JPH02209485A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH02209485A
JPH02209485A JP2982089A JP2982089A JPH02209485A JP H02209485 A JPH02209485 A JP H02209485A JP 2982089 A JP2982089 A JP 2982089A JP 2982089 A JP2982089 A JP 2982089A JP H02209485 A JPH02209485 A JP H02209485A
Authority
JP
Japan
Prior art keywords
substrate
plasma
plasma processing
processing apparatus
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2982089A
Other languages
Japanese (ja)
Inventor
Takuya Fukuda
福田 琢也
Michio Ogami
大上 三千男
Kazuo Suzuki
和夫 鈴木
Tadashi Sonobe
園部 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HESCO
Hitachi Ltd
Original Assignee
HESCO
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HESCO, Hitachi Ltd filed Critical HESCO
Priority to JP2982089A priority Critical patent/JPH02209485A/en
Publication of JPH02209485A publication Critical patent/JPH02209485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance plasma treating characteristics by regulating the position for maximumly producing plasma species (treating species) which are produced by utilizing cyclotron movement of charged particles to a range within the distance of a mean free path thereof from a base plate and making the angle of the normal of a base plate face for plasma flow variable. CONSTITUTION:The angle of a base plate holder 2 is made variable for the center axis of a device and also the holder is transferred to the position of the base plate 1 from the end of a window for introducing microwave 6 because it can be rotated around the base plate. On the other hand, the position of an electronic cyclotron which becomes the position for maximumly producing the plasma species is decided by regulating the amount of power supply of the main and auxiliary magnetic field coils 9, 10 and thereby controlling the magnetic flux density. Thereby the side part of the difference of the surface level of the base plate is uniformly treated and efficiency of plasma treatment is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置製造や機能性薄膜デバイス製造方法
に係り、特に段差部を有した基板処理での、段差の高被
覆、高品質膜形成や、段差側面への高効率、高適正の不
純物添加、あるいは表面平滑化等に好適なプラズマ処理
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to semiconductor device manufacturing and functional thin film device manufacturing methods, and in particular, in processing substrates with stepped portions, high coverage of stepped portions and high quality film formation. The present invention also relates to a plasma processing apparatus suitable for highly efficient and appropriate doping of impurities to the side surfaces of steps, surface smoothing, and the like.

〔従来の技術〕[Conventional technology]

従来のプラズマ処理装置は、アドバンス インエレクト
ロニクス アンド エレクトロン フイジイクス 30
.(1971)76頁に(Advin Electro
nics and Electron Phys 30
. (1971)P76)において論じられているよう
に、ターゲットをスパッタし、堆積種を生成させ、該堆
積種を基板に斜めに入射させることで、基板段差部の側
面にも膜形成ができるようにした装置や、特開昭56−
155535号に記載のように電子サイクロトロン共鳴
を利用して低圧力で高励起のプラズマ処理種を生成させ
、該処理種を磁界により基板面にほぼ垂直に到達させて
品質の良い膜を形成する装置があった。
The conventional plasma processing equipment is Advanced In-Electronics and Electron Physics 30.
.. (1971) on page 76 (Advin Electro
nics and Electron Phys 30
.. (1971), p. 76), by sputtering a target to generate a deposition species, and making the deposition species obliquely incident on the substrate, it is possible to form a film even on the side surfaces of the substrate step. equipment and JP-A-56-
As described in No. 155535, an apparatus that uses electron cyclotron resonance to generate highly excited plasma treatment species at low pressure, and causes the treatment species to reach the substrate surface almost perpendicularly to the substrate surface using a magnetic field to form a high-quality film. was there.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

上記従来技術は、先出のものにおいては基板上の段差部
の側面への処理種の到達方法に関しては考慮されていた
が、処理の励起度や処理特性、あるいは処理種の適正な
生成方法については配慮されておらず、例えば膜形成に
おいては、膜質自体が悪い、あるいは形成速度が遅いと
いった問題があった。後出のものにおいては、膜形成す
ると。
The above-mentioned conventional technology takes into account the method for the treatment species to reach the side surface of the stepped portion on the substrate, but it does not take into account the degree of excitation of the treatment, the processing characteristics, or the appropriate method for generating the treatment species. For example, in film formation, there were problems such as poor film quality or slow formation speed. In the latter case, when a film is formed.

段差部がより急峻となる、及びオーバハング形成となる
といったことや、段差上面と側面での膜質が著しく異な
ってしまうといった問題があった。
There have been problems in that the stepped portion becomes steeper, an overhang is formed, and the film quality on the top surface and the side surface of the stepped portion is significantly different.

このため所望の判導体装置が製造できなかった。For this reason, the desired size conductor device could not be manufactured.

