JPH02208623A - High-density scanning device - Google Patents

High-density scanning device

Info

Publication number
JPH02208623A
JPH02208623A JP2770789A JP2770789A JPH02208623A JP H02208623 A JPH02208623 A JP H02208623A JP 2770789 A JP2770789 A JP 2770789A JP 2770789 A JP2770789 A JP 2770789A JP H02208623 A JPH02208623 A JP H02208623A
Authority
JP
Japan
Prior art keywords
curvature
scanning direction
polygon mirror
light beam
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2770789A
Other languages
Japanese (ja)
Other versions
JP2750597B2 (en
Inventor
Kenichi Takanashi
健一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2770789A priority Critical patent/JP2750597B2/en
Publication of JPH02208623A publication Critical patent/JPH02208623A/en
Application granted granted Critical
Publication of JP2750597B2 publication Critical patent/JP2750597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To eliminate the curvature of field completely by providing two transparent parallel plates between a 1st image formation optical system and a rotary polygon mirror rotatably around axes at a different angle from the optical axis. CONSTITUTION:The two transparent parallel flat plates 8A and 8B are provided between the 1st image formation optical system 2 and rotary polygon mirror 3 rotatably around axes 9A and 9B at the different angle from the optical axis. Then the two parallel flat plates 8A and 8B are rotated in the opposite directions as a deflection scan is made. Therefore, an image formation position on a plane corresponding to the rotating direction of a light beam shifts according to the deflection scan to compensate the curvature of field caused by the deflection scanning. Consequently, the curvature of field in one scanning direction is corrected without causing a shift in optical axis nor affecting optical characteristics in any other scanning direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、面倒れ補正機能を持つ高密度走査装置、特に
副走査方向面内の像面湾曲を簡単な機構により補正する
ことのできる高密度走査装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a high-density scanning device having a surface tilt correction function, and particularly to a high-density scanning device that can correct field curvature in the sub-scanning direction plane using a simple mechanism. The present invention relates to a density scanning device.

(従来の技術〕 光ビーム走査装置として、偏向器の前に集光レンズを有
するポストオブジェクティブ型のものと偏向器の後に集
光レンズを有するプレオブジェクティブ型のものとがあ
る。
(Prior Art) There are two types of light beam scanning devices: a post-objective type that has a condenser lens in front of a deflector, and a pre-objective type that has a condenser lens after the deflector.

そして、偏向器として回転多面鏡を用いたものが増え、
光ビーム走査装置の主流をなしている。
Then, the use of rotating polygon mirrors as deflectors increased,
It is the mainstream of optical beam scanning devices.

何となれば、走査の高速化の要求に応えることができる
からである。
This is because it can meet the demand for faster scanning.

ところで、回転多面鏡を偏向器として用いた光ビーム走
査装置においては、高速走査が可能であるというメリッ
トがある反面、面倒れが生じるので面倒れ補正をする必
要性がある。面倒れ補正技術には、例えば特開昭63−
106618号公報。
Incidentally, a light beam scanning device using a rotating polygon mirror as a deflector has the advantage of being able to perform high-speed scanning, but on the other hand, it causes surface tilt, so it is necessary to correct the surface tilt. For example, Japanese Unexamined Patent Application Publication No. 1983-1989 discloses surface tilt correction technology.
Publication No. 106618.

特開昭62−147421号公報に開示されているよう
に、主走査方向と副走査方向に異なる屈折力を持つレン
ズを用いて面倒れ補正を行うのが普通である。
As disclosed in Japanese Unexamined Patent Publication No. 62-147421, it is common to perform surface tilt correction using lenses having different refractive powers in the main scanning direction and the sub-scanning direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、光ビーム走査装置においては、全走査域で面
上に光ビームが鮮明に結像されるようにすることは難し
く像面湾曲が生じ易い、そのため、ポストオブジェクト
型のものにおいて、光源を偏向走査に伴って光軸方向に
移動することにより主走査・副走査両方向の像面湾曲を
同様に補正しようという提案が例えば特開昭54−14
220号公報にて為されており、また、プレオブジェク
ト型、ポストオブジェクト型の両タイプのものにおいて
、コリメートレンズ、集光レンズを偏向走査に伴って光
軸方向に移動することにより主走査・副走査両方向の像
面湾曲を同様に補正しようという提案が例えば特開昭5
8−57108号公報にて為されている。
By the way, in a light beam scanning device, it is difficult to form a clear image of the light beam on the surface over the entire scanning area, and field curvature is likely to occur.Therefore, in a post-object type device, the light source is deflected. For example, a proposal was made in JP-A-54-14 to similarly correct field curvature in both the main scanning and sub-scanning directions by moving in the optical axis direction along with scanning.
220, and in both pre-object and post-object types, main scanning and sub-object scanning are achieved by moving the collimating lens and condensing lens in the optical axis direction along with deflection scanning. For example, a proposal to correct field curvature in both scanning directions was made in JP-A-5
This has been done in Publication No. 8-57108.

