JPH02207854A - Ball mill - Google Patents

Ball mill

Info

Publication number
JPH02207854A
JPH02207854A JP2593089A JP2593089A JPH02207854A JP H02207854 A JPH02207854 A JP H02207854A JP 2593089 A JP2593089 A JP 2593089A JP 2593089 A JP2593089 A JP 2593089A JP H02207854 A JPH02207854 A JP H02207854A
Authority
JP
Japan
Prior art keywords
polishing
polished
rotating shaft
ball mill
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2593089A
Other languages
Japanese (ja)
Inventor
Saiden Ro
盧 再傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUOKU KOGYO KOFUN YUGENKOSHI
Original Assignee
JUOKU KOGYO KOFUN YUGENKOSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUOKU KOGYO KOFUN YUGENKOSHI filed Critical JUOKU KOGYO KOFUN YUGENKOSHI
Priority to JP2593089A priority Critical patent/JPH02207854A/en
Publication of JPH02207854A publication Critical patent/JPH02207854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve polishing efficiency by adopting such constitution as to form the inner peripheral surface of a polishing vessel to a spherical body, to rotate a plurality of polishing members therein and to agitate and polish raw materials to be polished while moving the material in a horizontal direction and a perpendicular direction. CONSTITUTION: The inner peripheral surface of the polishing vessel 23 is formed to the spherical body, such as round shape, elloptospherical shape or polyhedral shape. The vessel is internally provided with a revolving shaft 24 fixed with the plurality of polishing members 35 to 37. The revolving shaft 24 is rotated by a rotating means 26. When the revolving shaft 24 is rotated by this constitution. the raw material to be polished are so agitated and polished as to move in the horizontal direction and perpendicular direction and the friction polishing effect between the raw materials is generated at high frequencies. The fineness of the polishing is made more remarkable and the polishing efficiency is greatly improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラスピーズ等のボールを用い、顔料、染料、
或いは塗料等の化学原料を所定の粒度に粉砕研磨するた
めのボールミルに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention uses balls such as glass peas to produce pigments, dyes,
Or it relates to a ball mill for grinding and polishing chemical raw materials such as paints to a predetermined particle size.

(従来の技術) 鋼製のボールや鉄をきらう原料に対しては磁製やガラス
製のボールを用い、このボールと化学原料とを容器内で
撹拌することによって、原料の粉砕や研磨を行なうため
に、従来用いてられているボールミルとしては、米国特
許節4,784.336号公報に示されるようなものが
ある。
(Prior technology) For raw materials that do not like steel balls or iron, porcelain or glass balls are used, and the raw materials are ground or polished by stirring the balls and chemical raw materials in a container. A ball mill conventionally used for this purpose is the one shown in U.S. Pat. No. 4,784.336.

第7図はこの公報に示された従来のボールミルを示す図
であり、装置本体のハウジング10の上には、円筒形の
研磨筒11が水平方向を向いて固定され、この研磨筒1
1内にはこれと同心となった回転軸12が回転自在に装
着されている。この回転軸12には複数の撹拌ディスク
13が固定され、装置本体10内に設置されたモータ1
6により回転軸12を駆動することによって、それぞれ
の撹拌ディスク13は回転することになる。
FIG. 7 is a diagram showing the conventional ball mill disclosed in this publication. A cylindrical polishing tube 11 is fixed on the housing 10 of the main body of the device so as to face in the horizontal direction.
A rotary shaft 12 concentric with the rotary shaft 12 is rotatably mounted inside the rotary shaft 1. A plurality of stirring disks 13 are fixed to this rotating shaft 12, and a motor 1 installed in the device main body 10
Each stirring disk 13 is rotated by driving the rotation shaft 12 by the rotation shaft 12 by the rotation shaft 12.