本発明の目的は、上記不都合を解決することにある。An object of the present invention is to solve the above-mentioned disadvantages.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、 一 1)、基板を処理する処理種の生成に電子サイクロトロ
ンあるいはイオンサイクロトロン運動を利用し、低圧力
領域で高励起状態のプラズマ種、すなわち処理種を生成
し、かつ、該処理種の最大生成位置は、基板より、該処
理種の平均自由行程距離内に位置させる。
The above objectives are as follows: 11) Generate plasma species in a highly excited state in a low pressure region, that is, process species, by using electron cyclotron or ion cyclotron motion to generate process species for treating a substrate, and The maximum generation position of is located within the mean free path distance of the treated species from the substrate.

2)、上記処理種は、印加された磁力線あるいは電気力
線方向に輸送されプラズマ流となる。このプラズマ流に
対する基板面法線に角度をもたせてプラズマ処理する。
2) The treated species is transported in the direction of the applied magnetic lines of force or electric lines of force and becomes a plasma flow. Plasma processing is performed by setting an angle to the normal to the substrate surface with respect to this plasma flow.

の2つのことを同時に行なうことで達成される。This is achieved by doing two things at the same time.

〔作用〕[Effect]

プラズマ処理の特性は、基板に到達する処理種の励起状
態に大きく依存しており、励起状態が高い程、処理特性
及び処理効率は高い。該重粒子のサイクロトロン運動を
利用してプラズマを生成させると、高励起状態の処理種
が効率良く生成する。
The characteristics of plasma processing largely depend on the excited state of the processing species that reach the substrate, and the higher the excited state, the higher the processing characteristics and processing efficiency. When plasma is generated using the cyclotron motion of the heavy particles, highly excited treatment species are efficiently generated.

また、該プラズマの最大生成位置を、基板から該処理種
の少なくとも平均自由行程距離以内に位置させると、粒
子間の衝突により失活する割合いが著しく低下するため
、基板に到達する高励起状態の処理種の割合が増大する
。処理種は基板側に磁界あるいは電界によりプラズマ流
として入射させることができるが、該プラズマ流方向と
基板法線の間に角度をつけさせると、基板上の段差部の
側面にも処理種が効率良く入射する。この際に、基板を
自転させると、基板の段差側面部が均一に処理される。
In addition, if the maximum generation position of the plasma is located within at least the mean free path distance of the treated species from the substrate, the rate of deactivation due to collisions between particles will be significantly reduced, so that the highly excited state that reaches the substrate The proportion of treated species increases. The processing species can be incident on the substrate side as a plasma flow using a magnetic or electric field, but if an angle is created between the direction of the plasma flow and the normal line of the substrate, the processing species can be efficiently applied to the side surfaces of the stepped portions on the substrate. Good incidence. At this time, when the substrate is rotated, the stepped side portions of the substrate are uniformly processed.

従って、上記方法で基板を処理すると、例えば、段差部
の被覆性が優れた高品質の堆積膜形成等、段差側面にも
特性の優れたプラズマ処理が効率良くなされる。
Therefore, when a substrate is processed by the above method, plasma processing with excellent properties can be efficiently performed on the side surfaces of the step, such as forming a high quality deposited film with excellent coverage of the step.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に基づくマイクロ波プラズマ処理装置
の主要部を示す断面図である。
FIG. 1 is a sectional view showing the main parts of a microwave plasma processing apparatus based on the present invention.

本装置はプラズマ生成室4、マイクロ波導波管7、(マ
イクロ波6の発振機は図省略)、主磁界コイル9及び付
加磁界コイル10、処理室2、基板ホルダ3、排気口1
2(排気系は図省略)、第1ガス供給ノズル5及び第2
ガス供給ノズル11(ガス供給系は図省略)、より成る
。プラズマ生成室4は石英製で円錐形の頂部がマイクロ
波導入窓8となっている。基板ホルダは装置中心軸に対
し角度は可変で、基板中心に対し自転させる構造となっ
ている。主磁界コイル9及び付加磁界コイル10に流す
電流を調整することにより装置内に印加する磁束密度を
制御できる。第2図は装置中心軸方向の磁束密度分布を
示す。プラズマ種の最大生成位置となる電子サイクロト
ロン共鳴(ECR)位置は、磁束密度を制御することに
より、図のように、マイクロ波導入窓端から基板位置ま
で動かすことができる。
This device includes a plasma generation chamber 4, a microwave waveguide 7, (the oscillator of the microwave 6 is omitted from the diagram), a main magnetic field coil 9, an additional magnetic field coil 10, a processing chamber 2, a substrate holder 3, and an exhaust port 1.
2 (the exhaust system is omitted from the diagram), the first gas supply nozzle 5 and the second
It consists of a gas supply nozzle 11 (the gas supply system is not shown). The plasma generation chamber 4 is made of quartz and has a conical top serving as a microwave introduction window 8. The substrate holder has a structure in which the angle with respect to the center axis of the device is variable and it rotates with respect to the center of the substrate. By adjusting the current flowing through the main magnetic field coil 9 and the additional magnetic field coil 10, the magnetic flux density applied within the device can be controlled. FIG. 2 shows the magnetic flux density distribution in the direction of the central axis of the device. By controlling the magnetic flux density, the electron cyclotron resonance (ECR) position, which is the position where plasma species are maximally generated, can be moved from the edge of the microwave introduction window to the substrate position, as shown in the figure.

