JPH02207844A - Catalyst for electrolytic reduction and production of reduced compound with this catalyst - Google Patents

Catalyst for electrolytic reduction and production of reduced compound with this catalyst

Info

Publication number
JPH02207844A
JPH02207844A JP1028462A JP2846289A JPH02207844A JP H02207844 A JPH02207844 A JP H02207844A JP 1028462 A JP1028462 A JP 1028462A JP 2846289 A JP2846289 A JP 2846289A JP H02207844 A JPH02207844 A JP H02207844A
Authority
JP
Japan
Prior art keywords
catalyst
reduction
hydrogen
voltage
metal selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1028462A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1028462A priority Critical patent/JPH02207844A/en
Publication of JPH02207844A publication Critical patent/JPH02207844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain a useful reduced compd. at a reduction voltage nearly equal to theoretical voltage by using a catalyst contg. at least one kind of metal selected among Pt, Pd, Ir, Rh, Fe, Ni and Co and at least one kind of metal selected among Pb, Cu, Zn and Cd. CONSTITUTION:At least one kind of metal selected among Pt, Pd, Ir, Rh, Fe, Ni and Co has a lower hydrogen overvoltage than the conventional catalyst for reduction. At least one kind of metal selected among Pb, Cu, Zn and Cd has a hydrogen over voltage fit to initiate a prescribed reduction reaction. When a catalyst for electrolytic reduction contg. both the selected metals is used, a useful reduced compd. is obtd. at a reduction voltage nearly equal to theoretical voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解還元反応により各種化合物を対応する還
元化合物に低電圧で変換するための2元又は多元電解還
元用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a binary or multi-component electrolytic reduction catalyst for converting various compounds into corresponding reduced compounds by electrolytic reduction reaction at low voltage.

(従来技術とその問題点) 化石エネルギ需要の急激な増大による自然の還元サイク
ルを超えた炭酸ガスの放出が、既に地球的規模で酸性雨
あるいは大気圏層に蓄積した炭酸ガスの温室効果による
温暖化など環境異変を引き起こしつつあり、今後益々こ
の問題は深刻化すると予測されている。炭酸ガスや一酸
化炭素などを電気化学的に還元することは、自然を守り
それらを人間の手で再び有用資源に復元する重要な事項
である。
(Prior art and its problems) The rapid increase in demand for fossil energy has already led to the release of carbon dioxide that exceeds the natural reduction cycle, causing global warming due to acid rain or the greenhouse effect of carbon dioxide accumulated in the atmospheric layer. This problem is predicted to become even more serious in the future. Electrochemical reduction of carbon dioxide gas, carbon monoxide, etc. is an important matter for protecting nature and restoring them to useful resources by human hands.

従来、この還元反応用として研究された電極触媒はすべ
て水素過電圧の高い単味金属電極(例えば同、鉛、亜鉛
、カドミウム等)である(電気化学56巻323頁(1
988年))。そして例えば銅電極上で有用なメタン、
エチレン等が20〜30%の電流効率で得られることも
分かってきた(ケミストリー・レターズ1695頁(1
985年))。しかしこれらの触媒では、理論的に必要
な電解還元電圧よりlv以上余分に電圧を必要とし、著
しい電気エネルギ損失を伴う。これは炭酸ガス等の理論
的還元電圧とほぼ等しい還元電圧を有する水素の発生を
避けるため、あえて該理論電圧より大きな電圧を必要と
する銅、鉛等を用いるための必然的な結果である。
Until now, all the electrode catalysts that have been studied for this reduction reaction are single metal electrodes (e.g. lead, zinc, cadmium, etc.) with high hydrogen overvoltage (Electrochemistry Vol. 56, p. 323 (1).
988)). and methane useful on copper electrodes, for example.
It has also been found that ethylene, etc. can be obtained with a current efficiency of 20-30% (Chemistry Letters, p. 1695 (1)
985)). However, these catalysts require a voltage that is 1v or more higher than the theoretically required electrolytic reduction voltage, and are accompanied by significant electrical energy loss. This is an inevitable result of using copper, lead, etc., which require a voltage higher than the theoretical voltage, in order to avoid the generation of hydrogen, which has a reduction voltage approximately equal to the theoretical reduction voltage of carbon dioxide gas, etc.

