JPH02207586A - Integrated type semiconductor optical amplifier - Google Patents

Integrated type semiconductor optical amplifier

Info

Publication number
JPH02207586A
JPH02207586A JP2800889A JP2800889A JPH02207586A JP H02207586 A JPH02207586 A JP H02207586A JP 2800889 A JP2800889 A JP 2800889A JP 2800889 A JP2800889 A JP 2800889A JP H02207586 A JPH02207586 A JP H02207586A
Authority
JP
Japan
Prior art keywords
waveguide
optical
active
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2800889A
Other languages
Japanese (ja)
Other versions
JP2853138B2 (en
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2800889A priority Critical patent/JP2853138B2/en
Publication of JPH02207586A publication Critical patent/JPH02207586A/en
Application granted granted Critical
Publication of JP2853138B2 publication Critical patent/JP2853138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To construct a subscriber optical system and the like with the low system cost by forming an integrated semiconductor amplifier in which a signal light incident upon one input optical waveguide is distributed to a plurality of output active waveguides through an optical coupling part. CONSTITUTION:An electrode 21 is formed on a cladding layer 23 and a substrate such that a current is directed only to an active waveguide 3 part, and an insulating film 22 is formed on the active waveguide 3 part. An optical signal incident through an input waveguide 2 is entered into the active waveguide 3 in an output waveguide through four optical coupling parts located in the direction of light propagation. Once the current is driven between the upper and lower electrodes 21, carriers are injected into the active waveguide 3 for light amplification.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積型半導体光増幅器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an integrated semiconductor optical amplifier.

〔従来の技術〕[Conventional technology]

半導体光増幅器は光通信システムにおける線形増幅器、
前置き増幅器、損失補償用増幅器等として幅広い分野に
用いられ、伝送の中継間隔を長くする上で欠くことので
きない重要なデバイスである。特に素子の両端面(光の
入・出射面)に反射防止膜を形成した進行波型光増幅器
(以下TWAと略す)は帯域が広<、15dB程度の正
味利得が得られることから活発に研究開発が進められて
いる。
Semiconductor optical amplifiers are linear amplifiers in optical communication systems,
It is used in a wide range of fields as a preamplifier, a loss compensation amplifier, etc., and is an indispensable and important device for lengthening transmission relay intervals. In particular, traveling wave optical amplifiers (hereinafter abbreviated as TWA), which have anti-reflection films formed on both end faces (light input/output surfaces) of the element, are actively being researched because they have a wide band and can provide a net gain of about 15 dB. Development is underway.

一方、十数チャンネルの光信号を致方の加入者端末に分
配する加入者系光システムをTWAを用いて構成しよう
とする試みもある。そのようなシステムの一例を第3図
に示す。この例では計16個の半導体レーザから成る光
源10の出力信号光をスターカップラ11を用いて合波
し、その後1×16の分岐ファイバ16Aによって16
X 16= 256に分岐する。そこに計256個のT
WA15を用いて、減衰した光信号を増幅し、その先で
さらにlX256の分岐ファイバ16Bによって最終段
において256X256 =65,536の加入者端末
13に配分するものである。各加入者側でもとの16チ
ヤンネルの内の一つを選択する構成となっている。
On the other hand, there is also an attempt to construct a subscriber optical system using TWA, which distributes optical signals of more than ten channels to subscriber terminals. An example of such a system is shown in FIG. In this example, the output signal light of the light source 10 consisting of a total of 16 semiconductor lasers is multiplexed using the star coupler 11, and then the 16
Branch to X 16=256. There are a total of 256 T
The attenuated optical signal is amplified using the WA 15, and further distributed to 256 x 256 = 65,536 subscriber terminals 13 at the final stage via an lX256 branch fiber 16B. Each subscriber side is configured to select one of the original 16 channels.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでこのようなシステムでは膨大な数の加入者に光
信号を配分するために256個という多数のTWAを必
要とし、システムコストが大きくなってしまう、TWA
の数を減らすことでシステムコストを低減でき、そのた
めには例えば分岐ファイバ16Aの前にTWAを置くこ
とが考えられるが、TWAの飽和出力は数dBmであり
、そこにおいなのでは各加入者端末に分配される光信号
出力が極端に微弱なものになってしまう。
However, in such a system, a large number of TWAs (256) are required to distribute optical signals to a huge number of subscribers, which increases the system cost.
The system cost can be reduced by reducing the number of fibers, for example, placing a TWA in front of the branch fiber 16A, but the saturation output of the TWA is several dBm, and there is a problem with each subscriber terminal. The distributed optical signal output becomes extremely weak.

本発明の目的は上述の観点に立って、システム応用上有
用な集積型半導体光増幅器を提供することにある。
In view of the above, an object of the present invention is to provide an integrated semiconductor optical amplifier useful for system applications.

