JPH0220917B2 - - Google Patents

Info

Publication number
JPH0220917B2
JPH0220917B2 JP15837481A JP15837481A JPH0220917B2 JP H0220917 B2 JPH0220917 B2 JP H0220917B2 JP 15837481 A JP15837481 A JP 15837481A JP 15837481 A JP15837481 A JP 15837481A JP H0220917 B2 JPH0220917 B2 JP H0220917B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerator
signal
search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15837481A
Other languages
Japanese (ja)
Other versions
JPS5860178A (en
Inventor
Masao Asada
Einosuke Asahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Kogyo Co Ltd
Original Assignee
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Kogyo Co Ltd filed Critical Tokai Kogyo Co Ltd
Priority to JP15837481A priority Critical patent/JPS5860178A/en
Publication of JPS5860178A publication Critical patent/JPS5860178A/en
Publication of JPH0220917B2 publication Critical patent/JPH0220917B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷凍ユニツトを複数台備えた冷凍冷蔵
倉庫の運転制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control system for a refrigerated warehouse equipped with a plurality of refrigeration units.

冷蔵倉庫業界は附加価値の低い物品の収納保管
という業務の性質もあり、電気料金のコストダウ
ンは経営利益の向上に必要不可欠なものである。
The refrigerated warehouse industry is involved in the storage and storage of goods with low added value, and reducing electricity costs is essential to improving business profits.

一方、最近の冷蔵倉庫では昭和50年の法規改正
後、冷凍機として分散型(ユニツトタイプ)が数
多く採用されている。かかる冷凍機では冷やし込
みのためフル回転が行われる場合があり、契約電
力は設備容量最大で考慮しなければならず、契約
電力も大きくなる。
On the other hand, in recent cold storage warehouses, many decentralized (unit type) refrigerators have been adopted after the legal reform in 1975. Such refrigerators may operate at full speed for cooling, and the contracted power must be considered at the maximum installed capacity, which increases the contracted power.

また、定常状態に入つてからの冷凍機の運転状
態は過去のデータから契約電力の約40〜60%程度
の使用電力量で充分賄われている。
Furthermore, past data shows that the operating state of the refrigerator after it enters a steady state is sufficiently covered by the amount of electricity used, which is about 40 to 60% of the contracted electricity.

本発明の目的は上記の点を考慮し、冷凍冷蔵倉
庫で使用する複数の冷凍ユニツトを効率よい状態
に台数制御し、最大電力消費を抑え、電気基本料
金を減らしてコストダウンをなすことにある。
The purpose of the present invention is to efficiently control the number of multiple refrigeration units used in refrigerated warehouses in consideration of the above points, to suppress maximum power consumption, and to reduce costs by reducing basic electricity charges. .

しかしてこの目的は本発明によれば、冷凍ユニ
ツトを複数台備えた冷凍冷蔵倉庫において、まず
庫内温度を検索し、それが設定温度上限以上の場
合には各冷凍ユニツトの圧縮器を始動し、次いで
全圧縮器の実際全消費電流と全電流ピーク設定値
とを比較し、前者の方が多いときに再度庫内温度
を個別に検索しそれが設定温度上限と下限値の間
にある場合、下限値近い庫内の当該圧縮器から順
に個別にアンロード運転することにより達成され
る。
However, according to the present invention, the purpose of this lever is to first search for the internal temperature in a refrigerated warehouse equipped with a plurality of refrigeration units, and to start the compressor of each refrigeration unit if it is above the set temperature upper limit. Then, compare the actual total current consumption of all compressors with the total current peak setting value, and if the former is higher, search for the internal temperature individually again, and if it is between the upper and lower set temperature limits. This is achieved by individually unloading the compressors in the refrigerator that are close to the lower limit value.

以下、図面について本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の運転制御方式を使用した冷凍
冷蔵倉庫の横断平面図、第2図は同上縦断正面図
で、冷凍冷蔵倉庫1の各階天井には冷気吹出用の
ダクト2が配設され、このダクト2は冷却器3に
連結し、冷却器3は室外に置かれた後述の圧縮器
10を含むコンデンシングユニツト4に接続して
いる。
Fig. 1 is a cross-sectional plan view of a refrigerated warehouse using the operation control system of the present invention, and Fig. 2 is a longitudinal sectional front view of the same. , this duct 2 is connected to a cooler 3, and the cooler 3 is connected to a condensing unit 4 including a compressor 10, which will be described later, placed outdoors.

