JPH02207974A - Surface hardening method for titanium or titanium alloy - Google Patents

Surface hardening method for titanium or titanium alloy

Info

Publication number
JPH02207974A
JPH02207974A JP2925989A JP2925989A JPH02207974A JP H02207974 A JPH02207974 A JP H02207974A JP 2925989 A JP2925989 A JP 2925989A JP 2925989 A JP2925989 A JP 2925989A JP H02207974 A JPH02207974 A JP H02207974A
Authority
JP
Japan
Prior art keywords
alloy
build
base metal
molten metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2925989A
Other languages
Japanese (ja)
Other versions
JP2639053B2 (en
Inventor
Akihiro Suzuki
昭弘 鈴木
Tomohito Iikubo
知人 飯久保
Yoshihisa Kato
喜久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2925989A priority Critical patent/JP2639053B2/en
Publication of JPH02207974A publication Critical patent/JPH02207974A/en
Application granted granted Critical
Publication of JP2639053B2 publication Critical patent/JP2639053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Abstract

PURPOSE:To provide a hardened layer having a sufficient thickness with a high adhesive property by melting a build up material consisting of a mixture composed of Cr3C2 and Ti or Ti alloy in such a manner as to generate mixing with a base metal, thereby build-up hardening the base metal. CONSTITUTION:The build up material 2 in which the Cr3C2 and the Ti (or Ti alloy) coexist is welded to the base metal 1 consisting of the Ti or Ti alloy. Since the m. p. of the Cr3C2 is approximate to the m. p. of the Ti, the entire part thereof melts once and is nearly homogenized. Carbide TiC4 of the titanium precipitates in the process when the molten metal is cooled and solidified. The build-up layer is hardened as this carbide is finely distributed in the molten metal. Since the Ti component exists in the molten metal, the molten metal fits more easily to the base metal than in the case of merely welding the Co alloy. In addition, this melting is so executed as to generate mixing of the base metal and the build up material and, therefore, the content of the Ti component is higher in the part of the molten metal nearer the base metal.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は、チタンまたはチタン合金で製作した機械部品
の表面硬化方法に関する。 (従来の技術ま たとえば内燃エンジンのバルブのフェースに対して耐摩
耗性を与えるために、従来から「ステライトJを代表と
する00合、金などの肉盛溶接をして、これを硬化させ
ることが行なわれている。 一方、最近ではエンジンの高性能化に伴って、バルブも
Ti合金を使用して軽量化することが試みられている。  ところが、TiまたはTi金合金対して常用のCo合
金を肉盛りしてみても、母材と肉盛り金属層との界面か
ら割れて剥離する傾向があり、耐久性や信頼性に欠ける
ことがわかった。 TiおよびTi合金の表面硬化技術としては、窒化法が
ある。 これは、Tiまたは Ti合金の部品をN2ガ
ス雰囲気中で高温に加熱し、表層にTiN相を形成させ
て硬化をはかるものである。 しかし、形成できる硬化層の厚さが数μmと薄く、それ
が摩滅あるいは剥離すると耐摩耗性が一挙に失なわれる
のが、窒化法の難点である。 そのほかの手法には、炭化物肉盛性法がある。 これは、WC粉末を純Tiの粉末と併用して肉盛り硬化
をはかる方法であるが、溶融池内でWCが重力偏析する
ために炭化物の分布が不均一になり、肝心の表層部にお
いてあまり硬化が期待できない。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for hardening the surface of mechanical parts made of titanium or titanium alloys. 00 alloy, typified by Stellite J, is overlaid with gold and then hardened.On the other hand, recently, with the improvement of engine performance, valves are also made of Ti alloy. However, even when a commonly used Co alloy is overlaid on Ti or Ti-gold alloy, it tends to crack and peel from the interface between the base material and the overlay metal layer. Nitriding is a surface hardening technique for Ti and Ti alloys. This involves heating Ti or Ti alloy parts to high temperatures in an N2 gas atmosphere. , hardening is achieved by forming a TiN phase on the surface layer. However, the thickness of the hardened layer that can be formed is as thin as a few μm, and when it wears away or peels off, the wear resistance is lost all at once. Another method is the carbide build-up method. This method uses WC powder in combination with pure Ti powder to harden the build-up, but WC segregates due to gravity in the molten pool. As a result, the distribution of carbides becomes uneven, and it is difficult to expect much hardening in the critical surface layer.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は、TiまたはTi合金で製作した機械部
品の表面に、十分な厚さをもち密着性の高い肉盛り硬化
層を形成し、それによって耐久性のよい耐摩耗表面を得
る表面硬化方法を提供することにある。
The purpose of the present invention is to form a hardened build-up layer with sufficient thickness and high adhesion on the surface of mechanical parts made of Ti or Ti alloy, thereby obtaining a durable and wear-resistant surface. The purpose is to provide a method.