しかし、炭酸ガス等の還元プロセスはその目的から省エ
ネルギ反応であることが必須である。
However, the process of reducing carbon dioxide gas, etc. must be an energy-saving reaction for its purpose.

(発明の目的) 本発明は、理論電圧にほぼ等しい還元電圧で有用な還元
化合物を得ることを可能にした電解還元用触媒及び該触
媒を利用する前記還元化合物の製造方法を提供すること
を目的とする。
(Object of the invention) The object of the present invention is to provide a catalyst for electrolytic reduction that makes it possible to obtain a useful reduced compound at a reduction voltage approximately equal to the theoretical voltage, and a method for producing the reduced compound using the catalyst. shall be.

(問題点を解決するための手段) 本発明は、白金、パラジウム、イリジウム、ロジウム、
鉄、ニッケル、コバルトから成る群から選択される少な
くとも1種類の第1触媒金属と、鉛、銅、亜鉛、カドミ
ウムから成る群から選択される少なくとも1種類の第2
触媒金属とを含んで成る電解還元用触媒、及び該触媒を
使用する還元化合物の製造方法である。
(Means for solving the problems) The present invention provides platinum, palladium, iridium, rhodium,
at least one first catalyst metal selected from the group consisting of iron, nickel, and cobalt; and at least one second catalyst metal selected from the group consisting of lead, copper, zinc, and cadmium.
The present invention relates to an electrolytic reduction catalyst comprising a catalytic metal, and a method for producing a reduced compound using the catalyst.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、本発明の前記第1触媒金属つまり白金、パラ
ジウム、イリジウム、ロジウム、鉄、ニッケル、コバル
トから成る群から選択される少なくとも1種類の金属が
、従来の還元用触媒の水素過電圧より低い水素過電圧を
有する点、及び前記第2触媒金属つまり鉛、銅、亜鉛、
カドミウムから成る群から選択される少なくとも1種類
の金属が、従来の還元反応に使用されていたことから明
らかなように、所定の還元反応を生じさせるために好適
な水素過電圧を有している点に着目し、両金属を併用す
ることにより低い電解電圧で通常はより高い水素過電圧
でしか起こることのない還元反応を起こさせることを特
徴とするものである。
In the present invention, the first catalyst metal of the present invention, that is, at least one metal selected from the group consisting of platinum, palladium, iridium, rhodium, iron, nickel, and cobalt, has a hydrogen overvoltage lower than that of conventional reduction catalysts. a point having a hydrogen overvoltage, and the second catalyst metal, namely lead, copper, zinc,
At least one metal selected from the group consisting of cadmium has a hydrogen overvoltage suitable for causing the desired reduction reaction, as evidenced by its use in conventional reduction reactions. This method is characterized by the fact that by using both metals in combination, a reduction reaction that normally occurs only at a higher hydrogen overvoltage occurs at a low electrolytic voltage.

前記第1触媒金属は、前記第2触媒金属と比較して著し
く水素過電圧が低く、換言すると低い電圧で水素を発生
する。従ってこれらの第1触媒金属を単味で炭酸ガス等
の還元反応に使用すると、水素のみが発生してしまい、
前記炭酸ガスの還元生成物は殆ど得ることができない。
The first catalytic metal has a significantly lower hydrogen overvoltage than the second catalytic metal, in other words, it generates hydrogen at a lower voltage. Therefore, if these first catalyst metals are used alone in a reduction reaction of carbon dioxide, etc., only hydrogen will be generated.
Almost no carbon dioxide reduction product can be obtained.

該第1触媒金属上の水素の発生は、表面の相隣る金属原
子上に吸着した水素原子(H)2個が結合して水素分子
(H2)となることにより起こる。他方前記第2触媒金
属のみを使用した場合は、水素過電圧が高いため、前記
第1触媒金属と同じ電解電圧では水素発生は全く起こら
ない。
Generation of hydrogen on the first catalyst metal occurs when two hydrogen atoms (H) adsorbed on adjacent metal atoms on the surface combine to form a hydrogen molecule (H2). On the other hand, when only the second catalyst metal is used, no hydrogen generation occurs at the same electrolysis voltage as the first catalyst metal because the hydrogen overvoltage is high.