各室に温度検出器5を設置し、また、1階の室
外に冷凍機監視盤6と節電システム盤7を設け
る。
A temperature detector 5 is installed in each room, and a refrigerator monitoring panel 6 and a power saving system panel 7 are installed outdoors on the first floor.

第3図は本発明の実施例を示すブロツク回路図
を示し、上記温度検出器5の検出信号Aと通常の
冷凍温度を定める設定温度信号Bとを比較回路8
に導入する。
FIG. 3 shows a block circuit diagram showing an embodiment of the present invention, in which a comparison circuit 8 compares the detection signal A of the temperature detector 5 with the set temperature signal B which determines the normal refrigeration temperature.
to be introduced.

この比較回路8は上記検出信号Aと設定温度信
号Bとを比較し、信号Aの値が信号Bの上限値よ
りも大きい場合及び信号Aの値が信号Bの下限値
に近い場合にそれぞれ出力信号を発する回路で、
比較回路8の出力信号Cを圧縮器駆動回路9に導
入し、同回路9の駆動信号Dを圧縮器10に導入
する。
This comparison circuit 8 compares the detection signal A and the set temperature signal B, and outputs signals when the value of the signal A is larger than the upper limit value of the signal B and when the value of the signal A is close to the lower limit value of the signal B. A circuit that emits a signal.
The output signal C of the comparison circuit 8 is introduced into a compressor drive circuit 9, and the drive signal D from the same circuit 9 is introduced into the compressor 10.

また、比較回路8の異常検出信号Eを警報装置
11に導入する。この警報装置11にはブザー等
を用いるが、温度検出器5からの検出信号A′を
検出回路18に導入し、これを受ける該検出回路
18の圧縮器不能信号Jも警報装置11に導入す
る。
Further, the abnormality detection signal E from the comparison circuit 8 is introduced into the alarm device 11. This alarm device 11 uses a buzzer or the like, but the detection signal A' from the temperature detector 5 is introduced into the detection circuit 18, and the compressor failure signal J from the detection circuit 18 that receives this is also introduced into the alarm device 11. .

一方、圧縮器10への通電回路に設ける変流器
等からなる消費電力検出器12の電力検出信号F
と経験則から割出した設定消費電力信号Gを比較
回路13に導入する。
On the other hand, the power detection signal F of the power consumption detector 12 consisting of a current transformer etc. provided in the energizing circuit to the compressor 10
A set power consumption signal G determined from empirical rules is introduced into the comparison circuit 13.

上記比較回路13は信号Fと信号Gの値を比較
して前者が大きいときに出力信号を発する回路
で、この比較回路13の出力信号Hを圧縮器駆動
回路9に導入する。
The comparison circuit 13 is a circuit that compares the values of the signal F and the signal G and issues an output signal when the former is larger.The output signal H of the comparison circuit 13 is introduced into the compressor drive circuit 9.

第5図は本発明の冷却器3部分の説明図で、冷
却器3の冷却コイル3aの前後に風圧測定器1
5,16を設置し、この測定器15,16を変換
器17に接続し、変換器17のデフロスト信号I
を上記圧縮器駆動回路9に導入する。
FIG. 5 is an explanatory diagram of the 3 parts of the cooler 3 of the present invention.
5, 16 are installed, and these measuring devices 15, 16 are connected to the converter 17, and the defrost signal I of the converter 17 is
is introduced into the compressor drive circuit 9.

この変換器17は演算比較回路を含み、測定器
15と16の風圧差が一定値以上になつたときに
出力信号Iを発するものである。
This converter 17 includes an arithmetic comparison circuit and emits an output signal I when the difference in wind pressure between the measuring devices 15 and 16 exceeds a certain value.

次に使用法について説明する。 Next, how to use it will be explained.

第4a図〜第4c図は本発明のフローチヤート
を示す。まず、スタートするに際し、全消費電流
ピーク設定値I0の設定と、庫内温度の上限、下限
値を設定しておく。この場合、下限値の設定温度
をTとすると上限値TSはこの設定温度Tより5
℃程高い温度となる。
Figures 4a-4c show a flowchart of the present invention. First, when starting, set the total current consumption peak set value I 0 and the upper and lower limits of the internal temperature. In this case, if the set temperature of the lower limit value is T, the upper limit value T S is 5
The temperature will be about ℃ higher.