しかしながら、レンズとして球面レンズを用いており、
その球面レンズには非点隔差があるので、主走査方向と
副走査方向とで像面湾曲の大きさが異なる。そして、光
軸に沿って球面レンズを動かしたり光源を動かしたりす
ると、主走査方向と副走査方向の両方向に同じように像
面湾曲補正されてしまうため、いずれか一方の走査方向
に対しての像面湾曲の補正不足が生じてしまう。
However, a spherical lens is used as the lens,
Since the spherical lens has an astigmatism difference, the magnitude of field curvature differs between the main scanning direction and the sub-scanning direction. If you move the spherical lens or light source along the optical axis, the field curvature will be corrected in the same way in both the main scanning direction and the sub-scanning direction. This results in insufficient correction of field curvature.

また、回転多面鏡を偏向器として用いた走査装置におい
て面倒れ補正機能を有するものは、主走査方向と副走査
方向とで屈折力が異なるレンズ(いわゆるアナモフィッ
クレンズ)を光路中に有するので、やはり主走査方向と
副走査方向とで像面湾曲の度合が異なる。具体的には主
走査方向における像面湾曲は無視できる程度に小さく補
正し得るのでほとんど問題にならないが、副走査方向に
おける像面湾曲は非常に大きく、無視することはできな
い、従って、光源あるいはレンズを偏向走査に伴って光
軸方向に適宜動かして副走査方向の補正をしようとする
と、副走査方向の像面湾曲を小さくし得るものの、かわ
りに主走査方向の像面湾曲が大きくなるということにな
ってしまう。
In addition, scanning devices that use a rotating polygon mirror as a deflector and have a surface tilt correction function have lenses in the optical path that have different refractive powers in the main scanning direction and the sub-scanning direction (so-called anamorphic lenses). The degree of field curvature differs between the main scanning direction and the sub-scanning direction. Specifically, the curvature of field in the main scanning direction can be corrected to a negligible level and is hardly a problem, but the curvature of field in the sub-scanning direction is very large and cannot be ignored. If you try to correct the sub-scanning direction by appropriately moving the lens along the optical axis along with deflection scanning, the curvature of field in the sub-scanning direction can be reduced, but the curvature of field in the main scanning direction will increase instead. Become.

本発明は、上記事情に鑑みなされたもので°、−方の走
査方向における像面湾曲を他方の走査方向における像面
湾曲と無関係に調整することができるようにし、それに
よって像面湾曲を略完全になくし得る面倒れ補正機能を
有する高密度走査装置を提供することを目的としている
The present invention has been made in view of the above circumstances, and it is possible to adjust the curvature of field in the ° and - scanning directions independently of the curvature of field in the other scanning direction, thereby substantially reducing the curvature of field. It is an object of the present invention to provide a high-density scanning device having a surface tilt correction function that can be completely eliminated.

(発明の構成) 〔問題点を解決するための手段〕 本発明は、上記問題点を解決するため、光源と。(Structure of the invention) [Means for solving problems] In order to solve the above problems, the present invention provides a light source.

この光源から出射された光束を線状に結像する第1結像
光学系と、この第1結像光学系から出射された光束を偏
向する回転多面鏡と、この回転多面鏡により偏向された
光束により走査される被走査媒体と前記回転多面鏡との
間に配置され前記の偏向された光束を前記被走査媒体上
に結像すると共に前記回転多面鏡の偏向面と直交する面
内において前記偏向面と前記被走査媒体とを幾何光学的
に略共役関係にする第2結像光学系を有する高密度走査
装置において、前記第1結像光学系と前記回転多面鏡と
の間に、2枚の透明な平行平板が光軸と異なる角度の軸
を中心として回転可能に設けられたことを特徴としたも
のである。
a first imaging optical system that forms a linear image of the light beam emitted from this light source; a rotating polygon mirror that deflects the light beam that is emitted from this first imaging optical system; It is disposed between a scanned medium scanned by a light beam and the rotating polygon mirror, and forms an image of the deflected light beam on the scanned medium, and also forms an image of the deflected light beam in a plane perpendicular to the deflection plane of the rotary polygon mirror. In a high-density scanning device including a second imaging optical system that makes a deflection surface and the medium to be scanned in a substantially conjugate relationship in terms of geometrical optics, a The device is characterized in that two transparent parallel flat plates are rotatably provided around an axis at a different angle from the optical axis.