従って前記第1触媒金属表面の原子同志の隣接関係を、
前記第2触媒金属により分断すると、前記第1触媒金属
上に水素原子の吸着が生じても該吸着水素原子同志の結
合が妨げられ、その結果水素発生は著しく阻害される。
Therefore, the adjacency relationship between atoms on the surface of the first catalyst metal is
When the hydrogen atoms are separated by the second catalyst metal, even if hydrogen atoms are adsorbed on the first catalyst metal, bonding between the adsorbed hydrogen atoms is prevented, and as a result, hydrogen generation is significantly inhibited.

゛−一方酸ガス等の被還元性化合物を還元するためには
それに水素原子が賦与されることが必須である。
゛-In order to reduce a reducible compound such as an acid gas, it is essential that a hydrogen atom be added to it.

前記両触媒金属が触媒表面に共存すると、被還元性化合
物が前記両触媒金属に近付くか吸着したときに、隣接す
る第1触媒金属に吸着している水素原子が前記被還元性
化合物に容易に賦与され、その結果水素発生を伴うこと
なく、非常に低い還元電圧で該被還元性化合物を還元し
て対応する還元化合物に変換することが可能になる。
When both the catalyst metals coexist on the catalyst surface, when the reducible compound approaches or adsorbs the two catalyst metals, the hydrogen atoms adsorbed on the adjacent first catalyst metal easily reach the reducible compound. As a result, the reducible compound can be reduced and converted into the corresponding reduced compound at a very low reduction voltage without hydrogen evolution.

本発明における前記両触媒金属の割合は、一方が5〜9
5原子%の範囲である任意の割合とすることができるが
、前記隣接する第1触媒金属上の水素原子の結合を阻害
するという観点からは第1触媒金属の量は第2触媒金属
よりも少ないことが好ましい。
In the present invention, the ratio of both catalyst metals is 5 to 9 on one side.
The ratio can be set to any proportion within the range of 5 at. Preferably less.

本発明におけるこれらの触媒金属は、通常電極基体上に
被覆されるが、第1又は第2触媒金属の一方が被覆され
下地が形成された電極基体上に他方の触媒金属を更に吸
着させることも、あるいは両触媒金属から成る合金を前
記電極基体上に被覆してもよい。
These catalytic metals in the present invention are usually coated on an electrode substrate, but it is also possible to further adsorb the other catalytic metal onto an electrode substrate coated with one of the first or second catalytic metal and formed with a base. Alternatively, an alloy consisting of both catalyst metals may be coated on the electrode substrate.

又基体上の両触媒金属の割合、換言すると一方の触媒金
属の被覆率又は合金成分比により電流効率が変化するた
め、各還元反応に応じた被覆率を設定することが好まし
い。
Furthermore, since the current efficiency changes depending on the ratio of both catalyst metals on the substrate, in other words, the coverage of one of the catalyst metals or the alloy component ratio, it is preferable to set the coverage depending on each reduction reaction.

このような本発明の電解還元用触媒を使用して被還元性
化合物、例えば炭酸ガス、−酸化炭素、カルボン酸類及
びアルビテド類等を対応する還元化合物例えばメタン、
ギ酸、及びメタノール等のアルコール類等に還元する5
ためには、前記触媒を隔膜により陽極室と陰極室に区画
された電解槽の該陰極室内の陰極基体表面に被覆し、前
記電解槽内に電解液として前記被還元性化合物が固体、
又は液体である場合はその溶液好ましくは水溶液を加え
、又気体の場合はバブリング等により加えて電解を行い
、対応する還元化合物を得る。前記隔膜の材質及び他の
電解条件は被還元性化合物の種類にもよるが、従来使用
されているものをそのまま使用すればよい。
Using such an electrolytic reduction catalyst of the present invention, reducible compounds such as carbon dioxide, carbon oxides, carboxylic acids, and albitides can be converted to corresponding reducing compounds such as methane,
Reducing to formic acid and alcohols such as methanol 5
In order to do this, the catalyst is coated on the surface of the cathode substrate in the cathode chamber of an electrolytic cell which is divided into an anode chamber and a cathode chamber by a diaphragm, and the reducible compound is contained in the electrolyte as a solid,
Alternatively, if it is a liquid, its solution, preferably an aqueous solution, is added, or if it is a gas, it is added by bubbling or the like and electrolyzed to obtain the corresponding reduced compound. The material of the diaphragm and other electrolytic conditions depend on the type of the reducible compound, but those conventionally used may be used as they are.