実施例1、被処理基板として、熱酸化膜を形成したシリ
コン基板(125φ〔m〕)にAQをパターニング(厚
さ7.0 〔μm〕)したものを用い、5iOz膜を堆
積させた。形成条件は、導入マイクロ波パワ500(w
)とし、酸素、02ガスは第1ガス供給ノズル5より1
00[mΩ/m1n)モクシラン、5iHaガスを第2
ガス供給ノズル11より20[mΩ/m1n〕づつ導入
した。反応圧力は0.3  [pal 、ECR位置は
基板から100[:un]離なした(第2図、曲線B)
。第3図と4図は、上記基板にSiO2膜を段差上面で
0.8〔μm〕堆積させた時の、段差上面での膜厚aと
段差側面での膜厚すを電子顕微鏡で測定して、これを段
差部の被覆度(b / a )として示した図と、段差
上面膜及び段差側面膜の緩衝フッ酸液(HF : NH
4F=1 : 6)によるエッチ速度、VBとvl、を
示した図である。横軸は、基板面の法線と装置中心軸と
の角度。を取った。尚、基板は5〔回転/分〕自転させ
た。この結果から、被覆度は角度が大きくなる程向上し
、特に。〉25゜以後急激に被覆性が上がること、また
、上面の膜はo〉25°で側面の膜は〈65°で急激に
エッチレートが上がり、膜が粗となること、一方。
Example 1 A 5iOz film was deposited on a silicon substrate (125 φ [m]) on which a thermally oxidized film was formed and patterned with AQ (thickness 7.0 [μm]) as the substrate to be processed. The formation conditions were: introduced microwave power of 500 (w
), and oxygen and 02 gas are supplied from the first gas supply nozzle 5.
00 [mΩ/m1n) moxirane, 5iHa gas was added to the second
The gas was introduced from the gas supply nozzle 11 at a rate of 20 [mΩ/m1n]. The reaction pressure was 0.3 [pal], and the ECR position was 100 [:un] away from the substrate (Figure 2, curve B).
. Figures 3 and 4 show the film thickness a on the top surface of the step and the film thickness s on the side surface of the step when a SiO2 film of 0.8 [μm] was deposited on the top surface of the step on the above substrate using an electron microscope. The figure shows this as the coverage (b/a) of the step part, and the buffered hydrofluoric acid solution (HF:NH) of the step top surface film and step side film.
4F=1:6) is a diagram showing the etch rate, VB and vl. The horizontal axis is the angle between the normal to the board surface and the center axis of the device. I took it. Note that the substrate was rotated 5 [rotations/minute]. From this result, the degree of coverage improves as the angle increases, especially. On the other hand, the coverage increases rapidly after 〉25°, and the etch rate of the film on the top surface increases sharply at 〈65°, and the film becomes rough.

25°< o < 65°ではほぼ、上面側面ともエッ
チレートは遅金、膜は緻密でかっ、両者の差が少ない、
特にo  45°では両者の均一性が最も高いことがわ
かる。これらのことから、プラズマ流に対し、基板面法
線を傾けると段差部のプラズマ処理特性が著しく上がる
こと、及び適切な角度を設定すると(25°< o <
 65°)側壁と上面部での処理特性の均一化が図れる
ことがわかる。第5図と6図は、上記傾斜角を45°と
して、反応圧力が0.3  (pa)の時に、ECR位
置と基板間の距離を変えて堆積させた5iOz膜のエッ
チレートと、絶縁破壊電界を示した図である。この結果
より、ECR位置、すなわちプラズマ生成位置を基板に
近づける程、膜は緻密になり、かつ、絶縁性も優れた膜
形成ができることがわかる。また、0.3  [pa)
では、02イオンの平均自由行程距離は15’(mn)
であるが、ECR位置を基板から上記距離内に位置させ
た時には、特に緻密で絶縁性の優れた膜が形成できるこ
とがわかる。
At 25° < o < 65°, the etch rate is slow for both the top and side surfaces, the film is dense, and there is little difference between the two.
In particular, it can be seen that the uniformity of both is the highest at o 45°. From these facts, it was found that the plasma processing characteristics of the stepped portion are significantly improved when the normal to the substrate surface is tilted with respect to the plasma flow, and that when an appropriate angle is set (25° < o <
65°) It can be seen that the processing characteristics can be made uniform on the sidewall and top surface. Figures 5 and 6 show the etch rate and dielectric breakdown of 5iOz films deposited at different distances between the ECR position and the substrate when the tilt angle was 45° and the reaction pressure was 0.3 (pa). It is a figure showing an electric field. These results show that the closer the ECR position, that is, the plasma generation position, is brought to the substrate, the denser the film and the more excellent the insulation properties. Also, 0.3 [pa)
Then, the mean free path distance of 02 ion is 15' (mn)
However, it can be seen that when the ECR position is located within the above distance from the substrate, a particularly dense film with excellent insulation properties can be formed.

