JPH02208982A - Electrode for microparticle - Google Patents

Electrode for microparticle

Info

Publication number
JPH02208982A
JPH02208982A JP1028740A JP2874089A JPH02208982A JP H02208982 A JPH02208982 A JP H02208982A JP 1028740 A JP1028740 A JP 1028740A JP 2874089 A JP2874089 A JP 2874089A JP H02208982 A JPH02208982 A JP H02208982A
Authority
JP
Japan
Prior art keywords
electrode
ultrafine particles
substrate
electrodes
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028740A
Other languages
Japanese (ja)
Inventor
Nobuyuki Saito
信之 斉藤
Shinya Mishina
伸也 三品
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1028740A priority Critical patent/JPH02208982A/en
Publication of JPH02208982A publication Critical patent/JPH02208982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the characteristics of elements in dispersion so as to improve them in reliability of reproducibility, productivity, and reliability and to reduce them in cost by a method wherein the end face of the electrode in contact with microparticles is tilted against the normal of a substrate. CONSTITUTION:Ni thin films 2 and 2' of an electrode for microparticles are formed on an insulating board 1 as thick as specified through a vacuum evaporation method to serve as a positive resist pattern of specified thickness. Then, the insulating board is subjected to ion milling by Ar<+>. At this point, the ion milling is executed while a board stage holding the board 1 is rotated as it is tilted against the direction from which Ar<+> arrives, whereby a pattern is formed in such a state that the end faces 2t and 2t' of the electrode are sloping. The milling is performed under such a condition that ths degree of vacuum, ion source pressure, and ion current density are specified. And, the end face of the electrode is tilted against the normal of the insulating board 1 by an angle of 20 degree or more, and the depth of microparticles is made half the height of the insulating board 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電極間に超微粒子を堆積させて、超微粒子物
性を測定可能にしたり、8士丑ゴ超微粒子に電界を印加
させて、超微粒子に機能を発現せしめるための超微粒子
素子に用いられる電極に関し、対向する電極端部の面を
基板の法線方向に対して傾けたことによって、電極と超
微粒子間の電気的接触の信頼性が高く、常に安定した特
性の素子を良好な歩留りで製造できるようにした微粒子
用電極に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention enables measurement of physical properties of ultrafine particles by depositing ultrafine particles between electrodes, or by applying an electric field to ultrafine particles. Regarding the electrodes used in ultrafine particle devices that allow ultrafine particles to express their functions, the electrical contact between the electrodes and the ultrafine particles is improved by tilting the opposing electrode end surfaces with respect to the normal direction of the substrate. The present invention relates to an electrode for fine particles that enables the production of devices with high properties and always stable characteristics at a good yield.

[従来の技術] 超微粒子は、産業界に極めて広範な応用分野があるが、
バルク材料に見られない性質が数々発見されており、有
望な基盤材料である。製造方法も物理的方法や化学的方
法があるが、減圧された不活性ガス雰囲気中で原材料を
蒸発させるガス中蒸発法や、原材料ガスをプラズマ放電
により分解する方法等が周知である。
[Prior art] Ultrafine particles have an extremely wide range of applications in industry;
Numerous properties have been discovered that are not found in bulk materials, making it a promising base material. There are physical methods and chemical methods for manufacturing, and well-known methods include an evaporation method in which the raw material is evaporated in a reduced pressure inert gas atmosphere, and a method in which the raw material gas is decomposed by plasma discharge.

応用面では、長期的観点に立って、この材料技術確立に
対し社会的要請が高まっている。そして、例えば情報処
理分野における磁気記録媒体、化学分野での触媒や各種
センサ材料、あるいはスイッチング素子、メモリー素子
、ダイオード発光素子等の電子回路素子や電気能動素子
への利用が進められている。これらの利用に際しては、
超微粒子を基板上に直接「堆積膜」に形成して用いられ
ている。
In terms of applications, from a long-term perspective, there is a growing social demand for the establishment of this material technology. For example, their use is progressing in magnetic recording media in the information processing field, catalysts and various sensor materials in the chemical field, and electronic circuit elements and electrically active elements such as switching elements, memory elements, and diode light emitting elements. When using these,
Ultrafine particles are used by forming a "deposited film" directly on a substrate.

