JPH0220854B2 - - Google Patents

Info

Publication number
JPH0220854B2
JPH0220854B2 JP10589986A JP10589986A JPH0220854B2 JP H0220854 B2 JPH0220854 B2 JP H0220854B2 JP 10589986 A JP10589986 A JP 10589986A JP 10589986 A JP10589986 A JP 10589986A JP H0220854 B2 JPH0220854 B2 JP H0220854B2
Authority
JP
Japan
Prior art keywords
bearing
glass fiber
reinforced composite
glass fibers
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10589986A
Other languages
Japanese (ja)
Other versions
JPS62261718A (en
Inventor
Masataka Nosaka
Mamoru Oike
Hiroyoshi Suzuki
Hideaki Katsuta
Shunei Ooki
Akira Okayasu
Tatsuo Ikeda
Kaoru Kabayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
UCHU KAIHATSU JIGYODAN
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
UCHU KAIHATSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO, UCHU KAIHATSU JIGYODAN filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP10589986A priority Critical patent/JPS62261718A/en
Publication of JPS62261718A publication Critical patent/JPS62261718A/en
Publication of JPH0220854B2 publication Critical patent/JPH0220854B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガラス繊維強化型複合材料製軸受
保持器、更に詳しくは、ロケツトエンジンの液体
水素や液体酸素ターボポンプに一般に使われてい
る、ガラス織布で強化したポリテトラフルオロエ
チレン(PTFE)製軸受保持器などの改良品とし
て用いるガラス繊維強化型複合材料製軸受保持器
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bearing retainer made of glass fiber reinforced composite material, and more specifically, to a bearing retainer generally used in liquid hydrogen or liquid oxygen turbo pumps of rocket engines. The present invention relates to a method for manufacturing a glass fiber reinforced composite material bearing retainer used as an improved product such as a polytetrafluoroethylene (PTFE) bearing retainer reinforced with glass woven cloth.

〔従来の技術〕[Conventional technology]

例えば、ロケツトエンジン等の宇宙機器用軸受
は、極低温、超高真空等の特殊環境下で使用され
ることが多く、したがつて軸受潤滑剤としては一
般に用いられている油やグリースを使用すること
は困難であるため、ころがり軸受などの軸受保持
器としては自己潤滑性材料からなる固体潤滑剤が
非常に多く使われている。
For example, bearings for space equipment such as rocket engines are often used in special environments such as extremely low temperatures and ultra-high vacuums, so commonly used oils and greases are used as bearing lubricants. Therefore, solid lubricants made of self-lubricating materials are very often used in bearing cages for rolling bearings and the like.

このように軸受保持器に固体潤滑剤を用いた場
合は、軸受が回転すると、鋼球が軸受保持器のポ
ケツト穴に接触して該鋼球に潤滑剤が転移し、次
いで鋼球から内外輪の軌道面に潤滑剤が転移し、
更に摩擦面全面に固体潤滑剤の薄い被膜が形成さ
れることにより潤滑が行われるようになつてい
る。
When a solid lubricant is used in the bearing cage in this way, when the bearing rotates, the steel balls come into contact with the pocket holes in the bearing cage, the lubricant is transferred to the steel balls, and then the lubricant is transferred from the steel balls to the inner and outer rings. The lubricant is transferred to the raceway surface of
Furthermore, lubrication is achieved by forming a thin film of solid lubricant over the entire friction surface.

固体潤滑剤で構成した軸受保持器にはいろいろ
な種類があるが、極低温中で使用するものとして
は固体潤滑剤としてPTFEを使用し、これを強化
するためにガラス繊維を含有させたり、又は
PTFEを金属で補強して構成したものが多い。
There are various types of bearing cages made of solid lubricants, but those used at extremely low temperatures use PTFE as the solid lubricant and contain glass fiber to strengthen it, or
Many are made of PTFE reinforced with metal.