このようなボールミルを用いて原料の研磨を行なうには
、研磨筒11内に予め直径約2111程度のガラスピー
ズつまりボールを注入した後に、顔料等の粉体や粒体を
含む液状の研磨原料をポンプ15によって原料人口14
から研磨筒11内に注入する。この状態で、モータ16
によって回転軸12を回転して撹拌ディスク13を回転
させる。これにより、ガラス製のボールと液状の原料と
が撹拌し、ガラスポール相互間の摩擦作用によって、被
研磨される液状原料内の粒体は研磨され粉砕化の目的が
達成される。
To polish raw materials using such a ball mill, glass beads or balls with a diameter of approximately 2111 mm are injected into the polishing tube 11 in advance, and then a liquid polishing raw material containing powder or granules such as pigments is poured into the polishing tube 11. Raw material population 14 by pump 15
Inject into the polishing cylinder 11 from the inside. In this state, the motor 16
The rotating shaft 12 is rotated to rotate the stirring disk 13. As a result, the glass balls and the liquid raw material are stirred, and the particles in the liquid raw material to be polished are polished by the frictional action between the glass poles, achieving the purpose of pulverization.

(発明が解決しようとする課題) このような従来のボールミルにあっては、研磨筒11が
円筒形状となっており、しかもこれが水平方向に設置さ
れているので、この中に装着された撹拌ディスク13は
垂直方向を向くことになり、ガラ不ビーズと被研磨原料
とが撹拌ディスク13によって垂直方向の撹拌力を受け
ることになる。
(Problems to be Solved by the Invention) In such a conventional ball mill, the polishing tube 11 has a cylindrical shape and is installed in a horizontal direction, so that the stirring disk installed inside the polishing tube 11 has a cylindrical shape. 13 is oriented in the vertical direction, and the glass beads and the raw material to be polished are subjected to a stirring force in the vertical direction by the stirring disk 13.

したがって、従来では研磨筒11内でのガラスピーズ相
互間の摩擦作用は制限されたものとなっており、充分な
研磨効果を得ることができないばかりか、撹拌効率も低
く、微粉化と均質化の要求を充分に満足させることがで
きなかった。
Therefore, in the past, the frictional action between the glass beads within the polishing tube 11 was limited, and not only was it impossible to obtain a sufficient polishing effect, but the stirring efficiency was also low, making it difficult to achieve pulverization and homogenization. It was not possible to fully satisfy the request.

また、従来のボールミルにおいては、研磨効果、及び撹
拌効果が良好でないために、液状原料中の粒体等を所望
の微粉化にするためには、長い時間を必要とし、何回も
の重複した研磨作業を行なう必要があり、時間とエネル
ギーとを非常に無駄に浪費することになる。
In addition, in conventional ball mills, the polishing and stirring effects are not good, so it takes a long time and requires repeated polishing to make the particles in the liquid raw material into the desired fine powder. This would be a huge waste of time and energy.

本発明は上記従来技術の問題点に鑑みてされたものであ
り、容器内での原料の撹拌効果を向上させて短時間で所
望の研磨を行ない得るようにすることを目的とする。
The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to improve the effect of stirring raw materials in a container so that desired polishing can be performed in a short time.

(課題を解決するための手段) 上記目的を達成するための本発明は、内部に研磨室を有
し当該研磨室内に被研磨原料が注入される研磨容器内に
回転軸を備え、当該回転軸にこれの外径方向に伸びる複
数の研磨部材を固着し、前記回転軸に回転手段を連結し
、前記研磨容器の内周面を真球形状、楕円球形状、多面
体状等の球形状体に形成し、前記研磨部材の回転によっ
て前記研磨室内における前記被研磨原料が水平方向と垂
直方向とに移動しながら撹拌研磨されるようにしたこと
を特徴とするボールミルであり、更に、前記回転軸を垂
直方向と水平方向との間の任意の傾斜角度に設定してな
るボールミルである。
(Means for Solving the Problems) The present invention for achieving the above object includes a polishing container having a polishing chamber therein, into which a raw material to be polished is injected, and a rotating shaft provided in the polishing container. A plurality of polishing members extending in the outer diameter direction of the polishing container are fixed to the polishing container, a rotating means is connected to the rotating shaft, and the inner peripheral surface of the polishing container is shaped into a spherical shape such as a true sphere, an ellipsoid, a polyhedron, etc. The ball mill is characterized in that the raw material to be polished in the polishing chamber is stirred and polished while being moved in the horizontal direction and the vertical direction by the rotation of the polishing member, and the rotation shaft is This is a ball mill that can be set at any inclination angle between the vertical and horizontal directions.