〔作 用〕[For production]

本発明によれば、2枚の平行平板を偏向走査に伴って互
いに逆の回転方向に回転するので、光ビームの上記回転
方向に対応した面における結像位置が偏向走査に伴って
変化し、偏向走査による像面湾曲を補正することができ
る。すなわち、平行平板に光ビームを通すと光ビームに
光学的遅れが生じるが、その光学的遅れ量は平行平板の
光軸に対する向きによって変化するので、平行平板の回
転によって光学的遅れ量を変化させることにより結像位
置の補正を行うことができる。しかも、平行平板を光軸
と直交する例えば水平方向(横方向)の軸を中心に回転
した場合には縦方向においてのみ光学的遅れ量の変化、
結像位置の変化が生じ。
According to the present invention, since the two parallel plates are rotated in opposite directions of rotation as the deflection scans, the imaging position of the light beam on the plane corresponding to the rotation direction changes as the deflection scans, Field curvature due to deflection scanning can be corrected. In other words, when a light beam passes through a parallel plate, an optical delay occurs in the light beam, but the amount of optical delay changes depending on the direction of the parallel plate with respect to the optical axis, so the amount of optical delay is changed by rotating the parallel plate. By doing so, the imaging position can be corrected. Moreover, when the parallel plate is rotated around an axis perpendicular to the optical axis, for example, in the horizontal direction, the amount of optical delay changes only in the vertical direction.
A change in the imaging position occurs.

水平方向(横方向)においては、光学的遅れ量の変化、
結像位置の変化は生じない。従って、一方の走査方向、
例えば副走査方向の像面湾曲を他方の走査方向1例えば
主走査方向の像面湾曲に全く無関係に補正することがで
きる。
In the horizontal direction (lateral direction), changes in the amount of optical delay,
No change in imaging position occurs. Therefore, in one scanning direction,
For example, the curvature of field in the sub-scanning direction can be corrected completely independently of the curvature of field in the other scanning direction, eg, the main scanning direction.

また、平行平板が2枚あるので、これ等を互いに逆方向
に回転することにより一方の平行平板によって生じた光
軸のずれを他方の平行平板によって補正することができ
る。従って1本発明によれば、光軸のずれを全く伴うこ
となく一走査方向における像面湾曲のみを他の走査方向
における光学特性に全く影響を及ぼさないで補正するこ
とができる。
Furthermore, since there are two parallel plates, by rotating them in opposite directions, the optical axis shift caused by one parallel plate can be corrected by the other parallel plate. Therefore, according to the present invention, only the curvature of field in one scanning direction can be corrected without any deviation of the optical axis and without affecting the optical characteristics in other scanning directions.

〔実施例〕〔Example〕

以下、本発明を図示実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図乃至第8図は1本発明の第1の実施例を説明する
もので、このうち第1図は、高密度走査装置の全体の概
略構成を示す斜視図である。
1 to 8 illustrate a first embodiment of the present invention, of which FIG. 1 is a perspective view showing the overall schematic structure of a high-density scanning device.

第1図において、1はレーザ等の光源または光源と該光
源から出射させた光束を略平行化する光学系等からなる
光源装置(以下、単に「光源」という)、2は該光源1
から出射された光束を水平方向に線状に結像する第1結
像光学系としてのシリンドリカルレンズ、3は該第1結
像光学系2から出射された光束を反射する回転多面鏡で
、軸3Aを中心として回転し、偏向反射面4,4.・・
・にて光束を反射する。5は回転多面鏡3側がシリンダ
面で、他面側が平面でなる単レンズ、6は回転多面鏡3
側がシリンダ面で、他面側がトーリック面よりなる単レ
ンズで、該単レンズ5と6によって第2結像光学系が構
成されている。該第2結像光学系は、回転多面鏡3によ
り偏向された光束を横方向に集束して被走査媒体7の表
面に点状の結像を得ようとするものであり、主走査方向
合成焦点距離f、を有し、副走査方向において回転多面
鏡3の偏向反射面4と被走査媒体7とを幾何光学的に略
共役な関係にし、結像横倍率βSを有する。
In FIG. 1, reference numeral 1 indicates a light source such as a laser or a light source device (hereinafter simply referred to as a "light source") consisting of a light source and an optical system that substantially parallelizes the light beam emitted from the light source; 2 indicates the light source 1;
3 is a rotating polygon mirror that reflects the light beam emitted from the first imaging optical system 2; 3A as the center, the deflection reflecting surfaces 4, 4 .・・・
・Reflects the luminous flux at. 5 is a single lens with a cylindrical surface on the rotating polygon mirror 3 side and a flat surface on the other side, 6 is a rotating polygon mirror 3
The single lens has a cylindrical surface on one side and a toric surface on the other side, and the single lenses 5 and 6 constitute a second imaging optical system. The second imaging optical system aims to form a point-like image on the surface of the scanned medium 7 by focusing the light beam deflected by the rotating polygon mirror 3 in the horizontal direction, and performs main scanning direction synthesis. It has a focal length f, the deflection reflection surface 4 of the rotating polygon mirror 3 and the scanned medium 7 are in a geometrically optically substantially conjugate relationship in the sub-scanning direction, and it has an imaging lateral magnification βS.