〔課題を解決するための手段〕[Means to solve the problem]

前述の間頭点を解決するために本発明が提供する手段は
、半導体基板上に一本の入力導波路と複数の出力導波路
が形成され、電流注入により光増幅作用を起す活性導波
路が前記出力導波路及び入力導波路の少なくとも一部に
形成され、前記出力導波路が光結合部によって前記入力
導波路及び出力導波路に光学的に結合されたことを特徴
とする集積型半導体光増幅器である。
The means provided by the present invention to solve the above-mentioned problem is that one input waveguide and a plurality of output waveguides are formed on a semiconductor substrate, and an active waveguide that causes an optical amplification effect by current injection is used. An integrated semiconductor optical amplifier, which is formed in at least a portion of the output waveguide and the input waveguide, and the output waveguide is optically coupled to the input waveguide and the output waveguide by an optical coupling part. It is.

〔作用〕[Effect]

本発明においては第3図の構成における分岐ファイバ1
6AとT W A 15の機能を一体化したので、機能
性の高い集積型TWAを構成することができ、光システ
ムが簡単な構成で実現でき、低価格で信頼性の良いもの
が得られる。
In the present invention, the branch fiber 1 in the configuration shown in FIG.
Since the functions of 6A and TWA 15 are integrated, a highly functional integrated TWA can be constructed, an optical system can be realized with a simple configuration, and a highly reliable one can be obtained at a low price.

〔実施例〕〔Example〕

以下に実施例の図面を参照して本発明、をより詳細に説
明する。第1図(a)は本発明の一実施例である集積型
TWAの模式的な平面図を示す。素子作製はLPE法に
より、通常の埋め込み構造の成長と同様の方法で行なえ
る。InP基板1上に発光波長1.2μmの導波路層、
発光波長1.59μmのInGaAsP活性層を成長し
た後、選択エツチングおよび埋め込み成長用のメサエッ
チングを行なうことにより、図のように入力導波路2、
活性導波路3、光結合部4を形成する。入力導波路、活
性導波路はいずれも幅1.5μmとし、活性層の厚さは
0.1μmとした。導波路周辺は通常の埋め込み半導体
レーザと同様に形成し、光結合部4は方向性結合器の構
成を用いた。
The invention will be explained in more detail below with reference to the drawings of embodiments. FIG. 1(a) shows a schematic plan view of an integrated TWA which is an embodiment of the present invention. The device can be manufactured using the LPE method in the same manner as the growth of a normal buried structure. A waveguide layer with an emission wavelength of 1.2 μm on the InP substrate 1,
After growing an InGaAsP active layer with an emission wavelength of 1.59 μm, selective etching and mesa etching for buried growth are performed to form input waveguides 2 and 2 as shown in the figure.
An active waveguide 3 and an optical coupling section 4 are formed. The width of both the input waveguide and the active waveguide was 1.5 μm, and the thickness of the active layer was 0.1 μm. The periphery of the waveguide was formed in the same manner as a normal buried semiconductor laser, and the optical coupling section 4 used a directional coupler configuration.

第1図(a>中A−A’およびB−B’ 、C−C′部
分の断面図をそれぞれ第1図(b)(c)、(d)に示
した。第1図(b)に示すように光結合部4は2つの導
波路を近接配置して成る方向性結合器の構成となってお
り、導波層2を含むメサストライプ以外の部分に導電型
の異なる電流ブロック層24A−Bが形成されている。
Figure 1 (a) Cross-sectional views of the A-A', B-B', and C-C' portions are shown in Figure 1 (b), (c), and (d), respectively. Figure 1 (b) As shown in , the optical coupling section 4 has a directional coupler configuration in which two waveguides are arranged close to each other, and a current blocking layer 24A of a different conductivity type is provided in a portion other than the mesa stripe including the waveguide layer 2. -B is formed.

またB−B’部分には、第1図(c)に示すように活性
導波路3が部分的に形成されている構成とした。活性導
波路3と導波層2の間にはエッチストップ層25を形成
しな。活性導波路3部分のみに電流を流すように図に示
すようにクラッド層23と基板に電極21を形成し、活
性導波路3部分には絶縁膜22を形成した。c−c’部
分は第1図(d)の構造で、活性導波路3.導波路2が
たてに形成(導波路2情報に活性導波路3が積層形成)
されている。
Further, the active waveguide 3 was partially formed in the BB' portion as shown in FIG. 1(c). An etch stop layer 25 is not formed between the active waveguide 3 and the waveguide layer 2. As shown in the figure, an electrode 21 was formed on the cladding layer 23 and the substrate so that a current could flow only through the active waveguide 3 portion, and an insulating film 22 was formed on the active waveguide 3 portion. The c-c' portion has the structure shown in FIG. 1(d), with the active waveguide 3. Waveguide 2 is formed vertically (active waveguide 3 is layered on waveguide 2 information)
has been done.