(作用) 内部の研磨室内に原料が注入される研磨容器の内周面は
、真球形状等の球形状体となっているので、回転軸を回
転手段によって回転させて研磨部材を回転させると、被
研磨原料は水平方向と垂直方向とに移動するようにして
撹拌研磨されることになる。これにより、被研磨材料の
研磨効率が向上することになり、特に、回転軸を傾斜さ
せると、研磨部材も傾斜した状態で回転することになり
、被研磨原料が研磨室内で垂直方向と水平方向に移動す
る作用が顕著になる。
(Function) The inner peripheral surface of the polishing container into which raw materials are injected into the internal polishing chamber has a spherical shape such as a true sphere, so when the rotating shaft is rotated by a rotating means to rotate the polishing member. The raw material to be polished is stirred and polished while being moved in the horizontal and vertical directions. This improves the polishing efficiency of the material to be polished.In particular, when the rotation axis is tilted, the polishing member also rotates at an angle, and the raw material to be polished is rotated vertically and horizontally within the polishing chamber. The effect of moving to is noticeable.

(実施例) 以下、図示する本発明の実施例に基いて本発明の詳細な
説明する。
(Example) Hereinafter, the present invention will be described in detail based on the illustrated example of the present invention.

第1図は本発明の一実施例に係るボールミル20を示す
図であり、装置本体のケーシング21の上には台座部2
2が固定され、この台座部22には真球形状の研磨容器
23が取付けられている。
FIG. 1 is a diagram showing a ball mill 20 according to an embodiment of the present invention.
2 is fixed, and a perfect spherical polishing container 23 is attached to this pedestal portion 22.

台座部22内には、軸受25a、25bによって回転軸
24が回転自在に装着され、この回転軸24は図示する
ように水平線に対して所定の角度で傾斜して、下端部が
前記研磨容器23内に達し、上端部が台座部22から突
出している。
A rotary shaft 24 is rotatably mounted in the pedestal 22 by bearings 25a and 25b, and the rotary shaft 24 is inclined at a predetermined angle with respect to the horizontal line as shown in the figure. The upper end portion protrudes from the pedestal portion 22.

この回転軸24を駆動するために、ケーシング22内に
設置されたモータ26の主軸27にはプーリ28が固着
され、前記回転軸24の上端部に固着されたプーリ29
と前記プーリ28とには、ベルト30が掛渡されている
In order to drive this rotating shaft 24, a pulley 28 is fixed to the main shaft 27 of a motor 26 installed in the casing 22, and a pulley 29 is fixed to the upper end of the rotating shaft 24.
A belt 30 is stretched between the pulley 28 and the pulley 28 .

モータ26の駆動による回転軸24の回転によって軸受
25a、25bの部分からは熱が発生することになるの
で、軸受25a、25bを冷却するために、台座部22
内には、冷却液が注入されるようになった冷却液ジャケ
ット31が形成されている。台座部22には、このジャ
ケット31内に冷却液を注入するための注入口を閉塞す
るプラグ32が着脱自在に取付けられ、更にこの冷却液
を排出するための排出口を閉塞するプラグ33が着脱自
在に取付けられている。尚、このジャケット31内に常
時、冷却液を循環させるようにしても良い。
Heat is generated from the bearings 25a, 25b due to the rotation of the rotating shaft 24 driven by the motor 26. Therefore, in order to cool the bearings 25a, 25b, the base portion 22
A coolant jacket 31 into which a coolant is injected is formed inside. A plug 32 that closes an inlet for injecting coolant into the jacket 31 is detachably attached to the pedestal portion 22, and a plug 33 that closes an outlet for discharging the coolant is detachably attached. Can be installed freely. Note that the cooling liquid may be constantly circulated within this jacket 31.