ここで、第2結像光学系の具体例を詳細に説明しておく
Here, a specific example of the second imaging optical system will be described in detail.

d、:10.966 f M=100    Fso、=  54.7.2θ
賛=67.8°、α=601、   R/ f M =
0.132.f s =22.698、βB −−4,
12 但し、r1〜r4は回転多面鏡3側から順に1面〜4面
とした場合の各面の主走査方向における曲率半径、ri
′〜r、′は同様に副走査方向における各面の曲率半径
、d□、d、は単レンズ5゜6の中心における肉厚、d
8は単レンズ5と6との間の中心における空気間隔、n
工、n=は単レンズ5,6の波長λ780nmの光に対
するそれぞれの屈折率、FMは主走査方向の合成焦点距
離、FNOは主走査方向の明るさ、fsは副走査方向の
焦点距離、θ賛は偏向角、αは入射ビームとレンズ光軸
が成す角、Rは回転多面鏡3の内接円半径である。
d,:10.966 f M=100 Fso,=54.7.2θ
Advantage = 67.8°, α = 601, R/ f M =
0.132. f s =22.698, βB −−4,
12 However, r1 to r4 are the radius of curvature in the main scanning direction of each surface when the surfaces are 1 to 4 in order from the rotating polygon mirror 3 side, ri
Similarly, '~r,' is the radius of curvature of each surface in the sub-scanning direction, d□, d is the wall thickness at the center of the single lens 5°6, and d
8 is the air distance at the center between the single lenses 5 and 6, n
n= is the refractive index of the single lenses 5 and 6 for light with a wavelength λ780 nm, FM is the combined focal length in the main scanning direction, FNO is the brightness in the main scanning direction, fs is the focal length in the sub-scanning direction, θ Δ is the deflection angle, α is the angle formed by the incident beam and the optical axis of the lens, and R is the radius of the inscribed circle of the rotating polygon mirror 3.

8A、8Bは2枚の透明な平行平板で、シリンドリカル
レンズ2と回転多面鏡3との間に配置されている。該平
行平板8A、8Bは、光軸に直交し水平方向に延びる軸
9A、9Bを中心に互いに逆方向に同じ角度回転するよ
うになっている。このように平行平板8A、8Bを有し
ていることが本発明高密度走査装置の特徴である。
8A and 8B are two transparent parallel flat plates arranged between the cylindrical lens 2 and the rotating polygon mirror 3. The parallel plates 8A and 8B are configured to rotate at the same angle in opposite directions about axes 9A and 9B that are perpendicular to the optical axis and extend in the horizontal direction. Having the parallel flat plates 8A and 8B in this way is a feature of the high-density scanning device of the present invention.

第2図(a)、(b)は、本高密度走査装置の副走査方
向断面図であり、同図(a)は2枚の透明な平行平板8
A、8Bが光軸に対して垂直の向きを有しているときの
状態を示し、同図(b)は、2枚の平行平板8A、8B
が同図(a)に示す状態から回転軸9A、9Bを中心と
しである角度圧いに逆方向に回転したときの状態を示す
FIGS. 2(a) and 2(b) are cross-sectional views in the sub-scanning direction of this high-density scanning device, and FIG. 2(a) shows two transparent parallel flat plates 8.
The state is shown when A and 8B are perpendicular to the optical axis, and the figure (b) shows two parallel flat plates 8A and 8B
shows the state when rotated at a certain angle in the opposite direction about the rotation axes 9A and 9B from the state shown in FIG.

第2図(a)に示す状態においては、シリンドリカルレ
ンズ2の焦点位置が略偏向反射面4上に位置し、結像位
置が略被走査媒体7上に位置するようになっている。こ
の状態から2枚の平行平板8A、8Bを同図(b)に示
すように回転軸9A。
In the state shown in FIG. 2(a), the focal position of the cylindrical lens 2 is located approximately on the deflection reflecting surface 4, and the imaging position is located approximately on the scanned medium 7. From this state, the two parallel flat plates 8A and 8B are rotated around the rotation axis 9A as shown in FIG.

9Bを中心に回動すると、シリンドリカルレンズ2によ
る線状結像はΔXだけ光源側へ変位し、結像光は被走査
媒体7から回転多面鏡3側へΔX′だけ変位する。
When rotated about 9B, the linear image formed by the cylindrical lens 2 is displaced by ΔX toward the light source, and the imaged light is displaced from the scanned medium 7 toward the rotating polygon mirror 3 by ΔX'.

このときΔXとΔX′との間には Δx’ =βs3・ΔX(但しβSは前記結像横倍率)
の関係式が成り立つ。
At this time, the relationship between ΔX and ΔX' is Δx' = βs3・ΔX (where βS is the above-mentioned imaging lateral magnification)
The relational expression holds true.

第3図は、上述した線状結像位置の平行平板8の回転に
よる変位ΔXの生じる理由を説明するための図である。
FIG. 3 is a diagram for explaining the reason why the displacement ΔX occurs due to the rotation of the parallel flat plate 8 at the linear imaging position described above.