そして、温度検出器5でまず複数個ある庫内の
それぞれの庫内温度を検索しイ、この温度TN
通常必要とされる設定温度の上限値TSよりも高
いときは比較回路8が該当冷蔵庫の圧縮器起動指
令を行うための出力信号Cを圧縮器駆動回路9に
導入し、回路9はこの信号Cを受けて駆動信号D
により当該冷蔵庫の圧縮器10を始動するロ。前
記庫内温度の検索は第2図に示すような各フロア
若しくは区画された冷蔵庫毎に順次行われ、TS
≦TNの条件を満たしたものから次のステツプへ
と進む。
Then, the temperature detector 5 first searches for the temperature inside each of the multiple refrigerators, and when this temperature T N is higher than the normally required upper limit value T S of the set temperature, the comparison circuit 8 An output signal C for instructing the compressor of the refrigerator to start is introduced into the compressor drive circuit 9, and the circuit 9 receives this signal C and outputs the drive signal D.
2. Start the compressor 10 of the refrigerator. The search for the temperature inside the refrigerator is performed sequentially for each floor or compartmented refrigerator as shown in Figure 2 .
Steps that satisfy the condition ≦T N proceed to the next step.

当該圧縮器10が始動すると、電力検出器12
は各圧縮器10の消費電流を検出して電流検出信
号Fを比較回路13に導入する。
When the compressor 10 starts, the power detector 12
detects the current consumption of each compressor 10 and introduces the current detection signal F to the comparison circuit 13.

比較回路13では各検出器12の検出値を総合
して、電力施設全消費電流を出し、この値I1と予
め設定されている電力施設全消費電流ピーク設定
値I0とを比較し、I0<I1となつた場合ニ、温度検
出器5が作動し、再度各庫内温度を測定する。
The comparison circuit 13 synthesizes the detected values of each detector 12 to obtain the power facility total current consumption, compares this value I 1 with a preset power facility total current consumption peak set value I 0 , and calculates I When 0 < I 1 , the temperature detector 5 is activated and the temperature inside each refrigerator is measured again.

このように各庫内の温度がそれぞれ検出され
ホ、その温度が設定した設定温度の上限値TS
りもさらに一定量付加した温度(例えばTS+3
℃)よりも高い場合はヘ、異常温度と判別して警
報装置11へ出力し庫内温度異常警報を行う。
In this way, the temperature inside each refrigerator is detected, and the temperature is increased by a certain amount (for example, T S +3) above the set temperature upper limit T S.
℃), it is determined that the temperature is abnormal and is output to the alarm device 11 to issue an abnormal temperature alarm inside the refrigerator.

一方、前記ステツプへで庫内温度がすべてTS
+一定温度(3℃)よりも大きくないことを条件
として各々検出した冷蔵庫の庫内温度T1″℃〜
TN″℃のうち一番下限値Tに近いものを検索する
チ。
On the other hand, when going to the above step, the temperature inside the refrigerator is all T S.
+Registered refrigerator internal temperature T 1 ″℃~, provided that it is not higher than a certain temperature (3℃)
Search for the one closest to the lower limit T among T N ″°C.

一方、この検索した温度が設定温度の上限値よ
りも低いことを条件にリ、再度、検索庫内温度
TNと設定下限値Tを比較し、同一又は検索庫内
温度が設定下限値よりも小さい(TN″≦T)場合
はヌ、当該圧縮器10を停止してしまうル。
On the other hand, if this searched temperature is lower than the upper limit of the set temperature, then search again for the internal temperature.
TN is compared with the set lower limit value T, and if the same or the searched chamber temperature is smaller than the set lower limit value (T N ″≦T), the compressor 10 is stopped.

次に検索温度が下限値と等しくない場合、当該
圧縮器10がロード運転が否かを判別しヲ、ロー
ド運転でない場合はステツプルで当該圧縮器10
を停止し、ロード運転であれば圧縮器駆動回路9
はアンローデング運転指令を内容とする駆動信号
Dを当該圧縮器10に導入しワ、圧縮器10はア
ンロード運転されるカ。
Next, if the search temperature is not equal to the lower limit value, it is determined whether or not the compressor 10 is in load operation, and if it is not in load operation, the compressor 10 is
If the load operation is stopped, the compressor drive circuit 9
In this case, a drive signal D containing an unloading operation command is introduced into the compressor 10, and the compressor 10 is operated in an unloading operation.

そして、このように当該圧縮器10がアンロー
ド運転されていることは表示されるヨ。
In this way, it is displayed that the compressor 10 is being operated in unload mode.