前記研磨容器23は、それぞれ断面が円形となった球形
状の内壁38と、これに対して所定の隙間を持った外壁
39とを有しており、これらはそれぞれ半球形状のケー
シングを対向させてボルト46により接合することによ
って形成されている。
The polishing container 23 has a spherical inner wall 38 with a circular cross section, and an outer wall 39 with a predetermined gap therebetween, and these have hemispherical casings facing each other. It is formed by joining with bolts 46.

これら両壁の間に形成された隙間内にスペーサを介在さ
せることによって、螺旋状の冷却液通路40が両壁の間
に形成されている。この冷却液通路40内には、冷却液
通路40の一端部に開口して研磨容器23の外壁39に
取付けられた冷却液人口41から、冷却液通路40の他
端部に開口して研磨容器23の外壁39に取付けられた
冷却液出口42に向けて冷却水等の液体が流れるように
なっている。
By interposing a spacer in the gap formed between these two walls, a spiral coolant passage 40 is formed between the two walls. In this cooling liquid passage 40, a cooling liquid passage 41 is opened at one end of the cooling liquid passage 40 and attached to the outer wall 39 of the polishing container 23, and a cooling liquid passage 41 is opened at the other end of the cooling liquid passage 40 and attached to the outer wall 39 of the polishing container 23. A liquid such as cooling water flows toward a cooling liquid outlet 42 attached to an outer wall 39 of 23.

内壁38の内側には真球形状の研磨室45が形成され、
この研磨室45内に原料を供給するための原料人口43
が研磨室45に開口して内壁38に取付けられ、原料を
外部に排出するための原料出口44が同様に研磨室45
に開口して内壁38に取付けられている。この原料入口
43からは研磨に使用されるボールつまりガラスピーズ
と、液状つまりスラリー状となり粒体や粉体を含む被研
磨材料とが研磨室45内に供給されるようになっている
A perfect spherical polishing chamber 45 is formed inside the inner wall 38,
Raw material population 43 for supplying raw materials into this polishing chamber 45
is attached to the inner wall 38 and opens into the polishing chamber 45, and a raw material outlet 44 for discharging the raw material to the outside similarly opens into the polishing chamber 45.
It is opened to the inner wall 38 and attached to the inner wall 38. From this raw material inlet 43, balls or glass beads used for polishing and a material to be polished which is in the form of liquid or slurry and includes granules and powder are supplied into the polishing chamber 45.

前記回転軸24の下端部には、筒状部材34が嵌合され
、この筒状部材34によって3つのディスク状の研磨部
材35.36.37が回転軸24に固定されている。こ
れらの研磨部材35〜37は、それぞれ内壁38の直径
よりも小径となっているのみならず、異なった長さを有
している。また、それぞれの研磨部材35〜37には、
部材の軽量化と原料の通過を達成すべく、複数の穴が形
成されている。尚、これらの研磨部材の数は3つに限ら
れず、任意の数とすることが可能であり、更に、ディス
ク形状のものを使用することなく、回転軸24からこれ
の外径方向に伸びる部材であれば、棒材等を回転軸24
に放射状に固定することによっても研磨部材を形成する
ことが可能である。
A cylindrical member 34 is fitted into the lower end of the rotating shaft 24, and three disk-shaped polishing members 35, 36, and 37 are fixed to the rotating shaft 24 by this cylindrical member 34. These polishing members 35 to 37 not only each have a diameter smaller than the diameter of the inner wall 38, but also have different lengths. Further, each of the polishing members 35 to 37 includes
A plurality of holes are formed in order to reduce the weight of the member and allow the passage of raw materials. Note that the number of these polishing members is not limited to three, but can be any number.Furthermore, instead of using a disc-shaped member, it is possible to use a member extending from the rotating shaft 24 in the outer radial direction of the rotating shaft 24. If so, move the bar material etc. to the rotating shaft 24.
It is also possible to form an abrasive member by fixing it radially to the abrasive member.