特に、液体水素、あるいは液体酸素ターボポン
プ等の高DN値(軸受内径×回転数)で使用する
軸受の保持器は、小型軽量で且つ大なる強度が必
要とされ、その素材にはガラス織布にPTFEを含
浸させ、これをパイプ状に巻き固めて形成したガ
ラス繊維強化型複合材料が使用されることが多
く、諸外国においても極低温用ターボポンプ軸受
保持器には、このタイプのものが最も多く使われ
ている。
In particular, bearing cages used with high DN values (bearing inner diameter x rotational speed) such as liquid hydrogen or liquid oxygen turbo pumps need to be small, lightweight, and have great strength, and are made of glass woven material. A glass fiber-reinforced composite material is often used, which is formed by impregnating PTFE with PTFE and rolling it into a pipe shape, and this type of material is also used in cryogenic turbo pump bearing retainers in other countries as well. Most commonly used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、軸受保持器は保持器素材にポケツト
穴を機械加工により形成しているが、第10図及
び第11図に示すように、ガラス繊維強化型複合
材料からなる軸受保持器用素材12にポケツト穴
13を機械加工により形成して軸受保持器11を
構成する際には、機械加工時にガラス繊維をも切
断することになり、したがつて加工後のポケツト
穴13の表面にはPTFEからなる母材14と硬い
ガラス繊維15が共存し、また加工条件によつて
は第4〜6図にポケツト穴の機械加工表面を拡大
して示す写真図面にみられるように、ガラス繊維
15が母材14より飛び出してしまうことがあ
る。
Incidentally, the bearing retainer is formed by machining pocket holes in the retainer material, and as shown in FIGS. 10 and 11, the pocket holes are formed in the bearing retainer material 12 made of a glass fiber reinforced composite material. 13 is formed by machining to form the bearing cage 11, the glass fibers are also cut during the machining, so the surface of the pocket hole 13 after machining is coated with a base material made of PTFE. 14 and hard glass fibers 15 coexist, and depending on the processing conditions, the glass fibers 15 may become stronger than the base material 14, as shown in the photographic drawings showing enlarged views of the machined surface of the pocket hole in Figs. Sometimes it jumps out.

このようにポケツト穴13の表面にPTFE母材
14とガラス繊維15が共存している状態、又は
ガラス繊維15が母材14より突出している状態
のままでで、第12図に示すように、軸受16を
組立て使用した場合、軸受が回転して鋼球17が
ポケツト穴13の内面に接触すると、潤滑剤であ
るPTFE母材14にはあまり接触できずガラス繊
維15と接触してしまい、したがつて母材14か
ら潤滑剤の転移があまり行われず、また潤滑剤転
移の際に折損したガラス繊維15を巻き込んでし
まうことも発生する。なお第12図において、1
8は軸受の外輪、19は内輪である。
In this way, with the PTFE base material 14 and the glass fibers 15 coexisting on the surface of the pocket hole 13, or with the glass fibers 15 protruding from the base material 14, as shown in FIG. When the bearing 16 is assembled and used, when the bearing rotates and the steel balls 17 come into contact with the inner surface of the pocket hole 13, they cannot make much contact with the PTFE base material 14, which is a lubricant, and come into contact with the glass fiber 15, causing damage. As a result, the lubricant does not transfer much from the base material 14, and the broken glass fibers 15 may also become entangled during the lubricant transfer. In addition, in Figure 12, 1
8 is an outer ring of the bearing, and 19 is an inner ring.

この状態で軸受動作を続けると、潤滑不足で軸
受は発熱し、最悪の場合スミアリングを引き起こ
し、この現象が軸受の寿命を短縮していた。
If the bearing continues to operate in this condition, the bearing will generate heat due to lack of lubrication, which in the worst case scenario will cause smearing, which shortens the life of the bearing.