【課題を解決するための手段】[Means to solve the problem]

本発明のチタンまたはチタン合金の表面硬化方法は、T
iまたはTi合金からなる母材の表面において、Cr3
C2とTiまたはTi合金との混合物からなる肉盛り材
を、母材と混合が生じるように溶融させ、肉盛硬化する
ことからなる。 本発明を適用できるTi合金は、母材としては、Ti 
−6AI −4Vk:代表すt’L ルヨウナ、Tiを
主成分としてそれに比較的少量の合金成分を添加したも
ののほか、金属間化合物TiA、I)を主成分とするも
ののような、T;に対して比較的多量の合金成分を添加
したものを包含する。 肉盛りに使用するTiまたはTi合金は、母材と同種の
ものが好適であるが、母材がT:合金であってもNTj
を使用してよいし、母材と異なるTi合金でも差し支え
ない。 肉盛りに使用するCr3G2とTi(またはTi合金)
との混合物の組成は、Cr3C2が10〜70%(重量
)、代表的には30〜60%の範囲となるようにえらべ
ばよい。 粉末どうしを混合使用してもよいし、粉末混
合物を適宜のバインダーを用いて棒などに成形して使用
してもよい。 溶融は、肉盛り材と母材との混合が生じるように、十分
な熱を供給して行なう必要がある。 それには、プラズ
マアーク溶接、TIG溶接などの手段が適切である。 溶融の雰囲気は、Arのような不活性ガスを使用すれば
、作業が容易であるが、酸素および(または)窒素を溶
融金属に固溶させて硬化する効果も狙って、co2,0
2 、N2をコントロールされた量で含有する雰囲気を
使用することも有利である。 いったん肉盛りをおこなったのち、再度溶接金属を溶融
させると、硬さの分布が均一になって好ましい。 [作 用] TiまたはTi基合金の表面にCo合金の肉盛り溶接を
行なったとき、肉盛り金属層の密着がよくないのは、界
面において金属間化合物のTiCoヤTi 2 Coの
層が生成するためであることがわかった。 このような
金属間化合物は、それ自体は硬質であるが脆いため、肉
盛り部と母材の界面に層状に生成すると、そこから剥離
しやすいわけである。 本発明に従って、第1図にみるように、TiまたはT:
合金の母材(1)にCr3C2とTi(またはTi合金
)とが混在する肉盛り材(2)を溶接すると、Cr3C
2の融点(1895℃)はTiの融点(1670℃)に
近いため、全体がいったん溶融してほぼ均質になり、冷
却され凝固する過程でチタンの炭化物TiC(4)が析
出する。これが溶融金属中に微細に分布することにより
、肉盛り層が硬化する。 溶融金属(3)は、Ti成分
が存在するから、単、にCO合金を溶接した場合よりも
、母材となじみやすい。 しかもこの溶融は、母材と肉
盛り材との混合が生じるように行なうのであるから、溶
融金属の母材に近い部分はどTi成分の含有量が高い。 これを模式的に示せば、第2図のグラフのようになる。  すなわち、肉盛り材としてステライトを使用した従来
の肉盛り溶接によるときは、表面から内部へ向う硬さの
分布が、細線で示すように、表層からある深さまではス
テライト自体の硬さを保ち、そこで急激に高まったあと
、−挙に母材の硬さまで低くなる。 この急激な硬さの
高まりは、前記した金属間化合物JiCoあるいはT 
i 2 G oの生成に起因するものである。 これに対し、本発明に従って、Cr3C2とTi (ま
たはTi合金)とを混合して使用した場合には、第2図
に太線で示すように、かなりの厚さにわたってその硬さ
を保ったのち、溶融部分から母材に向って連続的に低下
する分布をみせる。 肉盛り金属層と母材との間に脆い層ができないから、剥
離の心配はない。 容易に理解されるように、Cr3C2の使用割合を高く
すれば、ある程度までは炭化物の生成量が多くなって、
肉盛り硬化層の耐摩耗性は高くなり、一方、Tiまたは
Ti合金の割合を高くすれば、母材との密着性はいっそ
う良好になる。 溶融金属層(3)の厚さは、肉盛り材(2)の使用量と
溶接部に与える熱量とを調節することにより、かなり広
い範囲で変更でき、所望により相当厚くできる。 従っ
て、肉盛り溶接後に表面を研磨して、たとえば第1図に
破線で示した位置まで削り取ったとしても、なお十分な
硬化層を残すことができる。
The method for surface hardening titanium or titanium alloy according to the present invention includes T
On the surface of the base material made of i or Ti alloy, Cr3
The overlay material made of a mixture of C2 and Ti or a Ti alloy is melted so as to be mixed with the base material, and then overlay hardened. The Ti alloy to which the present invention can be applied has Ti as a base material.
-6AI -4Vk: Representative t'L, in addition to those containing Ti as the main component and a relatively small amount of alloy components added thereto, as well as those containing intermetallic compounds TiA, I) as the main component, This includes those to which relatively large amounts of alloy components are added. The Ti or Ti alloy used for overlay is preferably the same type as the base material, but even if the base material is T: alloy, NTj
Alternatively, a Ti alloy different from that of the base material may be used. Cr3G2 and Ti (or Ti alloy) used for overlay
The composition of the mixture may be selected such that Cr3C2 is in the range of 10 to 70% (by weight), typically 30 to 60%. The powders may be used as a mixture, or the powder mixture may be formed into a rod or the like using an appropriate binder. Melting must be accomplished by supplying sufficient heat so that mixing of the overlay material and base material occurs. For this purpose, means such as plasma arc welding and TIG welding are suitable. For the melting atmosphere, it is easy to work if an inert gas such as Ar is used, but it is also possible to use a CO2,0
