波加熱装置に採用されるダミーロードに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dummy load for high frequency heating, and particularly to a dummy load employed in a high frequency heating device used as plasma additional heat in a nuclear fusion device.

〔発明の背景〕[Background of the invention]

磁場を用いて、約1億度の高温プラズマを閉じ
込めて核融合反応を生じさせ、熱を取り出す型式
の核融合装置においては、燃料ガスは電子とイオ
ンに分かれたプラズマ状態で存在し、プラズマ閉
じ込め用磁場の磁力線の囲りに巻きついて線状の
軌道を抽いて運動している。この運動は、ローレ
ンツ力によるもので、磁力線の囲りに巻きついて
いる場合の磁力線の囲りを1回転する周波数は、
一般に電子サイクロトロン周波数、イオンサイク
ロトン周波数として知られている。
In a type of nuclear fusion device that uses a magnetic field to confine high-temperature plasma at approximately 100 million degrees Celsius to generate a fusion reaction and extract heat, the fuel gas exists in a plasma state separated into electrons and ions, and plasma confinement It moves by winding around the lines of magnetic force of the magnetic field and following a linear trajectory. This motion is due to the Lorentz force, and the frequency of one revolution around the magnetic field line when it is wrapped around the magnetic field line is:
Generally known as electron cyclotron frequency and ion cyclotron frequency.

また、核融合反応を生じさせるには、高温、高
密度のプラズマを発生させる必要があるが、現
在、最も高温を得ているトーラス型の核融合装置
においても、核融合反応を効率的に発生させる約
1億度にプラズマを加熱するために、20MW以上
の大入熱による追加熱が不可欠である。この追加
熱方式の代表的なものは、中性粒子入射加熱方式
と高周波加熱方式がある。特に高周波加熱方式
は、加熱効率や加熱システムの全体効率に優れる
等その利点は多い。高周波加熱方式の中でも、プ
ラズマの閉じ込め磁場の強さとイオンの電荷の積
の平方根に比例し、質量の平方根に逆比例するプ
ラズマ中のイオンのイオンサイクロトロン周波
数、もしくはその高周波周波数と外部から印加す
る高周波電磁波の周波数を一致させてイオンを直
接共鳴加熱するイオンサイクロトロン共鳴加熱方
式は、核融合プラズマの実現のために特に有効な
加熱方式である。
In addition, in order to generate a nuclear fusion reaction, it is necessary to generate high-temperature, high-density plasma, and even the torus-type fusion device, which currently has the highest temperature, can efficiently generate a nuclear fusion reaction. In order to heat the plasma to about 100 million degrees Celsius, additional heat with a large heat input of more than 20 MW is essential. Typical examples of this additional heating method include a neutral particle incident heating method and a high frequency heating method. In particular, the high-frequency heating method has many advantages, such as excellent heating efficiency and overall efficiency of the heating system. Among high-frequency heating methods, the ion cyclotron frequency of ions in the plasma, which is proportional to the square root of the product of the plasma confinement magnetic field strength and the ion's charge, and inversely proportional to the square root of the mass, or the high frequency frequency and the high frequency applied externally. The ion cyclotron resonance heating method, which directly resonantly heats ions by matching the frequencies of electromagnetic waves, is a particularly effective heating method for realizing fusion plasma.

この高周波電磁波の周波数は20MHzから200M
Hz程度であり、通常、放送局などで使用される周
波数域にある。この周波数帯の大電力は、通常、
大出力の真空管式増幅器を多段に組合せたシステ
ムで得られる。一方、高周波の大電力は、方向性
結合器や高周波ダミーロードを用いて測定、較正
されることになる。特にダミーロードは、高周波
に対するマツチング特性と大入熱に対する抵抗特
性の変化の少ないことや、除熱特性の優れている
ことが要求される高周波大電力測定用の基本コン
ポーネントである。
The frequency of this high frequency electromagnetic wave is from 20MHz to 200M
It is approximately Hz, which is in the frequency range normally used by broadcasting stations. The high power in this frequency band is typically
This is achieved by a system that combines multiple stages of high-output vacuum tube amplifiers. On the other hand, high-frequency high power is measured and calibrated using a directional coupler or high-frequency dummy load. In particular, the dummy load is a basic component for high-frequency, high-power measurements, which requires little change in matching characteristics for high frequencies and resistance characteristics for large heat inputs, and excellent heat removal characteristics.