本発明は、従来の軸受保持器の上記問題点を解
消するためになされたもので、潤滑性を向上させ
軸受寿命を飛躍的に延ばすことができるガラス繊
維強化型複合材料製軸受保持器の製造方法を提供
することを目的とするものである。
The present invention was made to solve the above-mentioned problems of conventional bearing cages, and manufactures a glass fiber-reinforced composite material bearing cage that can improve lubricity and dramatically extend bearing life. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明は自己潤滑
性材料とガラス繊維とからなるガラス繊維強化型
複合材料製軸受保持器素材の機械加工によるポケ
ツト穴及び案内面等の加工表面部のガラス繊維
を、表面処理剤で適当な深さまで溶解除去して、
鋼球等と潤滑性材料との接触を良好になるように
軸受保持器を製造するものである。
In order to solve the above-mentioned problems, the present invention has been developed by machining a bearing cage material made of a glass fiber reinforced composite material made of a self-lubricating material and glass fibers to remove glass fibers from machined surfaces such as pocket holes and guide surfaces. , dissolve and remove to an appropriate depth with a surface treatment agent,
Bearing cages are manufactured to ensure good contact between steel balls and other lubricating materials.

ガラス繊維強化型複合材料としてはガラス織布
で強化したPTFE等のテフロン樹脂が挙げられる
が、ガラス織布と組み合わされる材料は、自己潤
滑性を有し高温で安定であり、且つ強化ガラス繊
維を溶解除去するのに用いる、フツ化水素酸など
の表面処理剤と反応しないものであれば他の材料
も用いることができる。
Examples of glass fiber-reinforced composite materials include Teflon resins such as PTFE reinforced with woven glass fabric, but materials combined with woven glass fabric have self-lubricating properties and are stable at high temperatures. Other materials can also be used as long as they do not react with the surface treatment agent, such as hydrofluoric acid, used for dissolution and removal.

ポケツト穴の表面や案内面などの加工表面部の
ガラス繊維を溶解せしめる表面処理剤としてはフ
ツ化水素酸を使用する。フツ化水素酸は市販のフ
ツ化水素酸(46%)を使用することができるが、
その濃度はガラスを溶解し得る濃度であればいず
れの濃度でもよい。加工表面部のガラス繊維を溶
解するには、ガラス繊維強化型複合材料からなる
軸受保持器素材を機械加工したのちフツ化水素酸
に浸漬する。これにより、該軸受保持器表面は均
一に処理され、全表面部のガラス繊維が一様に溶
解・除去される。ガラス繊維の溶解除去量は処理
時間に比例するので、加工表面部の深部までガラ
ス繊維を溶解除去する必要がある場合は処理時間
を長くする。なお、機械加工を施した軸受保持器
の全表面ではなく、加工部分のみをフツ化水素酸
で処理することも可能である。
Hydrofluoric acid is used as a surface treatment agent to dissolve glass fibers on processed surfaces such as pocket hole surfaces and guide surfaces. Commercially available hydrofluoric acid (46%) can be used as hydrofluoric acid, but
The concentration may be any concentration that can dissolve glass. To dissolve the glass fibers on the machined surface, the bearing cage material made of glass fiber reinforced composite material is machined and then immersed in hydrofluoric acid. As a result, the surface of the bearing cage is uniformly treated, and the glass fibers on the entire surface are uniformly dissolved and removed. Since the amount of glass fibers to be dissolved and removed is proportional to the processing time, the processing time is increased if it is necessary to dissolve and remove the glass fibers deep into the processed surface. Note that it is also possible to treat only the machined portion with hydrofluoric acid instead of the entire surface of the machined bearing cage.

〔作用〕[Effect]

上記のようにフツ化水素酸等の表面処理剤によ
り加工表面部のガラス繊維を溶解によつて除去し
ているので、加工表面部のガラス繊維を均一に容
易に除去することができ、またガラス繊維強化型
複合材料製軸受保持器の母材であるPTFEなどの
自己潤滑性材料は、非常に安定でガラス繊維溶解
処理中にフツ化水素酸等の表面処理剤と反応しな
いので、その構造強度は低下しない。
As mentioned above, the glass fibers on the processed surface are removed by dissolving them using a surface treatment agent such as hydrofluoric acid, so the glass fibers on the processed surface can be removed uniformly and easily. Self-lubricating materials such as PTFE, which is the base material of fiber-reinforced composite bearing cages, are extremely stable and do not react with surface treatment agents such as hydrofluoric acid during the glass fiber melting process, which increases their structural strength. does not decrease.