It is also advantageous to use an atmosphere containing controlled amounts of 2, N2. It is preferable to melt the weld metal again after overlaying once, because the hardness distribution becomes uniform. [Function] When overlaying a Co alloy on the surface of Ti or a Ti-based alloy, the adhesion of the overlay metal layer is not good because a layer of intermetallic compound TiCo or Ti 2 Co is formed at the interface. It turned out that it was for the purpose of Although such intermetallic compounds are hard in themselves, they are brittle, so if they form in a layer at the interface between the built-up part and the base material, they are likely to peel off from there. According to the invention, as seen in FIG. 1, Ti or T:
When welding the overlay material (2) containing a mixture of Cr3C2 and Ti (or Ti alloy) to the alloy base material (1), Cr3C
Since the melting point of No. 2 (1895° C.) is close to the melting point of Ti (1670° C.), the entire material once melts and becomes almost homogeneous, and in the process of cooling and solidifying, titanium carbide TiC (4) is precipitated. When this is finely distributed in the molten metal, the built-up layer is hardened. Since the molten metal (3) contains a Ti component, it is more compatible with the base metal than when simply welding a CO alloy. Moreover, since this melting is carried out so that the base material and the overlay material are mixed, the content of the Ti component is high in the portion of the molten metal that is close to the base material. If this is shown schematically, it will look like the graph in Figure 2. In other words, when using conventional build-up welding using Stellite as the build-up material, the hardness distribution from the surface to the inside is as shown by the thin line, where the hardness of Stellite itself is maintained from the surface to a certain depth; There, the hardness increases rapidly and then suddenly decreases to the hardness of the base material. This rapid increase in hardness is due to the above-mentioned intermetallic compound JiCo or T.
This is due to the generation of i 2 Go. On the other hand, when a mixture of Cr3C2 and Ti (or Ti alloy) is used according to the present invention, the hardness is maintained over a considerable thickness as shown by the thick line in FIG. The distribution shows a continuous decrease from the molten part toward the base metal. Since a brittle layer is not formed between the built-up metal layer and the base metal, there is no need to worry about peeling. As is easily understood, if the usage rate of Cr3C2 is increased, the amount of carbide produced will increase to a certain extent,
The wear resistance of the built-up hardened layer becomes high, and on the other hand, if the proportion of Ti or Ti alloy is increased, the adhesion with the base material becomes even better. The thickness of the molten metal layer (3) can be varied within a fairly wide range by adjusting the amount of filler material (2) used and the amount of heat given to the welded area, and can be made considerably thicker if desired. Therefore, even if the surface is polished after overlay welding and scraped off to the position shown by the broken line in FIG. 1, a sufficient hardened layer can still remain.