第2図〜第4図は、上述したボールミルの具体例におけ
るガラスピーズ及び被研磨材料に加わる作用力を示す力
線図であり、これらの図において、符号24aは回転軸
24の回転中心軸を示し、この回転軸24は水平線Hに
対して角度θで傾斜している。また、これらの図におい
ては、研磨部材35の先端の回転軌跡が楕円で示されて
おり、他の研磨部材36.37もこの軌跡と平行な位置
にそれぞれの先端が移動することになる。
2 to 4 are force line diagrams showing the acting force applied to the glass beads and the material to be polished in the specific example of the ball mill described above, and in these figures, the reference numeral 24a indicates the rotation center axis of the rotation shaft 24. The rotating shaft 24 is inclined at an angle θ with respect to the horizontal line H. Further, in these figures, the rotation locus of the tip of the polishing member 35 is shown as an ellipse, and the tips of the other polishing members 36 and 37 also move to positions parallel to this locus.

前記研磨部材35の作用によって、例えば、第2図にお
ける点Pで示される研磨部位に位置するガラスピーズや
被研磨原料が撹拌力を受けると、その部分には遠心力Q
が作用し、この研磨部位点Pにおけるビーズ等の自重W
とによって、その部分には合力Rが作用することになる
。つまり、研磨部材35〜37によって撹拌されたガラ
スピーズや被研磨材料は、回転軸24が傾斜しているこ
とと、内壁38が球面形状になっていることから、水平
方向と垂直方向とに作用力を受けることになる。
When the glass beads or the raw material to be polished, located at the polishing site indicated by point P in FIG.
acts, and the own weight W of beads, etc. at this polishing point P
As a result, the resultant force R will act on that part. In other words, since the rotating shaft 24 is inclined and the inner wall 38 is spherical, the glass beads and the material to be polished that are stirred by the polishing members 35 to 37 are acted upon in the horizontal and vertical directions. You will receive power.

この研磨部位点Pにおける前記合力Rは、第3図に示す
ように、垂直面に沿う方向の分力RVと、水平面に沿う
方向の分力R11とに分けることができる。更に、前記
分力RVは、第4図に示されるように、仮想円Sで示さ
れる面に沿った切線分力RVTと法線分力TVRとに分
けることができる。特に、この分力RVTの存在によっ
て、研磨部位点Pにおいては、回転軸24の中心軸に沿
う方向にガラスピーズや被研磨原料を移動させる力が作
用することになる。
As shown in FIG. 3, the resultant force R at the polishing point P can be divided into a component force RV in the direction along the vertical plane and a component force R11 in the direction along the horizontal plane. Furthermore, as shown in FIG. 4, the component force RV can be divided into a tangential component force RVT and a normal component force TVR along the plane shown by the virtual circle S. In particular, due to the presence of this component force RVT, a force that moves the glass beads and the raw material to be polished in the direction along the central axis of the rotating shaft 24 acts at the polishing point P.

第5図は本発明の他の実施例に係るボールミルを示す図
であり、前記実施例と共通する部材には同一の参照符号
が付されている。
FIG. 5 is a diagram showing a ball mill according to another embodiment of the present invention, in which members common to those in the previous embodiment are given the same reference numerals.

このボールミルは、内壁38aと外壁39aとが、回転
軸24の中心軸に沿う方向を長袖とする断面楕円形とな
っていることを除き、他の構成部側は前記実施例と同様
となっている。したがって、研磨室45はラグビーボー
ルのように、楕円球形状となっている。この場合にも、
上述したボールミルと同様な撹拌研磨作用がガラスピー
ズや被研磨原料に加わることになる。
This ball mill has the same structure as the previous embodiment except that the inner wall 38a and the outer wall 39a have an elliptical cross section with a long sleeve extending along the central axis of the rotating shaft 24. There is. Therefore, the polishing chamber 45 has an oval spherical shape like a rugby ball. Also in this case,
A stirring polishing action similar to that of the above-mentioned ball mill is applied to the glass beads and the raw material to be polished.