したがつて、かかる製造方法により作成された
ガラス繊維強化型複合材料製軸受保持器を、例え
ば特殊環境下で使用される宇宙機器用軸受に適用
した場合、軸受保持器の構造強度を低下させず
に、PTFEなどの自己潤滑性材料のみに軸受の鋼
球を接触させることができ、したがつて潤滑剤を
容易に供給することができ、軸受の潤滑性を向上
させ、寿命を大幅に延ばし、ターボポンプなどの
宇宙機器の信頼性を大幅に向上させることができ
る。
Therefore, when a glass fiber-reinforced composite material bearing cage made by such a manufacturing method is applied to, for example, a space equipment bearing used in a special environment, the structural strength of the bearing cage will not be reduced. In addition, the steel balls of the bearing can be contacted only with self-lubricating materials such as PTFE, and therefore the lubricant can be easily supplied, improving the lubricity of the bearing and greatly extending its service life. The reliability of space equipment such as turbo pumps can be significantly improved.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に係る製造方法により得られ
たガラス繊維強化型複合材料製軸受保持器の構成
例を示す斜視図で、第2図はその−線に沿つ
た断面図である。図において、1はガラス織布に
自己潤滑性を有するPTFEを含浸して形成したガ
ラス繊維強化PTFE複合材料からなる軸受保持器
で、該保持器1には鋼球保持用のポケツト穴2が
機械加工により穿設されおり、そして該ポケツト
穴2の表面部のガラス繊維は溶解・除去されてい
て、該表面には多数の微小穴部が形成された状態
になつている。
FIG. 1 is a perspective view showing an example of the structure of a glass fiber-reinforced composite material bearing retainer obtained by the manufacturing method according to the present invention, and FIG. 2 is a sectional view taken along the - line. In the figure, 1 is a bearing cage made of a glass fiber reinforced PTFE composite material formed by impregnating a glass woven cloth with self-lubricating PTFE, and the cage 1 has pocket holes 2 for holding steel balls. The pocket hole 2 has been drilled through processing, and the glass fibers on the surface of the pocket hole 2 have been melted and removed, leaving a large number of microholes formed on the surface.

次に、このように構成された軸受保持器1を製
造するための本発明に基づく製造過程について説
明する。まず、ガラス繊維強化PTFE複合材料を
用いて成型加工により短い円筒体状の軸受保持器
素材を形成する。次に該素材の外周を研削加工し
て所定の外径にし、次いで周面に沿つて鋼球保持
用のポケツト穴を機械加工により多数穿設する。
Next, a manufacturing process based on the present invention for manufacturing the bearing retainer 1 configured as described above will be explained. First, a short cylindrical bearing retainer material is formed by molding using glass fiber reinforced PTFE composite material. Next, the outer periphery of the material is ground to a predetermined outer diameter, and then a large number of pocket holes for holding steel balls are machined along the periphery.

次に、機械加工を施した軸受保持器素材を、市
販の46%フツ化水素酸に5分間漬けることによ
り、潤滑剤として供給するのに必要な所定の
PTFE層の深さまでのガラス繊維を溶解除去す
る。なお、ガラス繊維の溶解量はフツ化水素酸に
漬ける時間と温度に比例するので、ガラス繊維を
溶解除去する深さは処理時間と温度によつて決定
できる。例えば46%のフツ化水素酸を用いた場合
は、100μm溶解除去するのに常温で8〜10分か
かる。
The machined bearing cage material is then immersed in commercially available 46% hydrofluoric acid for 5 minutes to provide the required amount of lubricant.
Dissolve and remove glass fibers up to the depth of the PTFE layer. Note that since the amount of glass fiber dissolved is proportional to the time and temperature of immersion in hydrofluoric acid, the depth to which the glass fiber is dissolved and removed can be determined by the treatment time and temperature. For example, when using 46% hydrofluoric acid, it takes 8 to 10 minutes at room temperature to dissolve and remove 100 μm.