[発明が解決しようとする課題] しかしながら、このような従来技術においては、一般に
ガス中蒸発法やプラズマ放電等により生成した超微粒子
を素子基板上に膜状あるいは堆積膜として形成するにあ
たって幾何学的な問題点を生じる。すなわち第2図に示
すように、基板i上の同一平面内に形成した電極2.2
゛間に超微粒子3を堆積させて電界を印加しうる構成を
とると、同図のような堆積状況となって電極2.2゜の
対向する端部と超微粒子3との接触が不十分であり、ま
た、超微粒子3と電極2,2゛の対向する端面との接触
が点接触であるため、電気的信頼性が満足されず、同じ
特性が得られにくい場合が多いという問題がある。例え
ば、超微粒子を電極間に堆積させた場合、一定の堆積厚
でも電極間抵抗は1〜2桁、場合によっては3桁以上の
ばらつきを示すことが多くある。
[Problems to be Solved by the Invention] However, in such conventional techniques, it is generally difficult to form geometrically fine particles on an element substrate in the form of a film or a deposited film on an element substrate. This causes many problems. That is, as shown in FIG. 2, the electrodes 2.2 formed in the same plane on the substrate i.
If a configuration is adopted in which the ultrafine particles 3 are deposited between the electrodes 2 and 2 and an electric field can be applied, the deposition situation as shown in the figure will occur, and the contact between the opposing ends of the electrodes 2.2 and the ultrafine particles 3 will be insufficient. In addition, since the contact between the ultrafine particles 3 and the opposing end surfaces of the electrodes 2 and 2 is a point contact, there is a problem that electrical reliability is not satisfied and it is often difficult to obtain the same characteristics. . For example, when ultrafine particles are deposited between electrodes, the resistance between the electrodes often shows variations of one to two orders of magnitude, and in some cases three or more orders of magnitude even if the deposited thickness is constant.

したがって、このように同一平面内で超微粒子°を電極
間に堆積させて電界を印加しうる素子を作製し、素子間
あるいは同一素子内で同特性の複数の電極を設けてセン
サ、電子回路素子、電気能動素子等に使用する場合、同
じ特性が再現しにくくて素子製作信頼性の上で歩留りが
悪く、不良率も高くなるという問題を生じている。
Therefore, by depositing ultrafine particles between electrodes in the same plane to create an element that can apply an electric field, and by providing multiple electrodes with the same characteristics between the elements or within the same element, sensors and electronic circuit elements can be fabricated. When used in electrical active devices, etc., it is difficult to reproduce the same characteristics, resulting in problems in terms of device manufacturing reliability, poor yield, and high defective rate.

本発明の目的は、このような従来技術の問題点に鑑み、
電極と超微粒子間の電気的接触の信頼性が高く、常に安
定した特性の素子を良好な歩留りで製造できるような超
微粒子用の電極を提供することにある。
In view of the problems of the prior art, an object of the present invention is to
An object of the present invention is to provide an electrode for ultrafine particles that has high reliability in electrical contact between the electrode and the ultrafine particles, and allows devices with stable characteristics to be manufactured at a good yield.

[問題点を解決するための手段及び作用]上記目的を達
成するため本発明では、基板上に形成した1対又は複数
の対向する電極間に超微粒子の集合体を堆積させて該超
微粒子に電界を印加しうる構成を有する素子の該電極に
おいて、対向する電極端部の面を基板の法線方向に対し
て傾けるようにしている。
[Means and effects for solving the problem] In order to achieve the above object, the present invention deposits an aggregate of ultrafine particles between a pair or a plurality of opposing electrodes formed on a substrate, and In the electrode of the element having a configuration capable of applying an electric field, the surfaces of opposing electrode ends are inclined with respect to the normal direction of the substrate.