第6図は本発明の更に他の実施例に係るボールミルを示
す図であり、前記それぞれの実施例と共通する部材には
同一の参照符号が付されている。
FIG. 6 is a diagram showing a ball mill according to still another embodiment of the present invention, in which members common to each of the embodiments described above are given the same reference numerals.

この場合における内壁38bと外壁39bは、図示する
ように、断面が多角形となっており、研磨室45は多面
体からなる球形状体となっている。
In this case, the inner wall 38b and the outer wall 39b have a polygonal cross section as shown, and the polishing chamber 45 has a spherical shape made of a polyhedron.

この場合にも、前記実施例のように研磨容器23の内表
面を、その断面が真円に近い球形状体や楕円となった球
形状体とした場合と同様に、ガラスピーズや被研磨原料
に撹拌研磨作用が加わることになる。
In this case, as in the case where the inner surface of the polishing container 23 is made into a spherical body whose cross section is close to a perfect circle or an ellipse as in the above embodiment, glass beads or the raw material to be polished can be A stirring and polishing action is added to the process.

また、本発明にあっては、その研磨容器23の内周面の
形状は上記それぞれの実施例に示された形状に限られず
、前記真円の球や楕円形の球や多面体の球の他、研磨容
器23の内周面つまり研磨室45の外周面の形状を、こ
の外周面を構成する各部分が研磨室45の中心部に対し
て湾曲ないし傾斜するようになっていれば、どのような
形状に設定しても良い。
Further, in the present invention, the shape of the inner circumferential surface of the polishing container 23 is not limited to the shape shown in each of the above-mentioned embodiments, and may be other than the perfect circular sphere, elliptical sphere, polyhedral sphere, etc. What is the shape of the inner circumferential surface of the polishing container 23, that is, the outer circumferential surface of the polishing chamber 45, if each part constituting this outer circumferential surface is curved or inclined with respect to the center of the polishing chamber 45? It may be set to any shape.

本発明は研磨容器23の内周面の形状、つまり研磨室4
5の形状を、球形状体としたことをその基本原理とする
ものであって、このような形状に設定すると、回転軸2
4を傾斜させなくとも、研磨容器23の内周面は研磨室
45の中心部に対して、全て湾曲ないし傾斜して形成さ
れることになる。これによって、研磨部材35〜37に
よって遠心力を受けたガラスピーズや被研磨原料は、回
転軸24の外径方向に移動するだけでなく、研磨容器2
3の内周面に衝突することから、回転軸24の中心軸に
沿う方向にも移動することになり、結果的に垂直方向と
水平方向とに被研磨原料は移動し、短時間で充分な撹拌
研磨作用を受けることになる。したがって、本発明にあ
っては、研磨容器23そして回転軸24を傾斜させない
場合、つまり回転軸24を水平方向に設置する場合、及
び垂直方向に設置する場合にも、適用することができる
The present invention focuses on the shape of the inner peripheral surface of the polishing container 23, that is, the shape of the polishing chamber 4.
The basic principle is that the shape of 5 is a spherical body, and when set to such a shape, the rotation axis 2
Even if the polishing container 4 is not tilted, the inner circumferential surface of the polishing container 23 is entirely curved or inclined with respect to the center of the polishing chamber 45. As a result, the glass beads and the raw material to be polished, which have been subjected to centrifugal force by the polishing members 35 to 37, not only move in the outer diameter direction of the rotating shaft 24, but also move into the polishing container 2.
3, the material to be polished also moves in the direction along the central axis of the rotating shaft 24, and as a result, the material to be polished moves in the vertical and horizontal directions. It will be subjected to stirring polishing action. Therefore, the present invention can be applied to cases where the polishing container 23 and rotating shaft 24 are not tilted, that is, when the rotating shaft 24 is installed horizontally, and when the rotating shaft 24 is installed vertically.