第1図に従来の大電力ダミーロードの例を示
す。該図の如く、従来のダミーロードは、その特
性インピーダンスを合せ、かつ、広帯域でインピ
ーダンスが一定となる様外導体1はテーパ管状の
形をしている。そして、内導体2は2重管構造の
絶縁筒3と、この内部を流れる抵抗体となる水酸
化ナトリウム水溶液4で構成され、高周波の大電
力は水酸化ナトリウム水溶液4で発熱に変えられ
て吸収される。このような構成において、抵抗値
を一定に保つために水酸化ナトリウム水溶液4の
温度を一定に保つことは不可欠であり、通常、こ
の水酸化ナトリウム水溶液4は循環ポンプ5に熱
交換器6、出入口温度センサー7等で熱交換して
水酸化ナトリウム水溶液4の温度を一定に保つて
いる他、除熱を行うシステムとなつている。
FIG. 1 shows an example of a conventional high-power dummy load. As shown in the figure, in the conventional dummy load, the outer conductor 1 has a tapered tubular shape so that the characteristic impedances are matched and the impedance is constant over a wide band. The inner conductor 2 is composed of an insulating tube 3 with a double tube structure and a sodium hydroxide aqueous solution 4 that serves as a resistor flowing inside the insulating tube 3. High frequency high power is converted into heat by the sodium hydroxide aqueous solution 4 and absorbed. be done. In such a configuration, it is essential to keep the temperature of the sodium hydroxide aqueous solution 4 constant in order to keep the resistance value constant, and normally this sodium hydroxide aqueous solution 4 is passed through a circulation pump 5, a heat exchanger 6, and an inlet/outlet. In addition to keeping the temperature of the sodium hydroxide aqueous solution 4 constant by exchanging heat with a temperature sensor 7, etc., the system also removes heat.

このように従来の高周波加熱用ダミーロード
は、抵抗体として水酸化ナトリウムの水溶液等の
伝導性を持たせた電解液が使用されて来た。しか
し、この場合は、抵抗体の抵抗値を一定に保つた
めに、電解液の温度や濃度を常に一定に保つこと
が必要である他、除熱のためには別系統の冷却水
と電解液の間で熱交換器を要し、電解液の循環用
ポンプ等も必要であるため、腐食等の問題があり
使用寿命が短く、運転までに多大の時間を要する
と言う欠点がある。また、一般に高周波加熱用ダ
ミーロードは、その特性として無反射終端で伝送
路のインピーダンスと整合していることと、高周
波大電力を消費している間にダミーロードのイン
ピーダンスが変化せず整合条件が満足されている
ことが要求される。更に、伝送路のインピーダン
スは、通常、純抵抗分のみの特性インピーダンス
となる様設計されているので、ダミーロードも高
周波に対して純抵抗となる様設計することにな
る。また、核融合装置のプラズマ加熱用に使用さ
れる様な高周波発振器の高周波大電力を測定する
ためのダミーロードは上記諸点に鑑みて特にその
冷却方式、構造に工夫が施されなければならな
い。
As described above, conventional high-frequency heating dummy loads have used conductive electrolyte solutions such as aqueous sodium hydroxide solutions as resistors. However, in this case, in order to keep the resistance value of the resistor constant, it is necessary to keep the temperature and concentration of the electrolyte constant at all times, and in order to remove heat, it is necessary to use separate systems for cooling water and electrolyte. Since a heat exchanger is required between the pumps and a pump for circulating the electrolytic solution is also required, there are problems such as corrosion, a short service life, and a long time required for operation. Additionally, in general, dummy loads for high-frequency heating have characteristics that match the impedance of the transmission line with non-reflection termination, and that the impedance of the dummy load does not change while consuming high frequency power and the matching conditions are met. required to be satisfied. Furthermore, since the impedance of the transmission line is usually designed to have a characteristic impedance of only pure resistance, the dummy load is also designed to have pure resistance against high frequencies. Furthermore, in consideration of the above points, the cooling method and structure of a dummy load for measuring the high frequency high power of a high frequency oscillator such as that used for plasma heating in a nuclear fusion device must be specially designed.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑み成されたもので、その
目的は、抵抗体の温度変化を抑えて特性が変化す
るのを防ぐことができ、かつ特性インピーダンス
を整合し易い高周波加熱用ダミーロードを提供す
ることにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide a dummy load for high frequency heating that can suppress the temperature change of the resistor to prevent the characteristics from changing, and that can easily match the characteristic impedance. It is about providing.