同図において、8は平行平板、dは該平行平板8の板厚
、nは平行平板8の屈折率、Cは平行平板8の回転中心
(必らずしも光軸上にあることを必要としない、)、N
は平行平板8の表面に対する法線、Uは法線Nの光軸に
対する角度、Zは光の浮き上り量、Δyは光の軸ずれ量
、Dは平行平板8の光出射点を示す。
In the figure, 8 is a parallel plate, d is the thickness of the parallel plate 8, n is the refractive index of the parallel plate 8, and C is the rotation center of the parallel plate 8 (it does not necessarily have to be on the optical axis). ), N
is the normal to the surface of the parallel plate 8, U is the angle of the normal N with respect to the optical axis, Z is the amount of light floating, Δy is the amount of axial deviation of the light, and D is the light emission point of the parallel plate 8.

そして、平行平板8がその法線Nの光軸に対する角度が
Uになるように回転したときの浮き上り量Zは次式で表
わされる。
When the parallel plate 8 is rotated so that the angle of its normal N with respect to the optical axis is U, the lifting amount Z is expressed by the following equation.

Z=d (1−(cosu/  n −5xnu  )
 cosuまた、軸ずれ量Δyは、次式で表わされる。
Z=d (1-(cosu/n-5xnu)
Further, the axis deviation amount Δy is expressed by the following equation.

Δy = d (1−(cosu /  n −smu
  ) 5inu従って、第2図(b)のように2枚の
平行平板8a 、8bを互いに逆方向に同じ角度だけ傾
いたときの線状結像のずれ量ΔXは、次式で表わされる
。 Δx=2 (Z−d (1−(1/n)>3そして
、光軸のずれ量Δyは、2枚の平行平板8A、8Bによ
って互いに相殺され合ってOになる。このように光軸の
ずれ量が0になるので、平行平板8A、8Bにより副走
査方向における像面湾曲の補正を光軸のずれを伴うこと
なく行うことができるといえるのである。
Δy = d (1-(cosu/n-smu
) 5 inu Therefore, when the two parallel flat plates 8a and 8b are tilted at the same angle in opposite directions as shown in FIG. 2(b), the amount of deviation ΔX of linear imaging is expressed by the following equation. Δx=2 (Z-d (1-(1/n)>3) Then, the optical axis deviation amount Δy is canceled by the two parallel plates 8A and 8B and becomes O. In this way, the optical axis Since the amount of deviation becomes 0, it can be said that correction of field curvature in the sub-scanning direction can be performed by the parallel plates 8A and 8B without causing deviation of the optical axis.

尚、上記ずれ量ΔXを求める式のなかのd(1−(1/
n))は、U=O°のときの浮き上り量である。
Note that d(1-(1/
n)) is the amount of uplift when U=O°.

第4図(a)、(b)は、平行平板8A、8Bの法線N
の光軸に対する傾き角Uに対する線状結像のずれ量ΔX
を示すもので、同図(a)は平行平板8A、8Bの屈折
率n=1.5  とし、板厚dをパラメータとして3m
m、6m、9mmと変えた場合の特性を示し、同図(b
)は板厚dをSowとし屈折率nをパラメータとして1
.5  1.71.9 と変えた場合の特性を示す、こ
の図から。
FIGS. 4(a) and 4(b) show the normal N of the parallel plates 8A and 8B.
The amount of deviation ΔX of linear imaging with respect to the inclination angle U with respect to the optical axis of
In the same figure (a), the refractive index n of the parallel plates 8A and 8B is 1.5, and the plate thickness d is 3 m as a parameter.
The characteristics when changing the length to m, 6m, and 9mm are shown in the same figure (b
) is 1 with the plate thickness d as Sow and the refractive index n as a parameter.
.. 5 From this figure, which shows the characteristics when changed to 1.71.9.

傾き角Uが06のときは、ずれ量ΔXが0だが傾き角U
が大きくなると、ずれ量ΔXも略放物線状に増大するこ
とが分ると共に、ずれ量ΔXの変化量は、板厚dが厚い
程、また屈折率nが大きい程、大きいことが分る。
When the tilt angle U is 06, the deviation amount ΔX is 0, but the tilt angle U
It can be seen that as the plate thickness d increases, the deviation amount ΔX increases in a substantially parabolic manner, and the amount of change in the deviation amount ΔX increases as the plate thickness d increases and the refractive index n increases.

第5図は、第2結像光学系による像面湾曲の偏向角θに
よる変化を示すもので、破線をもって示す11は主走査
方向の像面湾曲を示す曲線、実線をもって示す12は副
走査方向の像面湾曲を示す曲線である。この図から前述
のとおり主走査方向と副走査方向とで像面湾曲の大きさ
、変化の仕方が異なることが明らかであり、主走査方向
の像面湾曲は、完全にOであるとはいえないが、実用上
無視できる程度に小さく補正の必要はない、それに対し
て副走査方向の像面湾曲は大きく、従って補正を必要と
する。
FIG. 5 shows the change in field curvature due to the deflection angle θ due to the second imaging optical system, where 11 shown with a broken line indicates the curvature of field in the main scanning direction, and 12 shown with a solid line shows the curve in the sub-scanning direction. This is a curve showing the field curvature of . As mentioned above, it is clear from this figure that the magnitude and manner of change of field curvature are different in the main scanning direction and the sub-scanning direction, and even though the field curvature in the main scanning direction is completely O, However, the curvature of field in the sub-scanning direction is large and therefore requires correction as it is so small that it can be practically ignored.