(実施例) 以下本発明を以下の実施例に基づいてより詳細に説明す
るが、該実施例は本発明を限定するものではない。
(Example) The present invention will be described in more detail based on the following examples, but the present invention is not limited to the examples.

実施例1 陽極室と陰極室をナフィオン膜で隔てた電解槽中に10
−’モルの銅イオンを含む硫酸水溶液を加え、該電解液
中で白金黒付白金網電極の表面に被覆率θcu>1.0
で銅原子を被覆した後、電極を所定の平衡電位に保持し
て被覆の一部を除去し、1未満の種々の被覆率θ、U値
を有する複数の銅原子が原子的に分散する銅原子吸着電
極を作製した。吸着原子の電極上における被覆率は、水
素吸着のボルタモダラムを用いて電気化学的に決定した
。、この吸着原子の溶出を抑制しながら前記電解液を0
.5モル炭酸水素カリウム水溶液に置換し、ガラスポン
プにて炭酸ガスを循環バブリングしながら−1,OV 
(vs、  RHE) 、約lO℃において定電位電解
を行った。このときの電解電圧は、従来の単味鋼の場合
より0.5VないしIV低い電圧であった。還元終了後
、ガスクロマトグラフィー、液体クロマトグラフィーで
生成物の同定を行った。なおこの場合の電解液体積は2
5rn!、気相体積は93mfとした。
Example 1 10 cells were placed in an electrolytic cell with an anode chamber and a cathode chamber separated by a Nafion membrane.
A sulfuric acid aqueous solution containing −' mol of copper ions is added, and the surface of the platinum black-coated platinum wire mesh electrode is coated with a coverage of θcu>1.0 in the electrolyte.
After coating the copper atoms with , the electrode is held at a predetermined equilibrium potential and a part of the coating is removed to form a copper atom in which a plurality of copper atoms with various coverage ratios θ and U values less than 1 are atomically dispersed. We created an atomic adsorption electrode. The coverage of adatoms on the electrode was determined electrochemically using a hydrogen adsorption voltamodrum. , while suppressing the elution of the adatoms, the electrolyte was
.. Substitute with 5M potassium hydrogen carbonate aqueous solution and -1,OV while circulating and bubbling carbon dioxide gas with a glass pump.
(vs, RHE), potentiostatic electrolysis was performed at about 10°C. The electrolytic voltage at this time was 0.5 V to IV lower than that of conventional single steel. After the reduction was completed, the product was identified by gas chromatography and liquid chromatography. In this case, the electrolyte volume is 2
5rn! , the gas phase volume was 93 mf.

本実施例の銅原子吸着電極では、水素とともにメタン(
CH,、○)及びギ酸ナトリウムイオン(HCOO−、
ム)が選択的に発生した。それぞれの被覆率(θCu)
と、水素を除いたそれらの生成電流効率(η1)の関係
は第1図に示した通りであった。ギ酸ナトリウムイオン
については0くθ。<0.4.0.7<θcu<1.0
の領域では殆ど検出されず、0.4<θcu<0.7の
領域で選択的に生成することが分かった。他方、ややば
らつきはあるが、メタン生成の電流効率はθ。8にほぼ
比例して増大することが分かった。
In the copper atom adsorption electrode of this example, methane (
CH,, ○) and sodium formate ion (HCOO-,
) occurred selectively. Each coverage rate (θCu)
The relationship between the current efficiency (η1) and the generated current efficiency (η1) excluding hydrogen was as shown in FIG. 0 for sodium formate ion. <0.4.0.7<θcu<1.0
It was found that it was hardly detected in the region where 0.4<θcu<0.7 and was selectively generated in the region of 0.4<θcu<0.7. On the other hand, although there is some variation, the current efficiency for methane production is θ. It was found that the increase is almost proportional to 8.