このことから、プラズマの最大生成位置をプラズマ処理
種の平均自由行程距離内に設定し、励起状態が粒子間の
衝突等により失しなわれる前に、処理種を基板に到達さ
せると、高品質の膜形成に効果があることがわかる。
Therefore, if the maximum plasma generation position is set within the mean free path distance of the plasma treated species and the treated species reaches the substrate before the excited state is lost due to collisions between particles, etc., high quality It can be seen that this is effective in forming a film.

実施例2、被処理基板1として、n型シリコン基板(直
径125φ〔m〕)にS i Ox膜を堆積させ、ホー
ルを形成したものを用い、アルミ膜を堆積させた。形成
条件は、第1ガス供給ノズル5から、アルゴン、Arを
100 (mQ/m1n)、第2ガス供給ノズル11よ
り、トリイソブチアルミニウム、(C3H7)aAQ 
 を10 Cm Q /m1n)導入した。ECR位置
は基板より100[nm)離なし、基板面の傾き角を変
えて堆積させた。他の条件は実施例7と同じである。第
7図は、ホール部における堆積状況における尺度として
、基板面から立てた垂線と、ホール下部での堆積膜面と
の接線がなす角の変化を示した図である。第8図は、A
nを堆積させたことで200個連続して導通させた時の
、断線率の変化を示した図である。AはECR位置を基
板より50[mn〕、Cは300〔閤〕離なして堆積さ
せた時の値である。これらの結果から、基板面の傾きが
25°< o < 65゜程ホール部でのオーバハング
状態は緩和され、つきまわりが向上することがわかる。
Example 2 As the substrate to be processed 1, an n-type silicon substrate (diameter 125 φ [m]) on which an SiOx film was deposited and holes were formed was used, and an aluminum film was deposited thereon. The formation conditions were: 100 mQ/m1n of argon and Ar were supplied from the first gas supply nozzle 5, and triisobutyaluminum, (C3H7)aAQ was supplied from the second gas supply nozzle 11.
(10 Cm Q /m1n) was introduced. The ECR position was 100 [nm] away from the substrate, and the inclination angle of the substrate surface was changed for deposition. Other conditions are the same as in Example 7. FIG. 7 is a diagram showing changes in the angle formed by a perpendicular line from the substrate surface and a tangent to the deposited film surface at the bottom of the hole, as a measure of the deposition state in the hole portion. Figure 8 shows A
FIG. 4 is a diagram showing the change in wire breakage rate when 200 wires were made to conduct continuously by depositing n. A is the value when the ECR position is 50 [mn] away from the substrate, and C is the value when the film is deposited at a distance of 300 [mn] from the substrate. From these results, it can be seen that as the inclination of the substrate surface becomes 25°<o<65°, the overhang condition at the hole portion is alleviated and the throwing power is improved.

また、断線率は、25°< o < 65°で低く、特
にECR位置が基板に近い程、AQの導通は良くなるこ
とがわかる。これらのことから、基板をある適切な範囲
で傾け、かつ高励起状態の処理種を基板に到達させると
、断差部でのつきまわりと、膜の導電性が優れた膜形成
ができることがわかる。
Further, the disconnection rate is low at 25°<o<65°, and it can be seen that the closer the ECR position is to the substrate, the better the conduction of AQ becomes. These results indicate that by tilting the substrate within a certain appropriate range and allowing highly excited treatment species to reach the substrate, it is possible to form a film with excellent throwing power and film conductivity at the gap. .

実施例3、被処理基板1として、直径125(mn)φ
のn型単結晶シリコン基板に、深さ7〔μml、アスペ
クト比7の溝を形成したものを用い、これにホウ酸、B
のドーピングを20分間行なった。ドーピングガスには
B2Feを用い、流量50(mQ/m1n)で第7ガス
供給ノズル5より導入した。第9図は、段差上面と側面
表面でのB濃度の、基板傾斜角依存性を示した図である
Example 3: The substrate to be processed 1 has a diameter of 125 (mn)φ.
A groove with a depth of 7 μml and an aspect ratio of 7 was formed in an n-type single crystal silicon substrate, and boric acid, B
Doping was carried out for 20 minutes. B2Fe was used as the doping gas, and was introduced from the seventh gas supply nozzle 5 at a flow rate of 50 (mQ/m1n). FIG. 9 is a diagram showing the dependence of the B concentration on the top and side surfaces of the step on the substrate inclination angle.