次いで、フツ化水素酸処理した軸受保持器素材
の外周を研摩して所定の寸法とし、しかる後再度
フツ化水素酸処理を短時間行い、該保持器素材の
外周部表面のガラス繊維を溶解させる。
Next, the outer periphery of the bearing cage material treated with hydrofluoric acid is polished to a predetermined size, and then the hydrofluoric acid treatment is performed again for a short time to dissolve the glass fibers on the surface of the outer periphery of the cage material. .

次にこのように必要な深さまでガラス繊維を溶
解除去した保持器素材を中和処理し、次いで洗浄
することにより、所定の表面処理の施された軸受
保持器が得られる。中和にはNa2CO3、CaCO3
が使用できる。
Next, the cage material from which the glass fibers have been dissolved and removed to a required depth is neutralized and then washed, thereby obtaining a bearing cage that has been subjected to a predetermined surface treatment. Na2CO3 , CaCO3, etc. can be used for neutralization.

第3図は、以上の製造工程を示すフローシート
図である。
FIG. 3 is a flow sheet diagram showing the above manufacturing process.

走査型電子顕微鏡により得られた、フツ化水素
酸処理前後の軸受保持器1のポケツト穴2の表面
を拡大して示す写真図面を、それぞれ第4図乃至
第6図及び第7図乃至第9図に示す。第4図及び
第7図は70倍、第5図及び第8図は350倍、第6
図及び第9図は700倍の拡大写真である。第7図
乃至第9図の写真図面から、フツ化水素酸処理に
より母材より飛び出しているガラス繊維が完全に
除去されていることがわかる。
FIGS. 4 to 6 and 7 to 9 are photographic drawings showing enlarged surfaces of the pocket holes 2 of the bearing retainer 1 before and after treatment with hydrofluoric acid obtained by a scanning electron microscope, respectively. As shown in the figure. Figures 4 and 7 are 70x, Figures 5 and 8 are 350x, 6
The figure and Figure 9 are 700x enlarged photographs. From the photographs shown in FIGS. 7 to 9, it can be seen that the glass fibers protruding from the base material were completely removed by the hydrofluoric acid treatment.

このようにして得られた軸受保持器1は、案内
面及びポケツト穴における鋼球との接触部におい
てPTFEのみの摺動となり、したがつて鋼球等へ
の潤滑被膜の転移が良好に行われ軸受の発熱防止
に役立つ。
The bearing retainer 1 obtained in this way has only PTFE sliding on the guide surface and the contact portion with the steel balls in the pocket hole, so that the lubricating film can be transferred well to the steel balls, etc. Helps prevent heat generation in bearings.

なお、上記実施例では本発明に係る軸受保持器
素材を構成するガラス繊維強化型複合材料の潤滑
性母材としてPTFEを用いたものを示したが、本
発明は上述の実施例のみに限定されるものではな
く、他の潤滑性材料を母材としたガラス繊維強化
型複合材料を用いて軸受保持器素材を構成するこ
とができる。また本発明により得られる軸受保持
器は、特殊環境下で用いる宇宙機器用の軸受に適
用されるばかりでなく、一般の機器の軸受にも勿
論適用できるものである。
In addition, although the above-mentioned example used PTFE as the lubricating base material of the glass fiber-reinforced composite material constituting the bearing cage material according to the present invention, the present invention is not limited to the above-mentioned example. The bearing retainer material can be constructed using a glass fiber-reinforced composite material made of another lubricating material as a base material. Furthermore, the bearing retainer obtained by the present invention can be applied not only to bearings for space equipment used under special environments, but also to bearings for general equipment.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて説明したように、本発明
によれば、ガラス繊維強化型複合材料からなる軸
受保持器素材の加工表面部のガラス繊維を溶解に
より除去しているので、加工表面部のガラス繊維
をほぼ均一に除去したガラス繊維強化型複合材料
製軸受保持器を容易に製造することができる。
As explained above based on the embodiments, according to the present invention, the glass fibers on the machined surface of the bearing cage material made of glass fiber reinforced composite material are removed by melting. A bearing retainer made of a glass fiber-reinforced composite material from which fibers are almost uniformly removed can be easily produced.