〔発明の概要〕[Summary of the invention]

伝送路に接続される内導体と、該内導体と同軸
状に配置され内導体端部より軸方向に延長された
テーパ状の延長部を有する外導体と、一端が前記
延長部の先端部に位置し他端が前記内導体に接続
される抵抗体と、該抵抗体を冷却するための冷却
媒体の通路となる冷却路とを備えた高周波加熱用
ダミーロードにおいて、前記抵抗体を導電性セラ
ミツクで構成すると共に、前記抵抗体の一端を前
記延長部の先端部に直接接触させ、かつ前記冷却
路を、中央部分が冷却媒体を給水する給水路を形
成する内筒と、該内筒とスペーサを介して同軸状
に配置されると共に前記抵抗体の内周部に嵌合さ
れ前記内筒との間に冷却媒体を排水する排水路を
形成する外筒とから構成したことを特徴とする。
an inner conductor connected to the transmission line; an outer conductor having a tapered extension disposed coaxially with the inner conductor and extending in the axial direction from an end of the inner conductor; and one end connected to the tip of the extension. In a dummy load for high frequency heating, which is equipped with a resistor whose other end is connected to the inner conductor, and a cooling path that serves as a passage for a cooling medium to cool the resistor, the resistor is made of conductive ceramic. an inner cylinder having one end of the resistor in direct contact with the tip of the extension, and a center portion of which forms a water supply channel for supplying a cooling medium; the inner cylinder and a spacer; and an outer cylinder which is disposed coaxially through the resistor and is fitted into the inner circumference of the resistor to form a drainage channel for draining the cooling medium between the inner cylinder and the inner cylinder.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明
する。
The present invention will be explained below based on the illustrated embodiments.

第2図に本発明の高周波加熱用ダミーロードの
一実施例を示す。
FIG. 2 shows an embodiment of a dummy load for high frequency heating of the present invention.