第6図は、第5図において実線12で示す副走査方向の
像面湾曲を補正するのに必要な補正量ΔXの偏向角θに
よる変化を示すもので、2枚の平行平板8A、8Bの傾
き角Uを偏向角θの変化に応じて適宜に変化させること
により(第6図に示すようにΔXを変化させれば)、第
7図に示すように副走査方向における像面湾曲は全くな
くなることになる。残存するのは曲線16で示すところ
の補正の必要がない非常に小さな主走査方向における像
面湾曲だけである。
FIG. 6 shows the change in the correction amount ΔX required to correct the field curvature in the sub-scanning direction shown by the solid line 12 in FIG. 5, depending on the deflection angle θ. By changing the tilt angle U appropriately according to the change in the deflection angle θ (by changing ΔX as shown in Fig. 6), the curvature of field in the sub-scanning direction can be completely eliminated as shown in Fig. 7. It will disappear. What remains is only a very small curvature of field in the main scanning direction, which does not require correction, as shown by curve 16.

第8図(a)、(b)は、平行平板8A、8Bを回転さ
せてΔXを変化させる変位機構を示すもので、同図(a
)は回転軸方向から見た図、同図(b)はその斜視図で
ある。この変位機構は、平行平板8A、8Bが取り付け
られた同径の回転座13と14とを接触(または噛合)
させ、駆動軸15によって一方の回転座13を回転させ
ることにより平行平板8Aと8Bが互いに逆方向で同じ
角度回転するようにしたものである。
FIGS. 8(a) and 8(b) show a displacement mechanism that changes ΔX by rotating the parallel plates 8A and 8B.
) is a view seen from the direction of the rotation axis, and FIG. 2(b) is a perspective view thereof. This displacement mechanism brings rotating seats 13 and 14 of the same diameter, to which parallel plates 8A and 8B are attached, into contact (or meshing).
By rotating one rotating seat 13 by the drive shaft 15, the parallel plates 8A and 8B are rotated at the same angle in opposite directions.

尚、上記実施例においては、2枚の平行平板が同じ屈折
率、同じ板厚を有するものとして説明した。しかし、こ
のようなものに限らず屈折率及び板厚の異なる2枚の平
行平板を用いるようにしても良い、ここで、2枚の平行
平板8A、8Bが異なる板厚d、d’ と屈折率n、n
’ を有するとした場合には、前述の傾き角Uは同一で
はなくなり、下記の式を満足する傾き角u、u’で回転
することにより同じ板厚、屈折率の平行平板を用いたと
きと同じ効果が得られる。
In the above embodiment, the two parallel plates have the same refractive index and the same thickness. However, this is not the only option, and two parallel flat plates with different refractive indexes and different thicknesses may be used. Here, the two parallel flat plates 8A and 8B have different thicknesses d and d' and refraction. rate n, n
', the above-mentioned inclination angle U is no longer the same, and by rotating with inclination angles u and u' that satisfy the following equation, it is possible to obtain You can get the same effect.

d(1−(cosu/f11:■置’Vf ) 5in
u −−d’(1−(cosu’/  n  −mnu
ゴ) 5inu’ = 0第9図は、本発明の別の実施
例を示すもので。
d(1-(cosu/f11:■place'Vf) 5in
u −−d′(1−(cosu′/ n −mnu
5inu' = 0 Fig. 9 shows another embodiment of the present invention.

本実施例においては平行平板8A、8Bを、光軸と直交
する垂直方向(副走査方向)の軸10A。
In this embodiment, the parallel plates 8A and 8B are arranged on an axis 10A in the vertical direction (sub-scanning direction) perpendicular to the optical axis.

10Bを中心に回転することにより主走査方向の像面湾
曲を補正するようにしたものである。即ち、回転軸の方
向を変えることにより補正する像面湾曲の方向を変える
ことができるものであり、一般には主走査方向の像面湾
曲は比較的小さいが、特殊な事情により主走査方向の像
面湾曲が大きくなり補正を必要とする場合が有り得るが
この場合には第9図に示すように平行平板8A、8Bの
回転軸の方向を副走査方向に設定すれば良い、また。
By rotating around 10B, the curvature of field in the main scanning direction is corrected. In other words, the direction of the field curvature to be corrected can be changed by changing the direction of the rotation axis. Generally, the field curvature in the main scanning direction is relatively small, but due to special circumstances, the field curvature in the main scanning direction may be There may be cases where the surface curvature becomes large and requires correction, but in this case, the direction of the rotation axes of the parallel flat plates 8A, 8B may be set in the sub-scanning direction as shown in FIG.