一本の入力導波路2から入射された光信号は光の進行方
向に4ケ所の光結合部を通過して出力導波路である活性
導波路3に入射する。上下の電極21間に電流を流すこ
とにより活性導波路3にキャリアが注入され、光の増幅
作用を持たせることができる。複数の異なる活性導波路
3には各々独立に電流を注入することが可能となるよう
にすれば、各電極に流す電流を独立に調整することで全
ての活性導波路3の出力側において同じ光出力にそろえ
ることができる。活性導波路直前では導波損失も含めて
入射光量の1724程度のパワーとなった。長さ500
μmの活性導波路での増幅量は28dBであった。集積
素子全体の長さは2.7mmと比較的小型である。素子
の入力端面、出力端面には第1図(a)に示すように、
Sin、(による反射防止膜5を形成した。
An optical signal input from one input waveguide 2 passes through four optical coupling sections in the direction in which the light travels, and enters an active waveguide 3, which is an output waveguide. By passing a current between the upper and lower electrodes 21, carriers are injected into the active waveguide 3, which can provide a light amplification effect. By making it possible to independently inject current into a plurality of different active waveguides 3, the same light can be generated on the output side of all active waveguides 3 by adjusting the current flowing through each electrode independently. It can be aligned with the output. Immediately before the active waveguide, the power was approximately 1724 times the amount of incident light, including waveguide loss. length 500
The amplification amount in the μm active waveguide was 28 dB. The overall length of the integrated device is 2.7 mm, which is relatively small. As shown in FIG. 1(a), the input end face and output end face of the element are
An antireflection film 5 was formed using Sin.

このような本発明の集積型半導体光増幅器を用いて加入
者系光システムを構成した例を第2図に示す。この例は
、第3図の構成のうち、分岐ファイバ16Aと光増幅器
15を集積型半導体光増幅器12で置換えた構成になっ
ており、光源10からの光出力8 dBmに対して65
000以上の数の加入者端末への出力として一37dB
mと良好な光伝送が行なえる。そのために必要な集積型
半導体光増幅器I2の数は、従来例の256個に対して
わずか16個ですむ。
FIG. 2 shows an example of a subscriber optical system using the integrated semiconductor optical amplifier of the present invention. In this example, the branch fiber 16A and the optical amplifier 15 in the configuration shown in FIG. 3 are replaced with the integrated semiconductor optical amplifier 12, and the optical output from the light source 10 is 65
-37dB as an output to subscriber terminals with a number of 000 or more
Good optical transmission can be achieved with m. The number of integrated semiconductor optical amplifiers I2 required for this purpose is only 16, compared to 256 in the conventional example.

なお、実施例においてはInPを基板とする波長1μm
帯の素子について述べたが、用いる材料系はこれに限る
ものでなく、GaAs系等、他の材料を用いてなんら差
し使えない。また素子の作製には化学エツチングのみな
らずドライエツチング等の手法を用いてなんら差し支え
ない、さらに導波構造として埋め込み構造に限るもので
はない。リブ型等、現在利用されている構造、あるいは
利用しうる構造であればどのような構造でもよい。また
光結合部4も方向性結合器型でなくY分岐型等信の構造
のもので何らさしつかえない。
In addition, in the example, the wavelength is 1 μm using InP as the substrate.
Although the band element has been described, the material system used is not limited to this, and other materials such as GaAs may also be used. In addition, not only chemical etching but also methods such as dry etching may be used to fabricate the device, and the waveguide structure is not limited to a buried structure. Any structure that is currently used or that can be used, such as a rib type, may be used. Further, the optical coupling section 4 may also be of a Y-branch type or similar structure rather than a directional coupler type.