第10図は、傾斜角が45’の時の、基板上面からの深
さ方向における濃度プロファイルを示した図である。図
中A、B、CはECR位置が基板より50,10Q、 
300 (mn)離れた時の値である。これらの結果よ
り、Bのドーピング量は、傾斜角が大きくなるにつれて
、上面では減少し、側面では約65°まで増加し、その
後減少することがわかる。側面における減少は、向かい
あった側壁により、イオンの側壁への入射が阻害される
ためである。このことから、25°< o < 65°
では測面での高ドーピングなされることがわかる。
FIG. 10 is a diagram showing the concentration profile in the depth direction from the top surface of the substrate when the tilt angle is 45'. In the figure, A, B, and C have ECR positions 50, 10Q from the board,
This is the value when 300 (mn) away. These results show that as the inclination angle increases, the B doping amount decreases on the top surface, increases to about 65° on the side surfaces, and then decreases. The decrease on the side surfaces is due to the fact that the opposing side walls prevent ions from entering the side walls. From this, 25° < o < 65°
It can be seen that the surface is highly doped.

また、ドーピング量は、ECR位置が基板に近くなる程
、増えることがわかる。これらのことから、ドーピング
においても、プラズマ流に対し、基板を適切な角度で傾
斜させて、かつ、高励起状態の処理種を効率良く基板に
到達させると、高特性のプラズマ処理が高効率になされ
ることがわかる。
It can also be seen that the amount of doping increases as the ECR position gets closer to the substrate. From these facts, even in doping, high-quality plasma processing can be achieved with high efficiency by tilting the substrate at an appropriate angle with respect to the plasma flow and allowing highly excited treatment species to reach the substrate efficiently. I can see what will be done.

実施例4、被処理基板として、Si基板上にダイヤモン
ド膜を形成した基板(直径10φ〔■〕)を用いて、A
rによるスパッタリングで、表面の平滑化を行なった。
Example 4 A substrate with a diamond film formed on a Si substrate (diameter 10φ [■]) was used as the substrate to be processed.
The surface was smoothed by sputtering using r.

第1ガス供給ノズルよりArを100 (mQ/mi 
n)導入し、基板にはDCバイアス電位−100[V]
を印加して行なった。
Ar is supplied from the first gas supply nozzle at 100 mQ/mi
n) A DC bias potential of -100 [V] is introduced into the substrate.
was applied.

他の条件は実施例1と同じである。第11図は633[
nn)の光に対するダイヤモンド膜からの積分球を用い
て測定した反射率のスパッタ時間に対する変化を示した
図である。ECR位置は基板より100〔圓〕離れてい
る。横軸には傾斜角をとった。図中tの値はスパッタ時
間(分)を示す。
Other conditions are the same as in Example 1. Figure 11 shows 633 [
FIG. 3 is a diagram showing changes in reflectance measured using an integrating sphere from a diamond film with respect to sputtering time for light of nn). The ECR position is 100 [rounds] away from the board. The horizontal axis represents the inclination angle. The value of t in the figure indicates sputtering time (minutes).

この結果より、25°〈o〈65°ではスパッタが効率
良くなされ、基板面の平滑化が容易になされていること
がわかる。第12図は、傾斜角45°において、スパッ
タ時間が4分の時の反射率を横軸にECR位置から基板
までの距離に対して示した図である。この結果より、基
板をECR位置に近づけ、高励起のスパッタ種が効率良
く基板に入射させるようにすると、基板面の平滑化が効
率良くなされることがわかる。
This result shows that sputtering can be performed efficiently at 25°<o<65°, and the substrate surface can be easily smoothed. FIG. 12 is a diagram showing the reflectance when the sputtering time is 4 minutes at an inclination angle of 45° and the distance from the ECR position to the substrate on the horizontal axis. This result shows that the substrate surface can be efficiently smoothed by bringing the substrate close to the ECR position so that highly excited sputtering species can efficiently enter the substrate.

以上、本実施例によれば、プラズマ流と基板面法線方向
を隔て、基板を自転させること、及びプラズマの最大生
成位置を少なくとも基板から、処理種の平均自由行程距
離内に位置させると、段差部のつきまわりや埋込み状態
が良好で、かつ高品質の膜形成ができること、及び、段
差部側面のドーピングや基板表面の平滑化が効率なされ
る効果がある。
As described above, according to this embodiment, by separating the plasma flow from the substrate surface normal direction, rotating the substrate, and locating the maximum plasma generation position at least within the mean free path distance of the treated species from the substrate, This has the effect that a high-quality film can be formed with good coverage and embedding of the stepped portion, and that doping on the side surface of the stepped portion and smoothing of the substrate surface can be done efficiently.