平行平板8Aと8Bの組合せを2組設け、一方の組の回
転軸と他方の組の回転軸を変えることにより主走査方向
と副走査方向の像面湾曲をそれぞれ全く独立して修正す
ることもできる。
By providing two sets of parallel flat plates 8A and 8B and changing the rotation axis of one set and the other set, the curvature of field in the main scanning direction and the sub-scanning direction can be corrected completely independently. can.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように1本発明によれば2枚の平行平板を
第1結像光学系と回転多面鏡との間に光軸と異なる角度
の軸を中心として回転可能に配置し偏向走査に伴って互
いに回転するように構成したので、平行平板による光学
的遅れ量を偏向走査によって変化させて結像位置の補正
を行うことができ、従って、像面湾曲を補正することが
できる。
As described above, according to the present invention, two parallel flat plates are arranged between the first imaging optical system and the rotating polygon mirror so as to be rotatable about an axis at a different angle from the optical axis, and are used for deflection scanning. Since they are configured to rotate relative to each other, it is possible to correct the imaging position by changing the amount of optical delay caused by the parallel plate by deflection scanning, and therefore, it is possible to correct field curvature.

しかも、補正されるのは平行平板の回転軸と直角方向の
像面湾曲であり、従って、平行平板の回転軸の方向によ
って任意の方向、例えば副走査方向の像面湾曲を主走査
方向の像面湾曲と無関係に独立して調整することができ
る。依って、主走査方向と副走査方向とで湾曲の仕方、
大きさが異なる像面湾曲をほぼ確実に補正することがで
きる。
Moreover, what is corrected is the curvature of field in the direction perpendicular to the rotational axis of the parallel plate. Therefore, depending on the direction of the rotational axis of the parallel plate, the curvature of field in the sub-scanning direction can be corrected in any direction, for example, in the image in the main scanning direction. It can be adjusted independently of the surface curvature. Therefore, the way of curving in the main scanning direction and the sub-scanning direction,
Field curvatures of different sizes can be almost reliably corrected.

そして、平行平板によって光軸のずれが生じても平行平
板は2枚あり、それが互いに逆方向に同じ角度傾いてい
るので、一方の平行平板による光軸のずれが他方の平行
平板によって補正され、結局光軸のずれが生じない、即
ち1本発明によれば。
Even if a shift in the optical axis occurs due to parallel plates, there are two parallel plates and they are tilted at the same angle in opposite directions, so the shift in the optical axis due to one parallel plate is corrected by the other parallel plate. According to the present invention, no deviation of the optical axis occurs after all.

光軸のずれを伴うことなく像面湾曲を極めて良好に補正
することができる。
The curvature of field can be corrected extremely well without causing any deviation of the optical axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は1本発明の一つの実施例を説明する
ためのもので、このうち、第1図は、高密度走査装置の
全体の概略構成を示す斜視図、第2図(a)、(b)は
それぞれ高密度走査装置の副走査方向断面図で、このう
ち、同図(a)は平行平板が光軸に対して垂直の状態を
、同図(b)は平行平板が同図(a)に示す状態から傾
いた状態を示し、第3図は、線状結像の平行平板の回転
による変位ΔXの生じる理由を説明するための図5第4
図(a)、(b)はそれぞれ平行平板の傾き角Uと線状
結像のずれ量ΔXとの関係図で、このうち、同図(a)
は板厚をパラメータとし、同図(b)は屈折率をパラメ
ータとしたものであり、第5図は、像面湾曲と偏向角θ
との関係図、第6図は、第5図に示した像面湾曲を補正
するのに必要な補正量に見合う変位量ΔXと偏向角θの
関係図、第7図は、補正後の像面湾曲と偏向角θとの関
係図、第8図(a)、(b)は平行平板を回転させる変
位機構を示し、このうち、同図(a)は回転軸方向から
見た図、同図(b)は斜視図、第9図は、本発明の別の
実施例を示す高密度走査装置の斜視図である。 1・・・・・・光源。 2・・・・・・シリンドリカルレンズ。 3・・・・・・回転多面鏡、     4・・・・・・
偏光反射面、5.6・・・・・・単レンズ、 7・・・・・・被走査媒体、 8.8A、8B・・・・・・平行平板、9A、9B、I
OA、IOB・・・・・・軸、13.14・・・・・・
回転座、 15・・・・・・駆動輪。 第 図 第 図 第 図 (a) 第 図 (a) 傾き角□u(0) 傾き角□u(’) 第 図 (a) 第 図
1 to 8 are for explaining one embodiment of the present invention, of which FIG. 1 is a perspective view showing the overall schematic configuration of a high-density scanning device, and FIG. (a) and (b) are cross-sectional views of the high-density scanning device in the sub-scanning direction, of which (a) shows the parallel plate perpendicular to the optical axis, and (b) shows the parallel plate in the vertical direction. Fig. 3 shows a state in which the plane is tilted from the state shown in Fig. 5(a), and Fig. 3 is a diagram illustrating the reason why the displacement ΔX occurs due to the rotation of the parallel plate of linear imaging.
Figures (a) and (b) are relationship diagrams between the inclination angle U of the parallel plate and the deviation amount ΔX of linear imaging, respectively.
(b) uses the refractive index as a parameter, and Fig. 5 shows the curvature of field and the deflection angle θ.
Figure 6 is a diagram showing the relationship between the displacement ΔX and the deflection angle θ, which corresponds to the amount of correction necessary to correct the field curvature shown in Figure 5, and Figure 7 is the image after correction. Figures 8(a) and 8(b), which are relationship diagrams between surface curvature and deflection angle θ, show a displacement mechanism for rotating a parallel plate. FIG. 9(b) is a perspective view, and FIG. 9 is a perspective view of a high-density scanning device showing another embodiment of the present invention. 1...Light source. 2... Cylindrical lens. 3...Rotating polygon mirror, 4...
Polarization reflecting surface, 5.6...Single lens, 7...Scanned medium, 8.8A, 8B...Parallel plate, 9A, 9B, I
OA, IOB...Axis, 13.14...
Rotating seat, 15... Drive wheel. Figure Figure Figure (a) Figure (a) Tilt angle □u (0) Tilt angle □u (') Figure (a) Figure