実施例2 実施例1の銅よりも水素過電圧の高い鉛を吸着原子とし
て用い、被覆率と電流効率の関係を検討した。実施例1
と同様の操作により、過塩素酸水溶液中で鉛吸着原子を
白金黒付白金網上に分散析出させて、還元用電極とした
。還元電位を一500mVとし、25℃で実施例1と同
様に還元を行った。
Example 2 Using lead, which has a higher hydrogen overvoltage than copper in Example 1, as an adsorbent, the relationship between coverage and current efficiency was investigated. Example 1
By the same operation as above, lead adsorbed atoms were dispersed and precipitated on a black platinum wire mesh in a perchloric acid aqueous solution to prepare a reduction electrode. Reduction was carried out in the same manner as in Example 1 at 25° C. with a reduction potential of -500 mV.

この還元電圧は従来の単味鉛電極の場合と比較して1〜
1.5V低かった。この鉛原子吸着電極では、従来の水
素過電圧の大きい電極上で殆ど発生しないメタノールが
選択的に発生した。被覆率θ2.と、液相中のメタノー
ル(・)及び気相中の水素(ム)生成の電流効率を第2
図に示した。0.2<θ2.<0.6では、η1(水素
)≦0.6となり、同時にη!(メタノール)が増大し
、θ1.−0.5ではメタノールの生成電流効率が30
%以上となることが分かった。θ1.の増大とともに反
応電流は低下した。
This reduction voltage is 1 to 1 compared to the case of conventional single lead electrodes.
It was 1.5V low. This lead atom adsorption electrode selectively generated methanol, which was hardly generated on conventional electrodes with a large hydrogen overvoltage. Coverage rate θ2. and the current efficiency of producing methanol (・) in the liquid phase and hydrogen (mu) in the gas phase as the second
Shown in the figure. 0.2<θ2. <0.6, η1 (hydrogen)≦0.6, and at the same time η! (methanol) increases, θ1. -0.5, methanol production current efficiency is 30
% or more. θ1. The reaction current decreased with increasing .

θPI、<0.6の領域では全通電量を150クーロン
としたのに対し、θpb>0.6の領域では全通電量を
100クーロンとした。θpbの増加につれて一旦η1
(メタノール)は低下しくθpb=0.5〜0.6付近
)、θ1.の増加につれて再び増加した。この結果は、
メタノールへの還元反応が段階的に進行することを示唆
している。
In the region of θPI<0.6, the total amount of current applied was set to 150 coulombs, whereas in the region of θpb>0.6, the total amount of current applied was set to 100 coulombs. As θpb increases, η1
(methanol) decreases (θpb = around 0.5 to 0.6), θ1. It increased again as the number increased. This result is
This suggests that the reduction reaction to methanol proceeds in stages.

なお、図中に()で示したデータはθpbζ0.95に
おける鉛原子吸着電極、又(Pb)を付したデータは純
鉛電極を用いIV高い電圧で還元した結果を示す。後者
ではメタノールの生成は認められず、80数%の効率で
主としてギ酸が生成した。
In addition, the data shown in parentheses in the figure show the results of reduction using a lead atom adsorption electrode at θpbζ0.95, and the data marked with (Pb) using a pure lead electrode at an IV high voltage. In the latter case, no methanol was observed to be produced, and formic acid was mainly produced with an efficiency of over 80%.

しかし前述した通り、僅か数10%の白金原子を存在さ
せることにより、IVも低い還元電圧でメタノールを5
0%程度の効率で生成させることができた。この事実は
白金サイト上の吸着水素により炭酸ガスが接触的に還元
させていることを示唆している。
However, as mentioned above, by having only a few tens of percent of platinum atoms present, the IV can also be reduced to 5% with a low reduction voltage.
It was possible to generate it with an efficiency of about 0%. This fact suggests that carbon dioxide gas is catalytically reduced by adsorbed hydrogen on the platinum sites.

実施例3 白金対鉛の原子比が2:1となるように塩化白金酸及び
塩化鉛を1モル濃度硫酸水溶液中に溶解し、同波に浸し
た鉛電極に両金属を電着させた。
Example 3 Chloroplatinic acid and lead chloride were dissolved in a 1 molar sulfuric acid aqueous solution so that the atomic ratio of platinum to lead was 2:1, and both metals were electrodeposited on a lead electrode immersed in the same wave.

析出物は組成分析の結果、それぞれ素原子が分析誤差範
囲内で溶液中に加えた素原子比と一致した。
As a result of compositional analysis of the precipitate, the ratio of elementary atoms in each element matched the elemental atomic ratio added to the solution within the analytical error range.