また加工表面部のガラス繊維の除去された軸受
保持器は、軸受潤滑材供給源である保持器ポケツ
ト穴の表面においてはガラス繊維は適当な深さま
で露出することがないので、以下のような種々の
優れた利点を備えている。
In addition, bearing cages with glass fibers removed from the machined surface are not exposed to an appropriate depth on the surface of the cage pocket hole, which is the bearing lubricant supply source, so various types of It has excellent advantages.

() 軸受の潤滑性が向上し、軸受の寿命を飛躍
的に延ばすことができる。
() The lubricity of the bearing is improved and the life of the bearing can be dramatically extended.

() 潤滑性の向上により軸受の発熱を抑えるこ
とができる。
() Heat generation in the bearing can be suppressed by improving lubricity.

() 加工面状態をほぼ均一にすることができる
ため、従来のガラス繊維の露出量及びその露出
状態による軸受寿命のばらつきを、抑えること
が可能となる。
() Since the machined surface condition can be made almost uniform, it is possible to suppress the conventional variation in bearing life due to the amount of exposed glass fiber and its exposed condition.

() 鋼球及び内外輪転走面の摩耗を減らすこと
ができる。
() Abrasion of steel balls and inner and outer ring raceway surfaces can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る製造方法により得られ
た表面処理が行われたガラス繊維強化型複合材料
製の軸受保持器の構成例を示す斜視図、第2図
は、第1図の−線に沿つた断面図、第3図
は、本発明に係るガラス繊維強化型複合材料製軸
受保持器の製造方法の製造工程の一例を示すフロ
ーシート図、第4図乃至第6図は、第1図及び第
2図で示した軸受保持器の加工表面のガラス繊維
のフツ化水素酸処理前の状態を、走査型電子顕微
鏡により得られた拡大写真で示す拡大図、第7図
乃至第9図は、同じく第1図及び第2図で示した
軸受保持器の加工表面のガラス繊維のフツ化水素
酸処理後の状態を、走査型電子顕微鏡により得ら
れた拡大写真で示す拡大図、第10図は、従来の
軸受保持器の一例を示す斜視図、第11図は、第
10図のXI−XI線に沿つた断面図、第12図は、
その軸受保持器を用いた軸受の一構成例を示す断
面図である。 図において、1は軸受保持器、2はポケツト穴
を示す。
FIG. 1 is a perspective view showing an example of the structure of a bearing retainer made of a glass fiber-reinforced composite material subjected to surface treatment obtained by the manufacturing method according to the present invention, and FIG. 3 is a flow sheet diagram showing an example of the manufacturing process of the method for manufacturing a glass fiber reinforced composite material bearing retainer according to the present invention, and FIGS. 4 to 6 are sectional views taken along the line. 7 to 9 are enlarged views showing the state of the glass fibers on the processed surface of the bearing retainer shown in FIGS. 1 and 2 before being treated with hydrofluoric acid using enlarged photographs taken with a scanning electron microscope. The figure is an enlarged view showing the state of the glass fibers on the processed surface of the bearing cage shown in FIGS. 1 and 2 after being treated with hydrofluoric acid, using an enlarged photograph taken with a scanning electron microscope. FIG. 10 is a perspective view showing an example of a conventional bearing retainer, FIG. 11 is a sectional view taken along the line XI-XI in FIG. 10, and FIG.
FIG. 2 is a cross-sectional view showing an example of the configuration of a bearing using the bearing retainer. In the figure, 1 indicates a bearing retainer, and 2 indicates a pocket hole.