(発明の効果) 以上のように本発明によれば、研磨容器の内周面を真球
形状、楕円球形状ζ多面体状等の球形状体に形成し、前
記研磨部材の回転によって前記研磨室内における前記被
研磨原料が水平方向と垂直方向とに移動しながら撹拌研
磨されるようにしたので、研磨部材によって研磨室内で
被研磨材料が撹拌されると、研磨容器の内周面に衝突す
ることになり、つまり傾斜ないし湾曲した内周面に衝突
することになる。これにより、被研磨原料は水平方向と
垂直方向に移動を繰り返しながら、撹拌研磨されること
になり、単位時間当りに高い頻度で原料相互の摩擦研磨
作用が発生し、研磨の細かさが一層顕著になり、研磨効
率が大幅に向上することになった。そして、研磨効率が
向上したことから、撹拌研磨作業に要する時間と動力を
大幅に節約することが可能となった。また、回転軸を傾
斜させれば、上述した被研磨材料の水平方向と垂直方向
との移動が顕著になり、研磨作用の増大が達成されるこ
とになる。
(Effects of the Invention) As described above, according to the present invention, the inner circumferential surface of the polishing container is formed into a spherical shape such as a true sphere, an ellipsoidal sphere, and a ζ polyhedron, and the rotation of the polishing member causes the polishing chamber to be Since the material to be polished is stirred and polished while moving in the horizontal and vertical directions, when the material to be polished is stirred in the polishing chamber by the polishing member, it may collide with the inner circumferential surface of the polishing container. In other words, it will collide with the inclined or curved inner peripheral surface. As a result, the raw material to be polished is agitated and polished while repeatedly moving horizontally and vertically, and the frictional polishing action between the raw materials occurs frequently per unit time, making the fineness of the polishing even more noticeable. This resulted in a significant improvement in polishing efficiency. Since the polishing efficiency has been improved, it has become possible to significantly save the time and power required for stirring polishing work. Furthermore, by tilting the rotation axis, the above-mentioned movement of the material to be polished in the horizontal and vertical directions becomes significant, and an increase in the polishing action is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るボールミルを示す断面
図、第2図〜第4図は第1図に示されたボー、ルミルに
おいて被研磨原料が受ける撹拌研磨力を示す力線図、第
5図は本発明の他の実施例に係るボールミルを示す断面
図、第6図は本発明の更に他の実施例に係るボールミル
を示す断面図、第7図は従来のボールミルを示す断面図
である。 21・・・装置本体のケーシング、22・・・台座部、
23・・・研磨容器、24・・・回転軸、26・・・モ
ータ(回転手段)、35〜37・・・研磨部材、38・
・・内壁、39・・・外壁、45・・・研磨室。
FIG. 1 is a cross-sectional view showing a ball mill according to an embodiment of the present invention, and FIGS. 2 to 4 are force diagrams showing the stirring and polishing force applied to the raw material to be polished in the ball mill shown in FIG. 1. , FIG. 5 is a cross-sectional view showing a ball mill according to another embodiment of the present invention, FIG. 6 is a cross-sectional view showing a ball mill according to still another embodiment of the present invention, and FIG. 7 is a cross-sectional view showing a conventional ball mill. It is a diagram. 21... Casing of the device main body, 22... Pedestal part,
23... Polishing container, 24... Rotating shaft, 26... Motor (rotating means), 35-37... Polishing member, 38...
...Inner wall, 39...Outer wall, 45...Polishing room.

Claims (2)