クラッド層、導波層、電流ブロック層等、実施例で示し
た半導体層は、通常用いられている半導体レーザと同じ
構造、材料等を用いることで実現できるので具体的な説
明は省略しな。
The semiconductor layers shown in the examples, such as the cladding layer, the waveguide layer, and the current blocking layer, can be realized by using the same structure, materials, etc. as those of commonly used semiconductor lasers, so a detailed explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明の特徴は一本の入力光導波路に入射した信号光を
光結合部を介して複数の出力活性導波路に分配する構成
の集積型TWAを形成したことである。この様な集積型
TWAによってシステムコストの低い加入者系光システ
ム等が構成可能となった。
A feature of the present invention is that an integrated TWA is formed in which a signal light incident on one input optical waveguide is distributed to a plurality of output active waveguides via an optical coupling section. Such integrated TWAs have made it possible to construct subscriber optical systems and the like with low system costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例である集積型TWAの
平面図、第1図(b)、(c)、(d)はそれぞれ第1
図(a>のA−A’部、B−B’部分、c−c’部分の
断面図、第2図は本発明の集積型半導体光増幅器を用い
た光システムの構成例を示す図、第3図は従来例のシス
テム構成例を示す図である。 1・・・基板、2・・・入力導波路、3・・・活性導波
路、4・・・光結合部、5・・・反射防止膜、10・・
・光源、11・・・スターカップラ、12・・・集積光
増幅器、13・・・加入者端末、15・・・光増幅器、
16A−B・・・分岐ファイバ、21・・・電極、22
・・・絶縁膜、23・・・クラッド層、24A−B・・
・電流ブロック層、25・・・エッチストップ層。
FIG. 1(a) is a plan view of an integrated TWA which is an embodiment of the present invention, and FIGS. 1(b), (c), and (d) are respectively
2 is a diagram showing an example of the configuration of an optical system using the integrated semiconductor optical amplifier of the present invention, FIG. 3 is a diagram showing an example of a conventional system configuration. 1... Substrate, 2... Input waveguide, 3... Active waveguide, 4... Optical coupling section, 5... Anti-reflection film, 10...
- Light source, 11... Star coupler, 12... Integrated optical amplifier, 13... Subscriber terminal, 15... Optical amplifier,
16A-B... Branch fiber, 21... Electrode, 22
...Insulating film, 23...Clad layer, 24A-B...
- Current block layer, 25... etch stop layer.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に一本の入力導波路と複数の出力導波路が
形成され、電流注入により光増幅作用を起す活性導波路
が前記出力導波路及び入力導波路の少なくとも一部に形
成され、前記出力導波路が光結合部によって前記入力導
波路及び出力導波路に光学的に結合されたことを特徴と
する集積型半導体光増幅器。
An input waveguide and a plurality of output waveguides are formed on a semiconductor substrate, an active waveguide that causes an optical amplification effect by current injection is formed in at least a part of the output waveguide and the input waveguide, and the output waveguide is formed on a semiconductor substrate. An integrated semiconductor optical amplifier characterized in that a waveguide is optically coupled to the input waveguide and the output waveguide by an optical coupling section.
JP2800889A 1989-02-06 1989-02-06 Integrated semiconductor optical amplifier Expired - Lifetime JP2853138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2800889A JP2853138B2 (en) 1989-02-06 1989-02-06 Integrated semiconductor optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2800889A JP2853138B2 (en) 1989-02-06 1989-02-06 Integrated semiconductor optical amplifier

Publications (2)

Publication Number Publication Date
JPH02207586A true JPH02207586A (en) 1990-08-17
JP2853138B2 JP2853138B2 (en) 1999-02-03

Family

ID=12236763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2800889A Expired - Lifetime JP2853138B2 (en) 1989-02-06 1989-02-06 Integrated semiconductor optical amplifier

Country Status (1)

Country Link
JP (1) JP2853138B2 (en)

Also Published As

Publication number Publication date
JP2853138B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP2656598B2 (en) Semiconductor optical switch and semiconductor optical switch array
EP0602873B1 (en) Optical switching array using semiconductor amplifier waveguides
US7085453B2 (en) Optical functional device and optical module
US6681069B2 (en) Semiconductor optical component utilizing leaky structures to match the mode of rib waveguides to that of the fiber
JPH0297914A (en) Integrated type optical node
JPH04372907A (en) Waveguide type branching-coupling element
US6718094B1 (en) Large surface amplifier with multimode interferometer
JPH11191656A (en) Photosemiconductor device
JP3226063B2 (en) Semiconductor optical amplifier
JP2965011B2 (en) Semiconductor optical device and method of manufacturing the same
JP3104798B2 (en) Integrated optical coupler and method of manufacturing the same
JP3105877B2 (en) Optical power splitter and method of manufacturing the same
JPH02207586A (en) Integrated type semiconductor optical amplifier
JPS59135441A (en) Optical waveguide switch
JP3302088B2 (en) Integrated optical device and optical communication network using the same
Suzaki et al. High-gain array of semiconductor optical amplifier integrated with bent spot-size converter (BEND SS-SOA)
JPH07244303A (en) Optical amplifying element
JPH04211228A (en) Manufacture of photoelectric amplifier device, device obtained by this method and application for various photoelectric devices
JPH07120795A (en) Semiconductor optical matrix switch
JPH01312879A (en) Surface type semiconductor light amplifier
JPH02199882A (en) Semiconductor optical amplifier
JPH0473606A (en) Semiconductor polarizing beam splitter
JPH063553A (en) Multicore fiber type coupler added with rare earth element
JPH0745860A (en) Integrated optical device, diffraction grid, and optical communications network using it
JPH08234245A (en) Semiconductor 1x3 optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11