電極端部の面の傾斜角は基板の法線方向に対し20°以
上が好ましく、また、超微粒子の堆積厚は電極高さの1
/2以下であることが好ましい。
The angle of inclination of the surface at the end of the electrode is preferably 20° or more with respect to the normal direction of the substrate, and the deposited thickness of the ultrafine particles is 1 of the height of the electrode.
/2 or less is preferable.

この構成により、超微粒子の特性を引き出し、特性のば
らつきが小さく、安定な素子製作が容易になり、素子製
造上の信頼性が向上するのである。
This configuration brings out the characteristics of the ultrafine particles, reduces variation in characteristics, facilitates stable device fabrication, and improves reliability in device manufacturing.

本発明では、電極端部の超微粒子堆積を良好な接触状態
にするため、電極端部の面と基板の法線方向に対し、傾
けた構造を採用したが、この構造をとると点接触部が増
大し、つまりそれだけ超微粒子物性を測定する信頼性を
向上させることになる。第1図は本発明の特徴を表わす
素子の電極間の断虱図であるが、第2図の従来のものと
比べると、従来例においては電極端部で特性が左右され
易かったのに対し、本発明ではむしろ電極間の中央部の
所定の堆積厚に設定した超微粒子部分の特性が観測され
易いことになる。そして、第1図の様な構成においては
、電極高さに対し、超微粒子堆積厚が騒以下である場合
に特に効果が発揮される。
In the present invention, in order to bring the ultrafine particles deposited at the electrode end into a good contact state, we adopted a structure that is inclined with respect to the normal direction of the surface of the electrode end and the substrate. This increases the reliability of measuring the physical properties of ultrafine particles. Figure 1 is a cross-sectional view between the electrodes of an element that shows the features of the present invention.Compared to the conventional example shown in Figure 2, the characteristics of the conventional example were easily influenced by the electrode ends; In the present invention, the characteristics of the ultrafine particle portion set to a predetermined deposition thickness in the center between the electrodes can be observed more easily. In the configuration as shown in FIG. 1, the effect is particularly exhibited when the ultrafine particle deposition thickness is less than or equal to the electrode height.

本発明で使用される超微粒子は粒径1000人°以下の
一次粒子で、電界を印加することで特性や機能を発現す
る材料であれば公知の金属、半金属、半導体、絶縁体と
いった無機、有機超微粒子が使用可能である。
The ultrafine particles used in the present invention are primary particles with a particle size of 1000°C or less, and include inorganic materials such as known metals, semimetals, semiconductors, and insulators, as long as they are materials that exhibit properties and functions by applying an electric field. Organic ultrafine particles can be used.

電極材としては、−数的な導電性材料、例えばAu、A
fl、Pt、Ag等の金属の他、SnO2、ITO等の
酸化物やモリブデンシリサイドのような化合物の導電性
材料が使用できる。
As the electrode material, numerically conductive materials such as Au, A
In addition to metals such as fl, Pt, and Ag, conductive materials such as oxides such as SnO2 and ITO, and compounds such as molybdenum silicide can be used.

厚みについて特に制限はないが、上記超微粒子に対して
は500Å以上が好ましく、1000人〜数μmが特に
好ましい。
Although there is no particular restriction on the thickness, for the above-mentioned ultrafine particles, the thickness is preferably 500 Å or more, and particularly preferably 1000 to several μm.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

叉1ノ(Lヱユ 第3図は本発明の一実施例に係る超微粒子用電極の実施
形態の概念を示す平面図である0本実施例ではこの超微
粒子用電極を次のようにして製造した。
Figure 3 is a plan view showing the concept of an embodiment of an electrode for ultrafine particles according to an embodiment of the present invention.In this embodiment, the electrode for ultrafine particles was constructed as follows. Manufactured.

すなわち、まず、清浄な石英製の絶縁基板1上に300
0人厚のNi薄@2.2°を真空蒸着法で形成し、フォ
トリソグラフィの手法を使って同図に示すような約30
0人相当 ターンを形成した。ただし、図中の電極間のギャップG
の寸法りは30μm、電極部分の幅Wは400μmであ
る。
That is, first, 300
A thin Ni film with a thickness of 2.2° was formed using a vacuum evaporation method, and an approximately 30°
A turn equivalent to 0 people was formed. However, the gap G between the electrodes in the figure
The dimension is 30 μm, and the width W of the electrode portion is 400 μm.