以上のごとく圧縮器10は庫内温度が設定の上
限値と下限値のあること及び実際の全消費電流I1
が設定ピーク値I0よりも大となつていることによ
りアンロード運転されるものであり、設定の下限
値に近い庫内温度のものすなわち冷却の必要性の
低い個所の圧縮器10からアンローデングしてい
く。
As mentioned above, the compressor 10 has a set upper and lower limit for the internal temperature and the actual total current consumption I 1
is greater than the set peak value I0 , and unloading is performed from the compressor 10 whose internal temperature is close to the set lower limit value, that is, where the need for cooling is low. To go.

そして、全ての圧縮器10がアンローデング運
転されるまではその都度全消費電流I1′と設定ピ
ーク値が比較され、I0〜I1′を条件にタ、すでにア
ンローデング運転している圧縮器が受け持つ冷蔵
庫以外の各庫内温度の中で設定下限値に近いもの
の検索を行いレ、ステツプリへともどりリ〜レの
手順が繰返される。
Then, until all the compressors 10 are in unloading operation, the total current consumption I 1 ' and the set peak value are compared each time, and under the condition of I 0 to I 1 ', the compressors that are already in unloading operation are compared. Among the internal temperatures of the refrigerators other than the one in charge, a search is made for one that is close to the set lower limit value, and the process returns to Step 3 to repeat the steps.

一方、すべての圧縮器10をアンローデングし
ても全消費電流I1″がなお、電流ピーク設定値I0
超過している場合にはソ、(この検出は一定回数
スキヤニングされる)、ピークカツトの不能表示
警報が出されツ、管理者が各庫の温度指示計を見
て支障のない圧縮器を手動で停止するネ。
On the other hand, if the total current consumption I 1 ″ still exceeds the current peak set value I 0 even after all compressors 10 are unloaded, (this detection is scanned a certain number of times), the peak cut When the failure display alarm is issued, the manager looks at the temperature indicator in each warehouse and manually stops the compressors that are not causing any problems.

かかるピークカツトの状態が生じる原因として
は、常温の荷が大量に冷蔵庫に運び込まれる時な
どで冷却能力が充分でアンロード運転がかからな
いことなどが考えられる。
A possible cause of such a peak cut state is that when a large amount of room-temperature cargo is transported to a refrigerator, the cooling capacity is sufficient and no unloading operation is required.

そして、自動的に一律に停止するのではなく手
動で停止するようにしたのは荷の重要性で停止を
選択するためである。
The reason why the machines are stopped manually instead of automatically and uniformly is because stopping is selected depending on the importance of the load.

また、前記ステツプタで実際の全消費電流
I1′が電流ピーク設定値I0よりも大きくない場合、
各冷蔵庫の庫内温度を検索し、今度は各冷蔵庫の
温度で庫内温度が設定温度上限値TSに一番近い
ものを検出するウ。これはアンロード運転を終了
する手順であり、当該検出された冷蔵庫の圧縮器
がアンロード運転か否かを判断しノ、アンロード
運転をしている場合にはその圧縮器にロード運転
を指令する。このようにして、再度温度検索でI0
<T1(検索温度)でないことを条件にアンロード
運転からロード運転に変更した圧縮器以外のもの
で次に設定温度上限値に近いものをロード指令し
ていき、最後に全ての圧縮器10をロード運転に
なるまで繰り返すオ。
Also, the actual total current consumption in the stepper
If I 1 ′ is not greater than the current peak set value I 0 , then
Search for the internal temperature of each refrigerator, and then find the one whose internal temperature is closest to the set temperature upper limit T S. This is the procedure to end the unloading operation, and it is determined whether the compressor of the detected refrigerator is in the unloading operation or not, and if it is in the unloading operation, the compressor is instructed to start the loading operation. do. In this way, I 0 in temperature search again
<T 1 (search temperature), other than the compressor that was changed from unload operation to load operation, the next one that is close to the set temperature upper limit is given a load command, and finally all compressors 10 Repeat until the load operation is started.

ところで前記ステツプロで圧縮器の起動指令が
あつても当該圧縮器が起動しない場合、当該冷蔵
庫の庫内温度を検索し、設定温度の上限値よりも
庫内温度が高いことを数回のスキヤニングで把握
した場合はク、圧縮器10が故障であると判断し
て圧縮器運転異常警報表示を行う。
By the way, if the compressor does not start even if there is a command to start the compressor in StepPro, it will search for the internal temperature of the refrigerator and find out by scanning several times that the internal temperature is higher than the upper limit of the set temperature. If detected, it is determined that the compressor 10 is at fault and a compressor operation abnormality alarm is displayed.