【実施例11 Ti−6Aρ−4v合金の平板を母材として使用し、C
r3C2粉末と上と同じTi−6A、I)−4■合金の
粉末を下記の割合で混合したものを、それぞれ併記した
雰囲気で、プラズマアーク法(電流100A)により肉
盛り溶接した。 場合により、プラズマアーク単独の加熱による溶接金属
の再溶融を行なった。 No Cr3C2 酊企量口り徂 雰囲気    再溶融 Ar     あり Ar     なし Ar     あり Ar     あり Ar     あり 3%02−Ar  あり 3%02−Ar   なし 5 %Co2A r   あり 5%N2−Ar   あり 肉盛り部分の厚さは約1.5mであった。 母材と肉盛
り層の界面の付近において、肉盛り硬化層の表面に至る
までの硬さの分布をしらべた。 その結果をN(11〜5については第3図に、NQ6〜
9については第4図に、それぞれ示す。 第3図のNα2とNα1,3〜5との比較、そして第4
図のNα6とNα7どの比較から再溶融による硬さの均
一化効果が明らかであり、また第1図と第2図の比較か
ら肉帰り溶接時の雰囲気のコントロールが有意義なこと
がわかる。 [実施例21 母材として、純Tiの平板を使用し、Cr3 c2粉末
と純Tiの粉末とを前者が50重量%となるように混合
した肉盛り材を用い、実施例1と同じ条件で肉盛り硬化
を行なった。 また、一部分は再溶融処理を施した。 それぞれの硬さ分布をしらべて、第5図に示す結果を)
qだ。 [実施例3] Ti−6AI−4V合金で製作したエンジンバルブのフ
ェースに、Cr3C2粉末を35重量%含み残部が同じ
<Ti−6AfJ−4V合金の粉末である肉盛り材を、
プラズマアーク法(電流98A、Ar雰囲気中)により
肉盛り溶接した。 フェースを研削仕上げしたのち、硬化層と母材にまたが
る部分の硬さをしらべた。 その結果を第6図に示す。 【発明の効果】 本発明の方法により肉盛り硬化を行なえば、Tiまたは
Ti金合金母材の表面に、十分な厚さの硬化層を、高い
密着性をもって設けることができる。 従って、本発明の表面硬化法は、内燃エンジンのバルブ
、ロッカーアーム、コンロッドあるいはピストンピンを
はじめとする、軽量でしかも耐摩耗性をもつことを要求
される部品の製造にとって有用である。
[Example 11] A flat plate of Ti-6Aρ-4v alloy was used as the base material, and C
A mixture of r3C2 powder and the same Ti-6A, I)-4 alloy powder as above in the following proportions was overlay welded by the plasma arc method (current 100 A) in the respective atmospheres. In some cases, the weld metal was remelted by heating using a plasma arc alone. No Cr3C2 Excess atmosphere Remelting Ar Yes Ar No Ar Yes Ar Yes Ar Yes 3%02-Ar Yes 3%02-Ar No 5%Co2A r Yes 5%N2-Ar Yes Thickness of built-up part was approximately 1.5 m. We investigated the hardness distribution near the interface between the base material and the built-up layer up to the surface of the hardened build-up layer. The results are shown in Figure 3 for N (11~5, NQ6~
9 are shown in FIG. 4, respectively. Comparison of Nα2 and Nα1, 3 to 5 in Figure 3, and the fourth
A comparison between Nα6 and Nα7 in the figure clearly shows the effect of remelting to make the hardness uniform, and a comparison between Figures 1 and 2 shows that controlling the atmosphere during backfill welding is effective. [Example 21] A pure Ti flat plate was used as the base material, and a build-up material in which Cr3 c2 powder and pure Ti powder were mixed so that the former was 50% by weight, and under the same conditions as Example 1. Overlay hardening was performed. In addition, a portion was subjected to remelting treatment. Examine the hardness distribution of each and get the results shown in Figure 5)
It's q. [Example 3] A fill-up material containing 35% by weight of Cr3C2 powder and the remainder being the same Ti-6AfJ-4V alloy powder was applied to the face of an engine valve made of Ti-6AI-4V alloy.
Overlay welding was performed by the plasma arc method (current 98 A, in an Ar atmosphere). After finishing the face by grinding, we examined the hardness of the part that spans the hardened layer and the base metal. The results are shown in FIG. Effects of the Invention By performing overlay hardening by the method of the present invention, a sufficiently thick hardened layer with high adhesion can be provided on the surface of the Ti or Ti-gold alloy base material. Therefore, the surface hardening method of the present invention is useful for manufacturing parts that are required to be lightweight and wear resistant, such as internal combustion engine valves, rocker arms, connecting rods, or piston pins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法により表面硬化を行なっている
ところを示す、母材と肉盛り溶接金属との断面図である
。 第2図は、表面硬化材料による硬さのちがいを模式的に
あられしたグラフである。 第3図、第4図、第5図および第6図は、いずれも本発
明の実施例において得た、肉盛り硬化層の付近の硬さの
分布を示すグラフである。 1・・・母材  2・・・肉盛り材  3・・・溶接金
属特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 大 筒311 □ワ□ No、 1 1.0    0.5    0 等Iか3=−笈す啄 0.5 (mm) 1.0 頼 → 内卸 第4図 一−−@−−− No、6 ]Ω    0.5   0 蝉i6−専販 (mm)
FIG. 1 is a sectional view of a base material and build-up weld metal showing surface hardening performed by the method of the present invention. FIG. 2 is a graph schematically showing differences in hardness depending on surface hardening materials. FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are all graphs showing the hardness distribution near the built-up hardened layer obtained in the examples of the present invention. 1...Base metal 2...Welding material 3...Weld metal Patent applicant Daido Steel Co., Ltd. Agent Patent attorney Suga So Otsutsu 311 □Wa□ No, 1 1.0 0.5 0 etc. I or 3=-Cicada 0.5 (mm) 1.0 Rei→ Internal wholesale Figure 4 1--@--- No, 6] Ω 0.5 0 Cicada i6-Exclusive (mm)