尚、上記実施例においては、プラズマ流に対し、基板の
傾斜を変させて行なったが、もちろん、プラズマ流を磁
界あるいは、電界で制御して、基板への入射角を異なら
せても良い。第13図は、第7図に示した装置の付加磁
界コイルをはずし、主磁界コイルの増強を図った装置で
ある。基板は装置中心軸方向に平行に設置する。磁力線
は、主磁界コイル中心口わりにカーブし、基板近傍の磁
力線方向は、基板面に対し約45°の角度とした装置で
ある。第14図は、装置中心軸に対し、片側にのみ付加
磁界コイルを設置して、中心軸に対し、磁力線方向を隔
てた装置である。磁力線方向は、基板近傍で45°とし
たことができる。第15図は、基板ホルダに電位を印加
できるようにした装置で、磁力線ベクトルと電気力線ベ
クトルで定まる方向にプラズマ流が形成できる装置であ
る。以上、上記3つの装置において基板を処理した所、
上記実施例と同じ効果かえられた。
In the above embodiments, the inclination of the substrate was changed with respect to the plasma flow, but of course the plasma flow may be controlled by a magnetic field or an electric field to vary the angle of incidence on the substrate. FIG. 13 shows a device in which the additional magnetic field coil of the device shown in FIG. 7 has been removed and the main magnetic field coil has been strengthened. The substrate is installed parallel to the central axis of the device. The magnetic lines of force are curved around the center of the main magnetic field coil, and the direction of the lines of magnetic force near the substrate is at an angle of approximately 45° with respect to the substrate surface. FIG. 14 shows a device in which an additional magnetic field coil is installed only on one side with respect to the center axis of the device, and is separated from the center axis in the direction of the lines of magnetic force. The direction of the lines of magnetic force can be set at 45° near the substrate. FIG. 15 shows an apparatus that can apply a potential to a substrate holder, and is an apparatus that can form a plasma flow in a direction determined by a magnetic line of force vector and an electric force line vector. Above, the substrates were processed using the above three devices.
The same effect as the above embodiment was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、段差部のつきまわりが良く高品質の膜
形成が著しく効率良くなされるため、層間膜の形成にお
いては耐電圧の向上、配線材においては、配線不良の低
減化が図れる。また、ドーピングや基板表面の平滑化が
効率良くなされるため、処理効率の向上が図れる。この
ため、LSI等の半導体装置製造のスループットの向上
と製造コストの低減化が著しく図れる効果がある。
According to the present invention, a high-quality film with good coverage at step portions can be formed extremely efficiently, so that the withstand voltage can be improved in the formation of an interlayer film, and wiring defects can be reduced in the wiring material. Further, since doping and smoothing of the substrate surface are efficiently performed, processing efficiency can be improved. This has the effect of significantly improving throughput and reducing manufacturing costs in manufacturing semiconductor devices such as LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置主要部を示す図、第2図は装置内
に印加される磁束密度分布図、第3図、第4図は段差部
の被覆度と膜のエッチレートの傾斜角依存性を示す図、
第5図、第6図は膜のエッチレートと絶縁破壊電界のE
CR位置依存性を示す図、第7図、第8図はアルミ膜の
被覆度と断線率の傾斜角依存性を示す図、第9図、第1
0図はドーピング量の傾斜角依存性とプロファイルを示
す図、第11図、第12図は表面反射率の傾斜角とEC
R位置依存性を示す図、第13図、第14図、第15図
は本発明の一形式を示す装置の主要図である。 1・・・基板、2,2′・・・基板回転ホルダ、3・・
・処理室、4・・・プラズマ生成室、5,11・・・ガ
ス供給ノズル、6・・・マイクロ波、7・・・導波管、
8・・・マイクロ波導入窓、9・・・主磁界コイル、1
o、10′・・付加磁界コイル、12・・・排気口、1
3・・・磁力線、14・・・プラズマ流、15・・・E
CR面、16・・・バイアス電位、A ・E CR−基
板距離5o(III11〕、B・E CR−一基板距離
 00 (m11) 、C−ECR一基板距離300 
(m+3 、a・・・段差上面での膜厚、b・・・段差
側面での膜厚、va・・・段差上面膜のエッチレート、
Vb・・・段差側面膜のエッチレート。 (ssnηリヌ)■渚*γ
Fig. 1 is a diagram showing the main parts of the device of the present invention, Fig. 2 is a distribution diagram of the magnetic flux density applied within the device, and Figs. 3 and 4 are the coverage of the stepped portion and the inclination angle of the etch rate of the film. Diagram showing dependencies,
Figures 5 and 6 show the etch rate of the film and the E of the dielectric breakdown electric field.
Figures 7 and 8 are diagrams showing CR position dependence, and Figures 9 and 1 are diagrams showing inclination angle dependence of aluminum film coverage and disconnection rate.
Figure 0 shows the slope angle dependence of the doping amount and the profile, and Figures 11 and 12 show the slope angle and EC of the surface reflectance.
Figures 13, 14, and 15 showing R position dependence are main views of an apparatus showing one type of the present invention. 1... Board, 2, 2'... Board rotating holder, 3...
・Processing chamber, 4... Plasma generation chamber, 5, 11... Gas supply nozzle, 6... Microwave, 7... Waveguide,
8...Microwave introduction window, 9...Main magnetic field coil, 1
o, 10'...Additional magnetic field coil, 12...Exhaust port, 1
3...Magnetic field lines, 14...Plasma flow, 15...E
CR surface, 16...Bias potential, A・E CR-substrate distance 5o (III11), B・E CR-1 substrate distance 00 (m11), C-ECR-1 substrate distance 300
(m+3, a... Film thickness on the top surface of the step, b... Film thickness on the side surface of the step, va... Etch rate of the film on the top surface of the step,
Vb...Etch rate of the step side film. (ssnη Rinnu) ■Nagisa*γ