これらの電極触媒上で実施例2と同じ実験条件で炭酸ガ
スの還元を行い、主生成物メタノールが電流効率15%
で得られた。
Carbon dioxide gas was reduced on these electrode catalysts under the same experimental conditions as in Example 2, and the main product methanol was reduced to a current efficiency of 15%.
Obtained with.

(発明の効果) 本発明では、電解還元触媒として、水素過電圧が低くそ
の上に吸着水素原子が発生し易い第1触媒金属と、電解
還元用として好適な範囲の電解電圧を有する第2触媒金
属を組み合わせて、第1触媒金属同志の接触を阻害する
ようにしである。
(Effects of the Invention) In the present invention, as an electrolytic reduction catalyst, a first catalyst metal having a low hydrogen overvoltage and on which adsorbed hydrogen atoms are likely to be generated, and a second catalyst metal having an electrolytic voltage in a range suitable for electrolytic reduction are used. are used in combination to inhibit contact between the first catalyst metals.

従って第1触媒金属上に発生した水素原子が、他の水素
原子と結合して水素分子を発生することが好適に阻害さ
れ、電解中の水素発生を殆ど無くし、該水素発生に必要
なエネルギを節約することが可能になる。
Therefore, hydrogen atoms generated on the first catalyst metal are preferably prevented from combining with other hydrogen atoms to generate hydrogen molecules, almost eliminating hydrogen generation during electrolysis and reducing the energy necessary for hydrogen generation. It becomes possible to save money.

しかも前記両触媒金属上に吸着し又は該基体に近付いた
被還元性化合物は周囲に存在する前記吸着水素原子によ
り通常の電解反応通りに還元され、対応する還元化合物
を得ることができる。
In addition, the reducible compound adsorbed on the catalyst metals or approaching the substrate is reduced by the adsorbed hydrogen atoms existing in the surroundings in a normal electrolytic reaction, and the corresponding reduced compound can be obtained.

更に本発明に係わる還元化合物の製造方法でも、前記触
媒金属を組み合わせて使用しているため、同様に低エネ
ルギで前記還元化合物を製造することが可能になる。
Furthermore, since the method for producing a reduced compound according to the present invention also uses a combination of the catalyst metals, it is possible to produce the reduced compound with low energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1における銅の被覆率θ。1
とメタン及びギ酸イオン生成の電流効率η1の関係を示
すグラフ、第2図は、実施例2における鉛の被覆率θp
bと水素及びメタノール生成の電流効率η1の関係を示
すグラフである。 特許出願人  田中貴金属工業株式会社渡辺政廣 耐鋒鋳職窪 (117%) +ケ謝神剤肝 (刀I/%) −2′
FIG. 1 shows the copper coverage θ in Example 1 of the present invention. 1
FIG. 2 is a graph showing the relationship between the current efficiency η1 of methane and formate ion production, and the lead coverage θp in Example 2.
It is a graph showing the relationship between b and current efficiency η1 for hydrogen and methanol production. Patent Applicant: Tanaka Kikinzoku Kogyo Co., Ltd. Masahiro Watanabe Taifeng Kassokubo (117%)

Claims (2)