該図の如く、本実施例のダミーロードは、伝送
路に接続される外導体フランジ11と内導体1
2、該内導体12と同軸状に配置された外導体1
3、該外導体13を内導体12の端部より軸方向
に延長すると共に、該延長部をテーパ状に形成さ
れ、このテーパ状の外導体13の先端部で終端さ
れ、他端が内導体12に直接接続され抵抗体1
4、該抵抗体14を直接冷却するための冷却水を
通す冷却水路15及び内導体12と外導体13と
の間に配置されるスペーサ16より概略構成され
る。ここで、内導体12と外導体13は銅等の導
体で構成され、スペーサ16は高周波特性、電気
絶縁特性の優れるフツ素樹脂板が使用されてい
る。更に、冷却水路15は、内筒15aと外筒1
5bとが同軸状に配置されて構成され、中央部に
配置される内筒15aで給水路17を形成し、こ
の給水路17を通つて給水され、この内筒15a
の外側に配置され、かつ、抵抗体14に接した外
筒15bで排水路18を形成し、この排水路18
を通つて冷却水が強制循環させられている。尚、
内筒15aと外筒15bとの間には穴あきのスペ
ーサ19が介在され、このスペーサ19で両者が
一体化されていて、しかも、冷却水路15は抵抗
体14のサポートも兼ねている。そして、本実施
例では上記抵抗体14を炭化ケイ素、あるいはチ
ツ化ケイ素等の導電性セラミツクで構成すると共
に、冷却水路15を形成する内筒15a、及び外
筒15bをフツソ樹脂やエポキシ樹脂等の成形品
で構成し、外筒15bの外面と導電性セラミツク
との内面はエポキシ樹脂等の接着剤で充分良く接
着されている。尚、導電性セラミツクと内導体1
2は電気的には充分接触が保たれていることは勿
論、導電性セラミツクの長さ方向の抵抗値は伝送
路の特性インピーダンスに合せて設計されてい
る。また、外導体13の形状は、通常の無反射終
端器の特性を満足する様な形状となつている。
As shown in the figure, the dummy load of this embodiment has an outer conductor flange 11 and an inner conductor 1 connected to the transmission line.
2. Outer conductor 1 arranged coaxially with the inner conductor 12
3. The outer conductor 13 is extended in the axial direction from the end of the inner conductor 12, and the extended part is formed into a tapered shape, and is terminated at the tip of the tapered outer conductor 13, and the other end is connected to the inner conductor. 12 directly connected to resistor 1
4. It is generally composed of a cooling water channel 15 through which cooling water passes for directly cooling the resistor 14, and a spacer 16 disposed between the inner conductor 12 and the outer conductor 13. Here, the inner conductor 12 and the outer conductor 13 are made of a conductor such as copper, and the spacer 16 is made of a fluororesin plate having excellent high frequency characteristics and electrical insulation characteristics. Furthermore, the cooling water channel 15 connects the inner cylinder 15a and the outer cylinder 1.
5b are arranged coaxially, and an inner cylinder 15a arranged in the center forms a water supply channel 17, through which water is supplied, and this inner cylinder 15a
A drainage channel 18 is formed by an outer cylinder 15b that is disposed outside of the resistor 14 and is in contact with the resistor 14, and this drainage channel 18
Cooling water is forced to circulate through the still,
A perforated spacer 19 is interposed between the inner cylinder 15a and the outer cylinder 15b, and the spacer 19 integrates the two, and the cooling water channel 15 also serves as a support for the resistor 14. In this embodiment, the resistor 14 is made of conductive ceramic such as silicon carbide or silicon nitride, and the inner cylinder 15a and outer cylinder 15b forming the cooling water passage 15 are made of fluorocarbon resin, epoxy resin, etc. It is composed of a molded product, and the outer surface of the outer cylinder 15b and the inner surface of the conductive ceramic are sufficiently bonded with an adhesive such as epoxy resin. Furthermore, conductive ceramic and inner conductor 1
In addition to maintaining sufficient electrical contact, the resistance value of the conductive ceramic in the longitudinal direction is designed to match the characteristic impedance of the transmission line. Further, the shape of the outer conductor 13 is such that it satisfies the characteristics of a normal non-reflection terminator.