Claims (1)

【特許請求の範囲】 1、荷電粒子のサイクロトロン運動を利用してプラズマ
を生成し、該プラズマ種を基板へ到達させて基板を処理
するプラズマ処理方法において、電界あるいは磁界の作
用により形成されるプラズマ流の流れ方向と被処理基板
平面法線のなす角を25°から65°の内としてプラズ
マ処理することを特徴としたプラズマ処理装置。 2、上記被処理基板を自転させることを特徴とした特許
請求の範囲第1項記載のプラズマ処理装置。 3、上記サイクロトロン運動により生成したプラズマ種
が平均自由行程距離内に基板に到達する位置に、該プラ
ズマ種の最大生成点を位置させることを特徴とした特許
請求の範囲第1項または第2項記載のプラズマ処理装置
。 4、上記プラズマ流の流れ方向は導入高周波の伝播方向
とほぼ一致させ、該基板面とのなす角は基板を傾けるこ
とにより制御することを特徴とした特許請求の範囲第1
項及至第3項記載のプラズマ処理装置。 5、上記処理基板面の法線と導入高周波の伝播方向はほ
ぼ一致させ、印加する磁力線の方向を、少なくとも基板
近傍付近では該マイクロ波伝播方向と隔てることにより
、基板へプラズマ流を上記角を有して入射させることを
特徴とした特許請求の範囲第1項及至第3項記載のプラ
ズマ処理装置。 6、上記処理基板面と導入高周波の伝播方向はほぼ一致
させ、印加する磁力線の方向を、少なくとも基板近傍付
近では該導入高周波伝播方向と隔てることにより、基板
へプラズマ流を上記角を有して入射させることを特徴と
した特許請求の範囲第1項及至第3項記載のプラズマ処
理装置。 7、上記処理基板面と導入高周波の伝播方向、及び磁力
線方向をほぼ一致させ、かつ、真空容器に印加する電気
力線の方向は、少なくとも基板近傍では基板法線方向と
ほぼ一致させることにより、基板へプラズマ流を上記角
を有して入射させることを特徴とした特許請求の範囲第
1項及至第3項記載のプラズマ処理装置。 8、上記角が可変であることを特徴とした特許請求の範
囲第1項及至第7項に記載のプラズマ処理装置。 9、上記、基板を自転させる機構を真空容器内に設置し
たことを特徴としたプラズマ処理装置。 10、特許請求の範囲第1項及至第9項に記載の装置に
おいて、少なくとも基板に膜形成することを特徴とした
プラズマ処理装置。 11、特許請求の範囲第1項及至第9項記載の装置にお
いて、少なくとも基板表面に元素を添加させることを特
徴としたプラズマ処理装置。 12、特許請求の第1項及至第9項記載の装置において
、少なくとも基板をエッチングすることを特徴としたプ
ラズマ処理装置。 13、特許請求の範囲第1項及至第9項に記載の装置に
おいて、基板表面上に有する無秩序な段差部を少なくと
も平滑化させることを特徴としたプラズマ処理装置。
[Claims] 1. In a plasma processing method in which plasma is generated using cyclotron motion of charged particles and the plasma species are caused to reach a substrate to process the substrate, plasma formed by the action of an electric or magnetic field. A plasma processing apparatus characterized in that plasma processing is performed with the angle between the flow direction of the flow and the normal to the plane of the substrate to be processed being within a range of 25° to 65°. 2. The plasma processing apparatus according to claim 1, wherein the substrate to be processed is rotated. 3. Claims 1 or 2, characterized in that the point of maximum generation of plasma species is located at a position where the plasma species generated by the cyclotron motion reach the substrate within a mean free path distance. The plasma processing apparatus described. 4. The flow direction of the plasma flow is made to substantially match the propagation direction of the introduced high frequency wave, and the angle formed with the substrate surface is controlled by tilting the substrate.
The plasma processing apparatus according to items 1 to 3. 5. By making the normal line of the surface of the substrate to be processed and the propagation direction of the introduced high-frequency wave almost coincident, and by separating the direction of the applied magnetic lines of force from the microwave propagation direction at least in the vicinity of the substrate, the plasma flow to the substrate can be directed around the above-mentioned angle. 4. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus comprises: 6. The direction of propagation of the introduced high-frequency waves is made to substantially match the surface of the processed substrate, and the direction of the applied magnetic lines of force is separated from the propagation direction of the introduced high-frequency waves at least in the vicinity of the substrate, thereby directing the plasma flow toward the substrate at the angles described above. The plasma processing apparatus according to any one of claims 1 to 3, characterized in that the plasma processing apparatus is made to be incident. 7. By making the direction of propagation of the introduced high frequency wave and the direction of the lines of magnetic force substantially coincide with the surface of the processing substrate, and by making the direction of the lines of electric force applied to the vacuum container substantially match the normal direction of the substrate at least in the vicinity of the substrate, 4. The plasma processing apparatus according to claim 1, wherein the plasma flow is incident on the substrate at the angle described above. 8. The plasma processing apparatus according to claims 1 to 7, wherein the angle is variable. 9. A plasma processing apparatus as described above, characterized in that the mechanism for rotating the substrate is installed in a vacuum container. 10. A plasma processing apparatus according to claims 1 to 9, characterized in that a film is formed on at least a substrate. 11. A plasma processing apparatus according to claims 1 to 9, characterized in that an element is added to at least the surface of the substrate. 12. A plasma processing apparatus according to any one of claims 1 to 9, characterized in that it etches at least a substrate. 13. A plasma processing apparatus according to any one of claims 1 to 9, characterized in that the irregular step portions on the surface of the substrate are at least smoothed.
JP2982089A 1989-02-10 1989-02-10 Plasma treating device Pending JPH02209485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2982089A JPH02209485A (en) 1989-02-10 1989-02-10 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2982089A JPH02209485A (en) 1989-02-10 1989-02-10 Plasma treating device