次に、絶縁基板1にAr+を用いてイオンミリングを施
した。
Next, ion milling was performed on the insulating substrate 1 using Ar+.

このとき、絶縁基板1を保持している基板ステージをA
r”の飛来方向に対して傾けつつ回転させてミリングす
ると、電極端部の面(,4面)2t、2t’が傾いたパ
ターンを形成することができる。このときのミリング条
件は、テクニクス社製イオンミリング装置TLA−20
を使用し、到達真空度5xlO−’Torr以上、イオ
ンソース電流17.5V、加速電圧aoov、イオン電
流150mA、イオン電流密度的0.5mA/cm2と
した。
At this time, move the substrate stage holding the insulating substrate 1 to
By rotating and milling while tilting with respect to the flying direction of r'', it is possible to form a pattern in which the electrode end surfaces (4 surfaces) 2t and 2t' are inclined.The milling conditions at this time are as specified by Technics Co. Ion milling device TLA-20
was used, and the ultimate vacuum level was 5xlO-' Torr or more, the ion source current was 17.5 V, the acceleration voltage aoov, the ion current was 150 mA, and the ion current density was 0.5 mA/cm2.

このようにして、基板ステージのAr”の飛来方向に対
して傾ける角度を各種変化させることができるが、ここ
では、電極の端面2t、2t’が基板1の法線方向に対
して傾く角度を第4図に示すように端面2t、2t’の
端部における傾斜角αと定義し、傾斜角αが20”  
30°および45°である超微粒子用電極のパターンを
有する試料を作成した。傾斜角αの測定は電子顕微鏡断
面観察で行ない、精度は±2@であった。
In this way, the angle at which the substrate stage is tilted with respect to the Ar'' flying direction can be varied. As shown in FIG. 4, the inclination angle α at the end of the end faces 2t and 2t' is defined as 20".
Samples with ultrafine particle electrode patterns having angles of 30° and 45° were prepared. The inclination angle α was measured by cross-sectional observation using an electron microscope, and the accuracy was ±2@.

次に、こうして形成したパターンの残ったレジストを除
去してでき上がった電極ギヤツブG上に超微粒子を堆積
させるために、真空装置に試料をセットした。この装置
は第5図に示すように超微粒子生成室4と超微粒子堆積
室5、及びこの2室を接続する縮小拡大ノズル6から構
成され、超微粒子堆積室5内の基板ホルダHのセット位
置に試料7が取り付けられる。そして、排気系8で装置
内の真空度を1xlO−’Torr以上まで排気し、A
rガス9を超微粒子生成室4にsosccM導入した。
Next, the sample was set in a vacuum device in order to deposit ultrafine particles on the electrode gear G that was formed by removing the remaining resist of the pattern thus formed. As shown in FIG. 5, this device is composed of an ultrafine particle generation chamber 4, an ultrafine particle deposition chamber 5, and a contraction/expansion nozzle 6 that connects these two chambers.The set position of the substrate holder H in the ultrafine particle deposition chamber 5 Sample 7 is attached to. Then, the vacuum level inside the device is evacuated to 1xlO-'Torr or higher using the exhaust system 8, and A
SosccM of r gas 9 was introduced into the ultrafine particle generation chamber 4.

このとき、超微粒子生成室4の圧力は5xlO−’To
rr、超微粒子堆積室5の圧力は1xlO−’Torr
、縮小拡大ノ縮小拡大ノルジ6、縮小拡大ノズル6と基
板(試料7)間の距離は150mmとした。
At this time, the pressure in the ultrafine particle generation chamber 4 is 5xlO-'To
rr, the pressure in the ultrafine particle deposition chamber 5 is 1xlO-'Torr
, the distance between the reduction and expansion nozzle 6 and the substrate (sample 7) was 150 mm.