このような構成とすることにより、導電性セラ
ミツクであるため抵抗体14の温度変化が抑えら
れ、従つて、腐食等の心配もなく、抵抗体14で
消費された高周波電力は冷却水で除熱され大電力
で特性が変化することなく使用でき、使用寿命が
長くなり、運転まで長時間を要することもなくな
る。また、熱交換器や電解液槽が必要でないた
め、簡単な構成で抵抗体14を直接冷却できるの
で、冷却効率が向上することは勿論、高周波大電
力を整合条件を満しながら吸収できる効果があ
る。さらに、抵抗体14を冷却するための冷却水
を流通させる冷却水路15を、中央部分が冷却水
を給水する給水路を形成する内筒15aと、内筒
15とスペーサ16を介して同軸状に配置される
と共に抵抗体14の内周部に嵌合され内筒15と
の間に冷却水を排水する排水路を形成する外筒1
5bとから構成し、抵抗体14をその内周部側よ
り冷却するようにして、外導体13のテーパ状延
長部の先端部を抵抗体14の一端に、冷却水路を
構成する部材や冷却水を介することなく、直接接
触させたので、特性インピーダンスを整合し易い
という効果もある。
With this configuration, since it is made of conductive ceramic, temperature changes in the resistor 14 are suppressed, so there is no fear of corrosion, etc., and the high frequency power consumed by the resistor 14 is removed by cooling water. It can be used with high power without changing its characteristics, has a long service life, and does not require a long time to operate. In addition, since a heat exchanger and an electrolyte tank are not required, the resistor 14 can be directly cooled with a simple configuration, which not only improves cooling efficiency but also has the effect of absorbing high frequency high power while satisfying matching conditions. be. Further, a cooling water channel 15 through which cooling water for cooling the resistor 14 flows is coaxially connected to an inner cylinder 15a whose central portion forms a water supply water passage through which cooling water is supplied, through the inner cylinder 15 and a spacer 16. an outer cylinder 1 which is arranged and fitted into the inner peripheral part of the resistor 14 and forms a drainage channel between it and the inner cylinder 15 for draining cooling water;
5b, so that the resistor 14 is cooled from its inner peripheral side, and the tip of the tapered extension of the outer conductor 13 is connected to one end of the resistor 14, and the members constituting the cooling channel and the cooling water Because they are brought into direct contact without going through a , it also has the effect of making it easier to match the characteristic impedance.

尚、ダミーロードの前にインピーダンス変換器
を設けて、ダミーロードの設計インピーダンスを
材料等から定まる適正値となる様にすれば、材料
の選定や寸法上の制約等があるときには特に有効
である。
Note that it is particularly effective when there are restrictions on material selection or dimensions if an impedance converter is provided in front of the dummy load so that the design impedance of the dummy load becomes an appropriate value determined from the material, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、一端が外
導体のテーパ状延長部の先端部に位置し、他端が
内導体に接続される抵抗体を導電性セラミツクで
構成したので、抵抗体の温度変化が抑えられ、特
性が変化することなく使用できる。また、前記抵
抗体をその内周部側より冷却するようにして、外
導体のテーパ状延長部の先端部を抵抗体の一端
に、冷却路の構成部材や冷却媒体を介することな
く、直接接触させたので、特性インピーダンスを
整合し易いという効果も得られる。
As explained above, according to the present invention, the resistor, whose one end is located at the tip of the tapered extension of the outer conductor and whose other end is connected to the inner conductor, is made of conductive ceramic. Temperature changes are suppressed and the product can be used without changing its characteristics. In addition, the resistor is cooled from the inner circumferential side thereof, and the tip of the tapered extension of the outer conductor is brought into direct contact with one end of the resistor without using any cooling path components or cooling medium. Therefore, it is possible to easily match the characteristic impedance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高周波加熱用ダミーロードを一
部断面して示す構成図、第2図は本発明の高周波
加熱用ダミーロードの一実施例を示す断面図であ
る。 1,13…外導体、2,12…内導体、11…
外導体フランジ、14…抵抗体、15…冷却水
路、15a…内筒、15b…外筒、16…スペー
サ、17…給水路、18…排水路、19…穴あき
スペーサ。
FIG. 1 is a partial cross-sectional view of a conventional dummy load for high-frequency heating, and FIG. 2 is a cross-sectional view of an embodiment of the dummy load for high-frequency heating of the present invention. 1, 13... Outer conductor, 2, 12... Inner conductor, 11...
Outer conductor flange, 14...Resistor, 15...Cooling channel, 15a...Inner tube, 15b...Outer tube, 16...Spacer, 17...Supply channel, 18...Drainage channel, 19...Perforated spacer.