また、前記ステツプニで、実際の全消費電流I1
がピーク設定値I0より大きくない場合、各庫内温
度を検索し、その温度が設定温度の下限値に等し
いかそれよりも低い場合ヤ、充分庫内は冷却され
ているとして該当圧縮器を停止する。これに対
し、庫内温度の方が高い場合は、圧縮器が運転し
ている冷蔵庫の庫内温度を順次検索し続ける。
Also, in the above step, the actual total current consumption I 1
is not greater than the peak set value I 0 , the temperature inside each refrigerator is searched, and if that temperature is equal to or lower than the lower limit of the set temperature, the corresponding compressor is determined to be sufficiently cooled inside the refrigerator. Stop. On the other hand, if the internal temperature is higher, the compressor continues to sequentially search for the internal temperature of the refrigerator in operation.

一方、ステツプリにおいて、検索温度が設定上
限値よりも低くない場合、設定温度下限値に一番
近い冷蔵庫の次に近い冷蔵庫の庫内温度を検索し
マ、これを繰り返しすべての庫内の温度が上限値
を超過する場合にピークカツトが不能の場合の手
順に移行する。
On the other hand, if the searched temperature is not lower than the set upper limit, the step search searches for the internal temperature of the refrigerator closest to the set temperature lower limit and then the next closest refrigerator, and repeats this process until all internal temperatures are reached. If the upper limit is exceeded, proceed to the procedure when peak cutting is impossible.

第6図は上記運転制御の途中でデフロスト運転
する場合のフローチヤートを示し、冷却器コイル
の風圧を監視して風圧測定器15と16の差圧が
一定値以上に達した場合に、デフロスト開始指令
として変換器17はデフロスト信号Iを圧縮器駆
動回路9に送り、回路9はオフ信号を内容とする
出力信号Dを圧縮器10に送り圧縮器10は停止
する。
FIG. 6 shows a flowchart when defrosting operation is performed in the middle of the above operation control, and when the wind pressure of the cooler coil is monitored and the differential pressure between wind pressure measuring devices 15 and 16 reaches a certain value or more, defrosting is started. As a command, converter 17 sends a defrost signal I to compressor drive circuit 9, circuit 9 sends an output signal D containing an off signal to compressor 10, and compressor 10 is stopped.

この状態で、デフロストが開始され冷却コイル
3aにホツトガスや温水が散布され霜か溶けると
風圧測定器15と16の差圧は縮まり、その結果
デフロスト完了指令として変換器17からのデフ
ロスト信号Iもなくなり圧縮器10は再び始動す
る。
In this state, defrost is started and hot gas or hot water is sprayed on the cooling coil 3a, and when the frost melts, the differential pressure between the wind pressure measuring devices 15 and 16 decreases, and as a result, the defrost signal I from the converter 17 as a defrost completion command also disappears. Compressor 10 is started again.

この時、温度検出器5で庫内温度を測定し、以
後第4図の手順で運転制御が行われる。
At this time, the temperature inside the refrigerator is measured by the temperature detector 5, and the operation is then controlled according to the procedure shown in FIG.