Publications (1)

Publication Number Publication Date
JPH02209485A true JPH02209485A (en) 1990-08-20

Family

ID=12286662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2982089A Pending JPH02209485A (en) 1989-02-10 1989-02-10 Plasma treating device

Country Status (1)

Country Link
JP (1) JPH02209485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700326A (en) * 1992-02-27 1997-12-23 Canon Kabushiki Kaisha Microwave plasma processing apparatus
JP2006196752A (en) * 2005-01-14 2006-07-27 Ulvac Japan Ltd System and method for doping plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700326A (en) * 1992-02-27 1997-12-23 Canon Kabushiki Kaisha Microwave plasma processing apparatus
JP2006196752A (en) * 2005-01-14 2006-07-27 Ulvac Japan Ltd System and method for doping plasma

Similar Documents

Publication Publication Date Title
EP0478174B1 (en) Silicon dioxide deposition method
US4668365A (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
JPS61218134A (en) Device and method for forming thin film
JPH0740569B2 (en) ECR plasma deposition method
JPH09106899A (en) Plasma cvd device and method, and dry etching device and method
JPH03159235A (en) Etching and etching device
US5609774A (en) Apparatus for microwave processing in a magnetic field
JPH06151385A (en) Method for plasma-etching of siox material and method for generation of interlayer metal connection part at inside of integrated circuit
US20030060054A1 (en) Plasma treatment method
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
KR100521290B1 (en) Dry-etching device and method of producing semiconductor devices
JPH02209485A (en) Plasma treating device
JPH01184827A (en) Method and device for microwave plasma processing
JP4141021B2 (en) Plasma deposition method
JPH1192968A (en) Dry etching device and plasma chemical vapor phase deposition apparatus
JP2515833B2 (en) Microwave plasma processing method
JP2001073150A (en) Microwave supply device and plasma treatment device as well treatment therefor
JP2750430B2 (en) Plasma control method
JP2643443B2 (en) Dry thin film processing method
JP3336402B2 (en) Thin film formation method
JPH0817801A (en) Ecr plasma etching method of diamond thin film
JPH06275600A (en) Method and device for manufacturing thin film
JP2700890B2 (en) Plasma processing equipment
JPH06145974A (en) Vacuum film forming device and vacuum film formation
JPH08165584A (en) Plasma treatment