Claims (1)

【特許請求の範囲】[Claims] 1 自己潤滑性材料にガラス繊維を加えて強化し
たガラス繊維強化型複合材料からなる軸受保持器
の製造方法において、ガラス繊維強化型複合材料
からなる軸受保持器素材を機械加工により加工し
たのち、加工表面部のガラス繊維を表面処理剤で
溶解除去することを特徴とするガラス繊維強化型
複合材料製軸受保持器の製造方法。
1. In a method for manufacturing a bearing cage made of a glass fiber-reinforced composite material reinforced by adding glass fiber to a self-lubricating material, the bearing cage material made of the glass fiber-reinforced composite material is processed by machining, and then processed. A method for manufacturing a bearing retainer made of a glass fiber reinforced composite material, characterized in that glass fibers on the surface are dissolved and removed using a surface treatment agent.
JP10589986A 1986-05-09 1986-05-09 Bearing retainer made of compound material of glass fiber reinforced type Granted JPS62261718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10589986A JPS62261718A (en) 1986-05-09 1986-05-09 Bearing retainer made of compound material of glass fiber reinforced type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10589986A JPS62261718A (en) 1986-05-09 1986-05-09 Bearing retainer made of compound material of glass fiber reinforced type

Publications (2)

Publication Number Publication Date
JPS62261718A JPS62261718A (en) 1987-11-13
JPH0220854B2 true JPH0220854B2 (en) 1990-05-10

Family

ID=14419732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10589986A Granted JPS62261718A (en) 1986-05-09 1986-05-09 Bearing retainer made of compound material of glass fiber reinforced type

Country Status (1)

Country Link
JP (1) JPS62261718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113718B2 (en) 2006-03-10 2012-02-14 Ntn Corporation Resin-made cage and bearing
WO2014192503A1 (en) 2013-05-31 2014-12-04 Ntn株式会社 Rolling bearing retainer, rolling bearing, and production method for rolling bearing retainer
WO2020203361A1 (en) 2019-04-02 2020-10-08 Ntn株式会社 Roller bearing
WO2023027130A1 (en) 2021-08-27 2023-03-02 国立研究開発法人宇宙航空研究開発機構 Cage for rolling bearing and rolling bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089818B (en) * 2013-01-04 2015-06-17 洛阳轴研科技股份有限公司 Processing method of aramid fiber reinforced polytetrafluoroethylene holder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8113718B2 (en) 2006-03-10 2012-02-14 Ntn Corporation Resin-made cage and bearing
WO2014192503A1 (en) 2013-05-31 2014-12-04 Ntn株式会社 Rolling bearing retainer, rolling bearing, and production method for rolling bearing retainer
WO2020203361A1 (en) 2019-04-02 2020-10-08 Ntn株式会社 Roller bearing
WO2023027130A1 (en) 2021-08-27 2023-03-02 国立研究開発法人宇宙航空研究開発機構 Cage for rolling bearing and rolling bearing

Also Published As

Publication number Publication date
JPS62261718A (en) 1987-11-13

Similar Documents

Publication Publication Date Title
US6280090B1 (en) Bearings and mechanical seals enhanced with microstructures
GB1590596A (en) Hydrodynamic bearing
US3162493A (en) Reinforcing graphite and plastic separators by electroformed metallic shells
US5741762A (en) Lubricated rolling contact devices, a method for lubricating rolling contact devices, and a composition for lubricating rolling contact devices
JPH0220854B2 (en)
US3645592A (en) Lubricant circulating angular contact ball bearing
US3500525A (en) Method of lubricating rolling element bearings
US4872771A (en) Bearing
JPH03255224A (en) Bearing for vacuum use
JP3121701B2 (en) Rolling bearings for semiconductor manufacturing equipment
JP2005090658A (en) Rolling bearing
JPH0893774A (en) Solid lubricating rolling bearing
JP2002147473A (en) Ball bearing for fishing tool and processing method therefor
JPH02190614A (en) Rolling bearing
JPH11108068A (en) Angular ball bearing
JP2010090934A (en) Cage for rolling bearing, method of manufacturing the same, and rolling bearing
JP4207721B2 (en) Resin cage for double row roller bearing and double row roller bearing
JP2931052B2 (en) Rolling bearing
JP2006349136A (en) Rolling bearing
JPS6249019A (en) Rolling bearing
JPH08152025A (en) Solid lubrication rolling bearing
JPH0749452Y2 (en) Wire guide roller
JPH106141A (en) Manufacture of bearing holder
JP3453504B2 (en) Rolling or sliding member and rolling bearing
JP2011043182A (en) Roller with cage, roller bearing with cage, and cage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term