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、この光源から出射された光束を線状に結
像する第1結像光学系と、この第1結像光学系から出射
された光束を偏向する回転多面鏡と、この回転多面鏡に
より偏向された光束により走査される被走査媒体と前記
回転多面鏡との間に配置され前記の偏向された光束を前
記被走査媒体上に結像すると共に前記回転多面鏡の偏向
面と直交する面内において前記偏向面と前記被走査媒体
とを幾何光学的に略共役関係にする第2結像光学系を有
する高密度走査装置において、前記第1結像光学系と前
記回転多面鏡との間に、2枚の透明な平行平板が光軸と
異なる角度の軸を中心として回転可能に設けられたこと
を特徴とする高密度走査装置。
(1) A light source, a first imaging optical system that linearly images the light beam emitted from the light source, a rotating polygon mirror that deflects the light beam emitted from the first imaging optical system, and a rotating polygon mirror that deflects the light beam emitted from the first imaging optical system. Disposed between the rotating polygon mirror and a scanning medium that is scanned by a light beam deflected by a polygon mirror, the mirror forms an image of the deflected light beam on the scanning medium, and also forms an image of the deflected light beam on the scanning medium. A high-density scanning device including a second imaging optical system that makes the deflection surface and the scanned medium substantially conjugate in terms of geometrical optics in orthogonal planes, the first imaging optical system and the rotating polygon mirror. A high-density scanning device characterized in that two transparent parallel flat plates are rotatably provided between the two transparent parallel plates around an axis at a different angle from the optical axis.
(2)2枚の平行平板が同時に且つ回転方向が互いに逆
に回転するようにされたことを特徴とする請求項(1)
記載の高密度走査装置。
(2) Claim (1) characterized in that the two parallel flat plates are configured to rotate simultaneously and in opposite directions.
High density scanning device as described.
JP2770789A 1989-02-08 1989-02-08 High density scanning device Expired - Lifetime JP2750597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2770789A JP2750597B2 (en) 1989-02-08 1989-02-08 High density scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2770789A JP2750597B2 (en) 1989-02-08 1989-02-08 High density scanning device

Publications (2)

Publication Number Publication Date
JPH02208623A true JPH02208623A (en) 1990-08-20
JP2750597B2 JP2750597B2 (en) 1998-05-13

Family

ID=12228467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2770789A Expired - Lifetime JP2750597B2 (en) 1989-02-08 1989-02-08 High density scanning device

Country Status (1)

Country Link
JP (1) JP2750597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898248A1 (en) * 2006-09-11 2008-03-12 Samsung Electronics Co., Ltd. Laser scanning unit and image forming apparatus having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1898248A1 (en) * 2006-09-11 2008-03-12 Samsung Electronics Co., Ltd. Laser scanning unit and image forming apparatus having the same

Also Published As

Publication number Publication date
JP2750597B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP4227334B2 (en) Scanning optical system
US6512623B1 (en) Scanning optical device
JPH03501537A (en) optical scanner
JPS63141020A (en) Optical scanning device
US5353047A (en) Beam scanning optical system
JPH01121815A (en) Scanning optical system for laser beam printer or the like
JP2550153B2 (en) Optical scanning device
EP0629891B1 (en) Beam scanning apparatus
JP2994799B2 (en) Scanning imaging lens system and optical scanning device
JP2000019448A (en) Optical scanner
JP2000267030A (en) Optical scanning device
JPH02208623A (en) High-density scanning device
JPH0862492A (en) Scanning lens system
JP2834793B2 (en) Fθ lens system in optical scanning device
JP3196709B2 (en) Scanning lens and optical scanning device
JP2626708B2 (en) Scanning optical system
JP3069281B2 (en) Optical scanning optical system
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JPH02221910A (en) Ftheta lens system of optical scanning device
JP3386164B2 (en) Optical scanning device
JP2938550B2 (en) Ftheta lens and linear image forming lens
JP3725182B2 (en) Optical scanning device
JPH03174507A (en) Scanning optical device
JP2927846B2 (en) Fθ lens system in optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device