次に、カーボン製るつぼの蒸発源10よりPdを蒸発さ
せて生成したPd超微粒子をノズル6より吹き出させ試
料7上に堆積させた。このときのPd超微粒子は粒径5
0〜120人で中心粒径は80人であることがFE−3
EMで確認された。
Next, Pd was evaporated from the evaporation source 10 of the carbon crucible, and the generated Pd ultrafine particles were blown out from the nozzle 6 and deposited on the sample 7. At this time, the Pd ultrafine particles had a particle size of 5
FE-3 is 0 to 120 people and the median particle size is 80 people.
Confirmed by EM.

堆積厚は約300人相当に条件設定した。その際、Pd
超微粒子は試料7の全面に配置されるが、あらかじめ不
要部分をマスクしてあり、また、電極ギヤツブG以外の
周辺に堆積したPd超微粒子は実質的に電界が印加され
ないため何らの支障はない。
The deposition thickness was set to be equivalent to approximately 300 people. At that time, Pd
The ultrafine particles are placed over the entire surface of the sample 7, but unnecessary parts are masked in advance, and the Pd ultrafine particles deposited around the area other than the electrode gear G do not pose any problem because no electric field is substantially applied to them. .

こうして上記傾斜角αが20° 30°および45°で
ある試料を12点ずつ作製し、抵抗値のばらつきを調べ
た。
In this way, 12 samples each having the above-mentioned inclination angle α of 20°, 30°, and 45° were prepared, and variations in resistance values were examined.

この結果を実施例1〜3として第1表に示す。The results are shown in Table 1 as Examples 1 to 3.

第1表 第2表 ±軟■ユ 傾斜角α=0°とした以外は実施例1と同一条件で同様
の試料を12点作製し、抵抗値のばらつきを調べた。こ
の結果を比較例1として第1表に示す。
Twelve samples were prepared under the same conditions as in Example 1, except that the angle of inclination α was 0°, and the variation in resistance was examined. The results are shown in Table 1 as Comparative Example 1.

実施例1〜3と比較例1とを比べると電極端部の面を基
板法線方向に対し傾けることにより抵抗値ばらつきが小
さくなっていることがわかる。
Comparing Examples 1 to 3 and Comparative Example 1, it can be seen that the variation in resistance value is reduced by tilting the surface of the electrode end with respect to the normal direction of the substrate.

流側4〜6およびヒ 例2 超微粒子材料としてAuを用い、堆積時の電極間抵抗を
10にΩ±2にΩとなるように条件設定した以外は実施
例1〜3および比較例1と同様にして試料を10点ずつ
製作し超微粒子によって電極ギャップGに形成された膜
厚を測定した。このときの膜厚のばらつきを実施例4〜
6および比較例2として第2表に示す、なお、Au超微
粒子は粒径40〜90人、中心粒径は60人であった。
Flow side 4 to 6 and H Example 2 Same as Examples 1 to 3 and Comparative example 1 except that Au was used as the ultrafine particle material and the conditions were set so that the interelectrode resistance during deposition was 10Ω±2Ω. Ten samples were prepared in the same manner, and the thickness of the film formed in the electrode gap G by the ultrafine particles was measured. The variation in film thickness at this time was measured in Example 4~
The Au ultrafine particles shown in Table 2 as Comparative Example 2 and Comparative Example 2 had a particle size of 40 to 90 particles, and a median particle size of 60 particles.

犬A里ユ 1インチ×2インチ角の石英製絶縁基板上に900人厚
NaIl薄膜を真空蒸着法で形成し、フォトリソグラフ
ィの手法を使りて1枚の基板上に第3図に示すような電
極レジストパターン2゜2°を10個作製した。但し、
電極ギャップGの寸法り及びWは実施例1と同一とし、
1対の電極を含めた寸法は6mmx 15mm (不図
示)とした。
A 900mm thick NaIl thin film was formed on a 1 inch x 2 inch square quartz insulating substrate by vacuum evaporation, and a photolithography technique was used to form the film on the single substrate as shown in Figure 3. Ten electrode resist patterns of 2°2° were prepared. however,
The dimensions of the electrode gap G and W are the same as in Example 1,
The dimensions including a pair of electrodes were 6 mm x 15 mm (not shown).