以上述べたように本発明の冷凍冷蔵倉庫の運転
制御方式は、冷し込みを効率よく行い、その後に
冷却の必要性の少ない圧縮器を選択してアンロー
ド運転させることにより、従来無駄に使用されて
いた消費電力を約40%〜60%も削減してコストダ
ウンを図ることができるものである。
As described above, the operation control system for a refrigerated warehouse according to the present invention efficiently performs cooling, and then selects a compressor that requires less cooling and performs unloading operation, thereby eliminating the waste of energy previously used. It is possible to reduce power consumption by approximately 40% to 60%, resulting in cost reductions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の運転制御方式を用いた冷凍冷
蔵倉庫の横断平面図、第2図は同上縦断正面図、
第3図は本発明の実施例を示すブロツク回路図、
第4a図、第4b図、第4c図はフローチヤー
ト、第5図は冷却器部分の説明図、第6図はデフ
ロスト運転のフローチヤートである。 1……冷凍冷蔵倉庫、2……ダクト、3……冷
却器、3a……冷却コイル、4……コンデンシン
グユニツト、5……温度検出器、6……冷凍機監
視盤、7……節電システム盤、8……比較回路、
9……圧縮器駆動回路、10……圧縮器、11…
…警報装置、12……電力検出器、13……比較
回路、15,16……風圧測定器、17……変換
器、18……検出回路。
FIG. 1 is a cross-sectional plan view of a refrigerated warehouse using the operation control method of the present invention, and FIG. 2 is a vertical cross-sectional front view of the same.
FIG. 3 is a block circuit diagram showing an embodiment of the present invention;
4a, 4b, and 4c are flowcharts, FIG. 5 is an explanatory diagram of the cooler portion, and FIG. 6 is a flowchart of defrost operation. 1... Refrigerated warehouse, 2... Duct, 3... Cooler, 3a... Cooling coil, 4... Condensing unit, 5... Temperature detector, 6... Freezer monitoring panel, 7... Power saving System board, 8...comparison circuit,
9... Compressor drive circuit, 10... Compressor, 11...
... Alarm device, 12 ... Power detector, 13 ... Comparison circuit, 15, 16 ... Wind pressure measuring device, 17 ... Converter, 18 ... Detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍ユニツトを複数台備えた冷凍冷蔵倉庫に
おいて、まず庫内温度を検索し、それが設定温度
上限値以上の場合には各冷凍ユニツトの圧縮器を
始動し、次いで全圧縮器の実際全消費電流と全電
流ピーク設定値とを比較し、前者の方が多いとき
に再度庫内温度を個別に検索しそれが設定温度上
限と下限値の間にある場合、下限値近い庫内の当
該圧縮器から順に個別にアンロード運転すること
を特徴とする冷凍冷蔵倉庫の運転制御方式。
1 In a refrigerated warehouse equipped with multiple refrigeration units, the temperature inside the warehouse is first searched, and if it is above the set temperature upper limit, the compressor of each refrigeration unit is started, and then the actual total consumption of all compressors is Compare the current and the total current peak set value, and if the former is higher, search for the temperature inside the refrigerator individually again, and if it is between the upper and lower set temperature limits, check the compression in the refrigerator near the lower limit. An operation control system for a frozen and refrigerated warehouse that is characterized by unloading the containers one by one.
JP15837481A 1981-10-05 1981-10-05 Control system of operation of freezing and refrigerating warehouse Granted JPS5860178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15837481A JPS5860178A (en) 1981-10-05 1981-10-05 Control system of operation of freezing and refrigerating warehouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15837481A JPS5860178A (en) 1981-10-05 1981-10-05 Control system of operation of freezing and refrigerating warehouse

Publications (2)

Publication Number Publication Date
JPS5860178A JPS5860178A (en) 1983-04-09
JPH0220917B2 true JPH0220917B2 (en) 1990-05-11

Family

ID=15670301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15837481A Granted JPS5860178A (en) 1981-10-05 1981-10-05 Control system of operation of freezing and refrigerating warehouse

Country Status (1)

Country Link
JP (1) JPS5860178A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634811B2 (en) * 2010-09-30 2014-12-03 三洋電機株式会社 Showcase

Also Published As

Publication number Publication date
JPS5860178A (en) 1983-04-09

Similar Documents

Publication Publication Date Title
JP3080978B2 (en) Method and apparatus for monitoring refrigeration system for transportation
US4663725A (en) Microprocessor based control system and method providing better performance and better operation of a shipping container refrigeration system
EP2643177B1 (en) Current limit control on a transport refrigeration system
US4510767A (en) Cold storage and refrigeration system
US5136856A (en) Cooling system
CN202284880U (en) Cold storage refrigerating system
US5003786A (en) Refrigerating apparatus
JPH0220917B2 (en)
JPH10339546A (en) Demand control device for freezer
WO2013061459A1 (en) Energy-saving system for showcase, refrigerator and freezer
US20220194175A1 (en) Transport refrigeration systems
JPH1019395A (en) Operating system of parallel compression type refrigerating machine equipped with two inverters
CN111473581A (en) Accurate temperature difference control system of constant temperature storehouse
JPH02143054A (en) Controlling method for compressor in refrigerator
JP3208925B2 (en) Refrigeration equipment
JPH0233951B2 (en) REITOSOCHINOSEIGYOHOHO
KR19980015387A (en) How to operate the refrigerator
JPH04327774A (en) Food storing device and monitoring system therefor
CN212081745U (en) Novel accurate difference in temperature control system in constant temperature storehouse
JP2993408B2 (en) Temperature recording device inside the container device
JPH05215450A (en) Quenching device and method
JP2003214746A (en) Operation control method for show case
JPS61175465A (en) Discriminator for abnormality of temperature of refrigerator
JP2706365B2 (en) Land transportation refrigeration equipment
JPH1038396A (en) Method of controlling freezer