【特許請求の範囲】[Claims] (1)白金、パラジウム、イリジウム、ロジウム、鉄、
ニッケル、コバルトから成る群から選択される少なくと
も1種類の第1触媒金属と、鉛、銅、亜鉛、カドミウム
から成る群から選択される少なくとも1種類の第2触媒
金属とを含んで成る電解還元用触媒。
(1) Platinum, palladium, iridium, rhodium, iron,
For electrolytic reduction, comprising at least one first catalyst metal selected from the group consisting of nickel and cobalt, and at least one second catalyst metal selected from the group consisting of lead, copper, zinc, and cadmium. catalyst.
(2)隔膜により陽極室と陰極室に区画された電解槽の
該陰極室内の陰極基体に、白金、パラジウム、イリジウ
ム、ロジウム、鉄、ニッケル、コバルトから成る群から
選択される少なくとも1種類の第1触媒金属と、鉛、銅
、亜鉛、カドミウムから成る群から選択される少なくと
も1種類の第2触媒金属とを含んで成る電解還元用触媒
を被覆して成る陰極を収容し、該陰極上で被還元性化合
物を還元して対応する還元化合物に変換することを特徴
とする還元化合物の製造方法。
(2) At least one metal selected from the group consisting of platinum, palladium, iridium, rhodium, iron, nickel, and cobalt is added to the cathode substrate in the cathode chamber of the electrolytic cell, which is divided into an anode chamber and a cathode chamber by a diaphragm. a cathode coated with an electrolytic reduction catalyst comprising one catalyst metal and at least one second catalyst metal selected from the group consisting of lead, copper, zinc, and cadmium; A method for producing a reduced compound, which comprises reducing a reducible compound and converting it into a corresponding reduced compound.
JP1028462A 1989-02-07 1989-02-07 Catalyst for electrolytic reduction and production of reduced compound with this catalyst Pending JPH02207844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028462A JPH02207844A (en) 1989-02-07 1989-02-07 Catalyst for electrolytic reduction and production of reduced compound with this catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028462A JPH02207844A (en) 1989-02-07 1989-02-07 Catalyst for electrolytic reduction and production of reduced compound with this catalyst

Publications (1)

Publication Number Publication Date
JPH02207844A true JPH02207844A (en) 1990-08-17

Family

ID=12249328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028462A Pending JPH02207844A (en) 1989-02-07 1989-02-07 Catalyst for electrolytic reduction and production of reduced compound with this catalyst

Country Status (1)

Country Link
JP (1) JPH02207844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
JP2013536319A (en) * 2010-07-29 2013-09-19 リキッド・ライト・インコーポレーテッド Reduction of carbon dioxide to product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236847A (en) * 2005-04-15 2012-12-06 Univ Of Southern California Efficient and selective chemical recycling of carbon dioxide to methanol, dimethyl ether and derived products
JP2013536319A (en) * 2010-07-29 2013-09-19 リキッド・ライト・インコーポレーテッド Reduction of carbon dioxide to product

Similar Documents

Publication Publication Date Title
Jitaru et al. Electrochemical reduction of carbon dioxide on flat metallic cathodes
Tseung et al. Hydrogen spill-over effect on Pt/WO3 anode catalysts
CA1161824A (en) Noble metal-chromium alloy catalysts
US4921586A (en) Electrolysis cell and method of use
US9680160B2 (en) Extended two dimensional metal nanotubes and nanowires useful as fuel cell catalysts and fuel cells containing the same
US4818353A (en) Method for modifying electrocatalyst material, electrochemical cells and electrodes containing this modified material, and synthesis methods utilizing the cells
US5051156A (en) Electrocatalyst for the oxidation of methane and an electrocatalytic process
US20100252422A1 (en) Carbon fiber-electrocatalysts for the oxidation of ammonia and ethanol in alkaline media and their application to hydrogen production, fuel cells, and purification processes
EP3774027B1 (en) Electrocatalysts, the preparation thereof, and using the same for ammonia synthesis
US20040126267A1 (en) Intermetallic compounds for use as catalysts and catalytic systems
KR20160008225A (en) Fuel cell electrode catalyst and method for activating catalyst
EP0390157B1 (en) Electrolysis cell and method of use
EP0931855B1 (en) Production of hydrogen from water using photocatalyst-electrolysis hybrid system
JPH07188961A (en) Carbon dioxide reducing electrode and carbon dioxide converter
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
EP1739208B1 (en) Electrode for hydrogen generation, process for producing the same and method of electrolysis therewith
Huang et al. Sustainable and selective formic acid production from photoelectrochemical methanol reforming at near-neutral pH using nanoporous nickel-iron oxyhydroxide-borate as the electrocatalyst
CN111215146B (en) Group-modified noble metal-based carbon dioxide electro-reduction catalyst and preparation method and application thereof
JP3389393B2 (en) Anode catalyst for polymer electrolyte fuel cell and method for producing the same
O'Grady et al. Proceedings of the Symposium on Electrocatalysis
US4373014A (en) Process using noble metal-chromium alloy catalysts in an electrochemical cell
KR20200090668A (en) Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
JP2005085607A (en) Anode catalyst for fuel cell, and its manufacturing method
US4306950A (en) Process for forming sulfuric acid
JP5058805B2 (en) Method for producing noble metal fine particles