次に、上記AJ1111のパターンを公知の酸性Anエ
ツチング液でベベルエツチング(BevelEtchl
ng) シた。このとき、エツチング液によって等方性
のエツチングが施されるので、電極端部の面は、テーパ
ーを有するようになる。このときの傾斜角αは20°〜
25°であった。
Next, the above AJ1111 pattern was bevel etched using a known acidic An etching solution.
ng) Shita. At this time, since isotropic etching is performed by the etching solution, the surface of the electrode end becomes tapered. The inclination angle α at this time is 20° ~
It was 25°.

次に、超微粒子の堆積を実施例4と同様にして行なった
Next, ultrafine particles were deposited in the same manner as in Example 4.

そして、このようにして得た10点の試料について膜厚
を測定した。この結果を第2表に示す。
Then, the film thickness was measured for the 10 samples thus obtained. The results are shown in Table 2.

同表に示されるように、傾斜角α=0°の場合より傾斜
角α冨20°〜25°の方が基板内膜厚のばらつきが小
さくなることがわかる。
As shown in the table, it can be seen that the variation in the film thickness within the substrate is smaller when the tilt angle α is 20° to 25° than when the tilt angle α is 0°.

なお、ここではテーパーエツチングの方法として、イオ
ンミリング法およびウェットエツチング法を示したが、
RI E (Reactive Ion Etchin
g)法やRI B (Reactive Ion Be
am etching)法なども用いることが可能であ
り、これらの実施例で限定されるものではない。
Note that although the ion milling method and wet etching method are shown here as taper etching methods,
RI E (Reactive Ion Etchin)
g) Law and RI B (Reactive Ion Be)
am etching) method can also be used, and the present invention is not limited to these examples.

[発明の効果] 以上説明したように本発明によれば、同一平面内の電極
間上に超微粒子を堆積させて、電界を印加しうる構成を
有する素子の超微粒子用電極に於いて、超微粒子に接す
る電極端部の面を基板の法線方向に対し、傾けるように
したため、素子間の特性のばらつきが小さくなって同じ
機能を再現させる上で信頼性が向上し、生産性について
も歩留まりを向上させて不良率を低下させ、安定した素
子製作を容易に行なうことができる。
[Effects of the Invention] As explained above, according to the present invention, in an electrode for ultrafine particles of an element having a configuration in which an electric field can be applied by depositing ultrafine particles between electrodes in the same plane, Since the surface of the electrode end that comes into contact with the particles is tilted with respect to the normal direction of the substrate, variations in characteristics between elements are reduced, improving reliability in reproducing the same function, and improving productivity and yield. It is possible to improve the quality, reduce the defective rate, and easily manufacture stable devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の超微粒子電極間の超微粒子堆積状況
の一例を示す模式的断面図、 第2図は、従来のタイプにおける電極間の超微粒子の堆
積状況の一例を示す断面図、 第3図は、本発明の超微粒子電極の一実施形態の概念を
示す模式的平面図、 第4図は、電極端部の面の基板法線に対する傾き角度を
表わす説明図、そして 第5図は、超微粒子作製原理を示すための真空装置の構
成図である。 1:基板、2,2° ;電極(パターン)、3超微粒子
、4:超微粒子生成室、5:超微粒子堆積室、6;ノズ
ル、7:試料、8:排気系、9:導入ガス(Ar)、t
o:蒸発源、11−シャッタ。
FIG. 1 is a schematic cross-sectional view showing an example of the state of ultrafine particle deposition between the ultrafine particle electrodes of the present invention; FIG. 2 is a cross-sectional view showing an example of the state of ultrafine particle deposition between the electrodes in a conventional type; FIG. 3 is a schematic plan view showing the concept of an embodiment of the ultrafine particle electrode of the present invention, FIG. 4 is an explanatory diagram showing the inclination angle of the surface of the electrode end with respect to the normal line of the substrate, and FIG. FIG. 1 is a configuration diagram of a vacuum device for illustrating the principle of producing ultrafine particles. 1: Substrate, 2, 2°; Electrode (pattern), 3 Ultrafine particles, 4: Ultrafine particle generation chamber, 5: Ultrafine particle deposition chamber, 6: Nozzle, 7: Sample, 8: Exhaust system, 9: Introduced gas ( Ar), t
o: evaporation source, 11-shutter.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に形成した1対又は複数の対向する電極間
に超微粒子の集合体を堆積させて該超微粒子に電界を印
加しうる構成を有する素子の該電極であって、対向する
電極端部の面を基板の法線方向に対して傾けたことを特
徴とする超微粒子用電極。
(1) The electrodes of an element having a configuration in which an aggregate of ultrafine particles is deposited between a pair or a plurality of opposing electrodes formed on a substrate and an electric field can be applied to the ultrafine particles, the electrodes having opposing electric fields. An electrode for ultrafine particles characterized by an extreme surface inclined with respect to the normal direction of the substrate.
(2)前記電極端部の面の傾斜角を基板の法線方向に対
し、20°以上としたことを特徴とする請求項1記載の
超微粒子用電極。
(2) The electrode for ultrafine particles according to claim 1, wherein the inclination angle of the surface of the electrode end is 20 degrees or more with respect to the normal direction of the substrate.
(3)前記超微粒子の堆積厚が前記電極高さの1/2以
下であることを特徴とする請求項1記載の超微粒子用電
極。
(3) The electrode for ultrafine particles according to claim 1, wherein the deposited thickness of the ultrafine particles is 1/2 or less of the height of the electrode.
JP1028740A 1989-02-09 1989-02-09 Electrode for microparticle Pending JPH02208982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028740A JPH02208982A (en) 1989-02-09 1989-02-09 Electrode for microparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028740A JPH02208982A (en) 1989-02-09 1989-02-09 Electrode for microparticle