Claims (1)

【特許請求の範囲】[Claims] 1 伝送路に接続される内導体と、該内導体と同
軸状に配置され内導体端部より軸方向に延長され
たテーパ状の延長部を有する外導体と、一端が前
記延長部の先端部に位置し他端が前記内導体に接
続される抵抗体と、該抵抗体を冷却するための冷
却媒体の通路となる冷却路とを備えた高周波加熱
用ダミーロードにおいて、前記抵抗体を導電性セ
ラミツクで構成すると共に、前記抵抗体の一端を
前記延長部の先端部に直接接触させ、かつ前記冷
却路を、中央部分が冷却媒体を給水する給水路を
形成する内筒と、該内筒とスペーサを介して同軸
状に配置されると共に前記抵抗体の内周部に嵌合
され前記内筒との間に冷却媒体を排水する排水路
を形成する外筒とから構成したことを特徴とする
高周波加熱用ダミーロード。
1. An inner conductor connected to a transmission line, an outer conductor having a tapered extension part arranged coaxially with the inner conductor and extending in the axial direction from an end of the inner conductor, and one end of which is a tip of the extension part. A dummy load for high frequency heating is provided with a resistor whose other end is connected to the inner conductor, and a cooling path that serves as a passage for a cooling medium to cool the resistor. an inner cylinder made of ceramic, in which one end of the resistor is brought into direct contact with the tip of the extension part, and the cooling path is connected to the inner cylinder, the central part of which forms a water supply channel for supplying a cooling medium; An outer cylinder is arranged coaxially with a spacer interposed therebetween and is fitted into the inner circumference of the resistor to form a drainage channel for draining the cooling medium between the outer cylinder and the inner cylinder. Dummy load for high frequency heating.
JP58137728A 1983-07-29 1983-07-29 Dummy load for heating in high frequency Granted JPS6030100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137728A JPS6030100A (en) 1983-07-29 1983-07-29 Dummy load for heating in high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137728A JPS6030100A (en) 1983-07-29 1983-07-29 Dummy load for heating in high frequency

Publications (2)

Publication Number Publication Date
JPS6030100A JPS6030100A (en) 1985-02-15
JPH0220949B2 true JPH0220949B2 (en) 1990-05-11

Family

ID=15205439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137728A Granted JPS6030100A (en) 1983-07-29 1983-07-29 Dummy load for heating in high frequency

Country Status (1)

Country Link
JP (1) JPS6030100A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734308A (en) * 1980-08-08 1982-02-24 Matsushita Electric Ind Co Ltd Ceramic resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734308A (en) * 1980-08-08 1982-02-24 Matsushita Electric Ind Co Ltd Ceramic resistor

Also Published As

Publication number Publication date
JPS6030100A (en) 1985-02-15

Similar Documents

Publication Publication Date Title
CN102903473A (en) Superconducting magnet system
US4264818A (en) Single-tank X-ray generator
JPH07235803A (en) Coaxial high power low pass filter
US4260967A (en) High power waveguide filter
US3876901A (en) Microwave beam tube having an improved fluid cooled main body
CN107919515B (en) A kind of high-field mode filter for only depositing TE0n mode
US3104338A (en) Ribbed collector for cooling klystrons
JPH0220949B2 (en)
US4896130A (en) Magnetic system
JP3147838B2 (en) Traveling wave tube collector structure
WO2023098692A1 (en) Charging terminal, charging gun, charging pile and vehicle
US3866085A (en) Collector pole piece for a microwave linear beam tube
CN211653114U (en) Gradient coil and magnetic resonance equipment
US3289109A (en) High frequency waveguide waterload for electromagnetic wave energy with flow channel having wedge shaped internal geometry
CN202940212U (en) Slow wave structure used for traveling wave tube
US3538366A (en) Fluid cooled electromagnetic structure for traveling wave tubes
CN110011011A (en) A kind of high-field mode filter for only depositing TM mode
US2947956A (en) Fluid cooled energy transmission control device
CN116631655B (en) Megawatt steady-state high-power conical water load
WO2003049133A2 (en) Electron collector
JPH09162606A (en) Dummy load for high power high frequency signal
JP4294679B2 (en) Power terminator
CN106450633B (en) Orthogonal field amplifier
JPH0554805A (en) Magnetron
CN117767691A (en) Improved superconducting motor stator, aircraft superconducting motor and aircraft