【特許請求の範囲】[Claims] (1)内部に研磨室を有し当該研磨室内に被研磨原料が
注入される研磨容器内に回転軸を備え、当該回転軸にこ
れの外径方向に伸びる複数の研磨部材を固着し、前記回
転軸に回転手段を連結し、前記研磨容器の内周面を真球
形状、楕円球形状、多面体状等の球形状体に形成し、前
記研磨部材の回転によって前記研磨室内における前記被
研磨原料が水平方向と垂直方向とに移動しながら撹拌研
磨されるようにしたことを特徴とするボールミル。
(1) A polishing container having a polishing chamber inside and into which the raw material to be polished is poured is provided with a rotating shaft, and a plurality of polishing members extending in the outer diameter direction of the rotating shaft are fixed to the rotating shaft; A rotating means is connected to the rotating shaft, and the inner peripheral surface of the polishing container is formed into a spherical shape such as a true sphere, an elliptical sphere, a polyhedron, etc., and the raw material to be polished in the polishing chamber is rotated by rotating the polishing member. A ball mill characterized in that the ball mill is agitated and polished while moving in the horizontal and vertical directions.
(2)前記回転軸を垂直方向と水平方向との間の任意の
傾斜角度に設定してなる前記請求項1に記載のボールミ
ル。
(2) The ball mill according to claim 1, wherein the rotation axis is set at an arbitrary inclination angle between a vertical direction and a horizontal direction.
JP2593089A 1989-02-06 1989-02-06 Ball mill Pending JPH02207854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2593089A JPH02207854A (en) 1989-02-06 1989-02-06 Ball mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2593089A JPH02207854A (en) 1989-02-06 1989-02-06 Ball mill

Publications (1)

Publication Number Publication Date
JPH02207854A true JPH02207854A (en) 1990-08-17

Family

ID=12179495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2593089A Pending JPH02207854A (en) 1989-02-06 1989-02-06 Ball mill

Country Status (1)

Country Link
JP (1) JPH02207854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537813A (en) * 2007-09-06 2010-12-09 ローワン(マネジメント) プロプライエタリー リミテッド Crushing mill and crushing method
GB2513424A (en) * 2013-06-17 2014-10-29 Abdul-Karem Souleyman Mouhamed Apparatus for reducing particle size

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653755A (en) * 1979-10-09 1981-05-13 Mitsubishi Metal Corp Pulverizing mixing machine
US4784336A (en) * 1987-03-10 1988-11-15 Lu Tsai Chuan Grinding machine for refining liquid material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653755A (en) * 1979-10-09 1981-05-13 Mitsubishi Metal Corp Pulverizing mixing machine
US4784336A (en) * 1987-03-10 1988-11-15 Lu Tsai Chuan Grinding machine for refining liquid material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537813A (en) * 2007-09-06 2010-12-09 ローワン(マネジメント) プロプライエタリー リミテッド Crushing mill and crushing method
GB2513424A (en) * 2013-06-17 2014-10-29 Abdul-Karem Souleyman Mouhamed Apparatus for reducing particle size
GB2513424B (en) * 2013-06-17 2015-04-29 Abdul-Karem Souleyman Mouhamed Apparatus for reducing particle size

Similar Documents

Publication Publication Date Title
CA2014658C (en) High speed dry grinder
KR100382327B1 (en) Mixing apparatus
JPH02207854A (en) Ball mill
KR0168131B1 (en) Crushing apparatus
JP5984130B2 (en) Rotating stirring device and rotating stirring method
JP2916937B2 (en) Barrel polishing method and apparatus
JPH0889775A (en) Method and device for disintegrating and mixing mixed oxide powder of uranium and plutonium
US3380671A (en) Apparatus for mixing, milling, washing, extracting, and other processes
JPH0543458B2 (en)
KR100417119B1 (en) Mixing apparatus
JP3306428B1 (en) Tea leaf crushing method and apparatus
JP2888798B2 (en) Mixing machine
CN109289563A (en) A kind of solid particle and liquid mixing and blending machine and its application
RU2168486C1 (en) Method of preparation of concrete mix, mainly decorative mix and device for operation of this method
JPH0225481Y2 (en)
JPH0587307B2 (en)
JPH03101820A (en) Dispersing device
JPS62129155A (en) Centrifugal fluidized grinding apparatus
JPH0739774A (en) Grinder
JPS647822B2 (en)
JPH10128091A (en) Dispersing device
JPS6136460B2 (en)
JPS6051557A (en) Wet type pulverizer
JPH0645008B2 (en) Grinder
AU2021262226A1 (en) A grinding mill rotor