Publications (1)

Publication Number Publication Date
JPH02208982A true JPH02208982A (en) 1990-08-20

Family

ID=12256819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028740A Pending JPH02208982A (en) 1989-02-09 1989-02-09 Electrode for microparticle

Country Status (1)

Country Link
JP (1) JPH02208982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181098B2 (en) 2003-06-09 2007-02-20 Samsung Electronics Co., Ltd. Optical hybrid module and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181098B2 (en) 2003-06-09 2007-02-20 Samsung Electronics Co., Ltd. Optical hybrid module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
McCord et al. Direct deposition of 10‐nm metallic features with the scanning tunneling microscope
US6593065B2 (en) Method of fabricating nanometer-scale flowchannels and trenches with self-aligned electrodes and the structures formed by the same
US6737668B2 (en) Method of manufacturing structure with pores and structure with pores
US6770353B1 (en) Co-deposited films with nano-columnar structures and formation process
EP1308741B1 (en) Magnestoresistive sensor and manufacturing method therefor
US20060006376A1 (en) Strongly textured atomic ridge nanowindows
CN100463094C (en) Method for producing field transmitting display device
Yang et al. Field emission from zinc oxide nanoneedles on plastic substrates
JPH02247372A (en) Thin film formation
KR100449071B1 (en) Cathode for field emission device
EP2522041B1 (en) Electrically actuated switch
JP2000348903A (en) Thin-film thermistor element and manufacture of the same
CN1532884A (en) Field transmitting display
JPH02208982A (en) Electrode for microparticle
US4024041A (en) Method of forming deposition films for use in multi-layer metallization
JP3244249B2 (en) Electrode for sensor
CN115132578A (en) Electrode pair with nanogap and preparation method thereof
JP3739511B2 (en) Plasma space potential measuring device
Zakar et al. Process and fabrication of a lead zirconate titanate thin film pressure sensor
JPH03295131A (en) Electric field emission element and manufacture thereof
GB2267176A (en) Field emission cathode manufacture
JP2000150984A (en) Magnetic tunnel element using ozone-oxidized insulating film
CN101413918A (en) Large length-diameter ratio electrode array and manufacturing method thereof
US6707648B2 (en) Magnetic device, magnetic head and magnetic adjustment method
JPS5987834A (en) Forming method of thin-film