Claims (4)

【特許請求の範囲】[Claims] (1)TiまたはTi合金からなる母材の表面において
、Cr_3C_2とTiまたはTi合金との混合物から
なる肉盛り材を、母材と混合が生じるように溶融させ、
肉盛硬化することからなるTiまたはTi合金の表面硬
化方法。
(1) On the surface of the base material made of Ti or Ti alloy, melt the overlay material made of a mixture of Cr_3C_2 and Ti or Ti alloy so that it mixes with the base material,
A method for surface hardening Ti or a Ti alloy, which comprises hardening overlay.
(2)酸素および(または)窒素を含む雰囲気下に実施
し、これらガス成分の固溶による硬化をもあわせて行な
う請求項1の表面硬化方法。
(2) The surface hardening method according to claim 1, wherein the method is carried out in an atmosphere containing oxygen and/or nitrogen, and hardening is also performed by solid solution of these gas components.
(3)肉盛部を再溶融させる工程を加えた請求項1また
は2の表面硬化方法。
(3) The surface hardening method according to claim 1 or 2, further comprising a step of remelting the built-up portion.
(4)Ti合金製バルブフェースに適用する請求項1な
いし2のいずれかの表面硬化方法。
(4) The surface hardening method according to any one of claims 1 to 2, which is applied to a Ti alloy valve face.
JP2925989A 1989-02-08 1989-02-08 Surface hardening method of titanium or titanium alloy Expired - Fee Related JP2639053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2925989A JP2639053B2 (en) 1989-02-08 1989-02-08 Surface hardening method of titanium or titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2925989A JP2639053B2 (en) 1989-02-08 1989-02-08 Surface hardening method of titanium or titanium alloy

Publications (2)

Publication Number Publication Date
JPH02207974A true JPH02207974A (en) 1990-08-17
JP2639053B2 JP2639053B2 (en) 1997-08-06

Family

ID=12271280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2925989A Expired - Fee Related JP2639053B2 (en) 1989-02-08 1989-02-08 Surface hardening method of titanium or titanium alloy

Country Status (1)

Country Link
JP (1) JP2639053B2 (en)

Also Published As

Publication number Publication date
JP2639053B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US9682531B2 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US7345255B2 (en) Composite overlay compound
US20090032501A1 (en) Abrasion-resistant weld overlay
JP2001192862A (en) A coating system for providing environmental protection to a metal substrate and its related method
US4942059A (en) Method for hardfacing metal articles
CN106975861B (en) A kind of hard material of tungsten carbide particle and preparation method thereof containing clad
US5226977A (en) Method of hardfacing an engine valve of a titanium material
WO2014105239A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JPH02207974A (en) Surface hardening method for titanium or titanium alloy
US10828865B1 (en) Toughened and corrosion- and wear-resistant composite structures and fabrication methods thereof
JPH0525934B2 (en)
JPH02205664A (en) Laser cladding method
US20030098090A1 (en) Surface coatings
JP2639053C (en)
JPH06122076A (en) Cladding by welding method of oxide dispersion strengthened alloy
EP0494977B1 (en) Method of modifying the surface of a substrate
RU2201994C1 (en) Composite composition of powder-like material for concrete mixer members reconditioning
JPH05293671A (en) Surface hardening method for titanium or titanium alloy
JPH06190588A (en) Ni-base alloy for filling
JPH02207973A (en) Method for surface hardening of titanium or titanium alloy
JPH02277762A (en) Surface hardening method for titanium or titanium alloy
JP2597105B2 (en) Copper member surface hardening method
Buchanan An overview of hardfaced coatings for industrial use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees