JPH0473606A - Semiconductor polarizing beam splitter - Google Patents
Semiconductor polarizing beam splitterInfo
- Publication number
- JPH0473606A JPH0473606A JP18633990A JP18633990A JPH0473606A JP H0473606 A JPH0473606 A JP H0473606A JP 18633990 A JP18633990 A JP 18633990A JP 18633990 A JP18633990 A JP 18633990A JP H0473606 A JPH0473606 A JP H0473606A
- Authority
- JP
- Japan
- Prior art keywords
- branch
- optical
- waveguide
- inp
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000005253 cladding Methods 0.000 claims description 6
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Polarising Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、半導体光集積回路の構成要素となる導波路型
偏光ビームスプリッタに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a waveguide type polarizing beam splitter that is a component of a semiconductor optical integrated circuit.
(従来の技術)
任意の偏光角で入射した光ビームをTEとTMモードの
光ビームに分ける偏光ビームスプリッタは、光の周波数
や位相情報を高度に利用するコヒーレント光通信の分野
で重要であり、特に偏波ダイハーシチ受信方式において
必須のデバイスどなっている。その中で、半導体導波路
型の偏光ビームスプリッタは、半導体レーザ・光検出器
・光スィッチ、3dBカツプラー等の半導体素子とのモ
ノリシック集積が可能という特徴を持ら、将来の光通信
ネットワークシステムを構築する半導体光集積回路の基
本素子として期待されている。従来技術の一例としてエ
ルマン(M、 Erman)らによる報告がある(ヨー
ロッパ光通信会議(ECOC’89)、ThB20−1
.1989年)。従来例は、光結合が起こるほどに近接
させた2本のリブ型光導波路(いわゆる方向性結合器型
である)の一方に金属を装荷した構造であり、先導波路
の実効屈折率の値がTEモードとTMモードの導波光で
異なることを利用したものである。実効屈折率の値がT
EモードとTMモードで異なると、方向性結合器の光結
合長がTEモードとTMモードで異なることになり、素
子長を選べばTEとTMモードの導波光を分離出来る。(Prior Art) Polarizing beam splitters that separate a light beam incident at an arbitrary polarization angle into TE and TM mode light beams are important in the field of coherent optical communication, which makes advanced use of optical frequency and phase information. In particular, it has become an essential device for polarization diharstic reception systems. Among these, semiconductor waveguide type polarizing beam splitters have the characteristic of being able to be monolithically integrated with semiconductor elements such as semiconductor lasers, photodetectors, optical switches, and 3dB couplers, and will be used to build future optical communication network systems. It is expected to be a basic element for semiconductor optical integrated circuits. As an example of the conventional technology, there is a report by Ehrman et al. (European Conference on Optical Communications (ECOC'89), ThB20-1
.. (1989). The conventional example has a structure in which metal is loaded on one side of two rib-type optical waveguides (so-called directional coupler type) placed close enough to cause optical coupling, and the value of the effective refractive index of the leading waveguide is This takes advantage of the difference between guided light in TE mode and TM mode. The value of effective refractive index is T
If the E mode and TM mode are different, the optical coupling length of the directional coupler will be different between the TE mode and the TM mode, and by selecting the element length, the guided light of the TE and TM modes can be separated.
従来例では、素子長が900.4mから1100/im
の範囲でTEモードTMモードの導波光に対して共に消
光比15dB程度が得られている。In the conventional example, the element length is from 900.4 m to 1100/im.
An extinction ratio of about 15 dB is obtained for both TE mode and TM mode guided light in the range of .
(発明が解決しようとする課題)
上述した従来の偏光ビームスプリッタにおいては、原理
的にTMモードの導波光が導波路上に装荷した金属によ
り吸収され光損失が生じること、導波路幅において0.
1□m以下の加工精度が必要であり、素子を再現性よく
製作することが困難であることなどの問題点を有してい
る。(Problems to be Solved by the Invention) In the conventional polarizing beam splitter described above, in principle, the guided light in the TM mode is absorbed by the metal loaded on the waveguide, causing optical loss, and the width of the waveguide is 0.
It requires processing accuracy of 1□m or less, and has problems such as difficulty in manufacturing elements with good reproducibility.
本発明の目的はこれらの問題点を解決し、製作容易で、
低損失な半導体導波路型偏光ビームスプノッタを提供す
ることにある。The purpose of the present invention is to solve these problems, to be easy to manufacture, and to
An object of the present invention is to provide a semiconductor waveguide type polarization beam splitter with low loss.
(課題を解決するための手段)
前述の課題を解決するため本発明の半導体偏光ビームス
プリッタは、半導体基板上のY分岐光導波路が、超格子
構造を有する光ガイド層と前記光ガイド層より屈折率が
低いクラッド層とから構成され、前記光ガイド層の超格
子構造がY分岐部の一部で混晶化し消失していることを
特徴としている。(Means for Solving the Problems) In order to solve the above-mentioned problems, a semiconductor polarizing beam splitter of the present invention is provided in which a Y branch optical waveguide on a semiconductor substrate is refracted by an optical guide layer having a superlattice structure and the optical guide layer. It is characterized in that the superlattice structure of the light guide layer becomes a mixed crystal in a part of the Y branch and disappears.
(作用)
InGaAs/InPまたはGaAs/AlGaAsに
代表される超格子構造を有する先導波路は、TEとTM
モードの導波光に対して異なる屈折率の値(それぞれn
TE、11T8とする)を示し、これが混晶化すると屈
折率が変化し、TEとTMモードの導波光に対して同じ
値(noとする)とる。これらの開には、nT8〉no
>nTMの関係が存在する。従って、第1図に示すよう
に超格子構造導波路のY分岐部の一部を混晶した本発明
では、TEモードの導波光に対しては全反射し、TMモ
ードの導波光に対しては透過させることが出来る。TE
とTMモードの導波光に対する混晶化前後の屈折率変化
(それぞれ”TE = IITE −nO1△rlTM
= ”O”TMである)は、どちらも約4X10
とおおきく、Y分岐角は約4°素子長は100□m以下
と小型化が図れ低損失化が可能である。更に、本発明の
構造では、導波路幅の加工精度は0.5pm程度で十分
であり、0.1μmの加工精度を必要とした従来例と比
べ製作が容易で特性の再現性に優れているという特徴を
持つ。(Function) A guiding waveguide having a superlattice structure represented by InGaAs/InP or GaAs/AlGaAs has TE and TM
Different refractive index values (each n
TE, 11T8), and when it becomes a mixed crystal, the refractive index changes and takes the same value (set as no) for guided light in the TE and TM modes. These openings include nT8〉no
> nTM relationship exists. Therefore, in the present invention in which a part of the Y branch of the superlattice structure waveguide is mixed crystal as shown in FIG. 1, the TE mode guided light is totally reflected, and the TM mode guided light is totally reflected. can be passed through. T.E.
and the refractive index change before and after mixed crystallization for guided light in TM mode (respectively “TE = IITE −nO1△rlTM
= “O”TM) are both approximately 4X10
Most importantly, the Y-branch angle is about 4 degrees, and the element length is 100 □m or less, which allows for miniaturization and low loss. Furthermore, in the structure of the present invention, a processing accuracy of about 0.5 pm is sufficient for the waveguide width, and it is easier to manufacture and has better reproducibility of characteristics than the conventional example, which required a processing accuracy of 0.1 μm. It has the characteristics of
従って、製作容易で低損失な半導体導波路型偏光ビーム
スプリッタが実現できる。Therefore, it is possible to realize a semiconductor waveguide type polarizing beam splitter that is easy to manufacture and has low loss.
(実施例) 次に図面を参照して本発明の実施例を詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail with reference to the drawings.
第1図(a)は本発明の実施例の主要部を示す半導体導
波路型偏光ビームスプリッタの平面図、第1図(b)は
第1図(a)のA−B線断面図である。FIG. 1(a) is a plan view of a semiconductor waveguide type polarizing beam splitter showing the main part of an embodiment of the present invention, and FIG. 1(b) is a cross-sectional view taken along line A-B in FIG. 1(a). .
この実施例はInPからなる半導体基板10上に形成さ
れたY分岐先導波路が、InGaAs(P)/InP超
格子からなる光ガイド層12とInPからなる第1.第
2のクラッド層11.13から構成され、前記光ガイド
層12の超格子構造がY分岐部の一部で混晶化し消失し
ているものである。In this embodiment, a Y-branch leading waveguide formed on a semiconductor substrate 10 made of InP has an optical guide layer 12 made of an InGaAs(P)/InP superlattice and a first waveguide made of InP. It is composed of second cladding layers 11 and 13, and the superlattice structure of the optical guide layer 12 becomes a mixed crystal in a part of the Y branch and disappears.
次に、この実施例の製造方法について説明する。n−I
nPからなる半導体基板10上に、気相成長法または分
子線成長法などによりノンドープInPからなる第1の
クラッド層11(厚さ1μm)、InPと格子整合する
ノンドープInGaAs(P)(厚さ28人)とノンド
ープInP(厚さ46人)の100周期の超格子からな
る光ガイド層12を成長させる。次に、プラズマCVD
法とホトリックラフイの手法を用いSiNx膜を選択的
に形成し800°Cの熱処理を行い、SiNx膜下の超
格子構造を混晶化させ消失させる(いわゆるキャップア
ニール混晶化法)ことにより混晶化領域14を形成する
。次に、SiNxを除去した後、気相成長法または分子
線成長法などによりノンドープInPからなる第2のク
ラッド層13(厚さ1pm)を成長させる。更に、塩素
ガスを用いてドライエツチング技術を用いて導波路幅3
□m、エツチング深さ0.8□m、分岐角4°のY分岐
光導波路15を形成する。ここでは第1と第3の光導波
路が直線となるようにした。この場合、混晶化領域14
はY分岐光導波路15平面上で第1図(a)に示したY
分岐部の位置にくる必要がある。混晶化領域と、第1の
光導波路とのなす角度は分岐角の半分の2°とした。最
後に、半導体基板1oは研磨により11004zの厚さ
にされ、へき開により光入射面、光出射面が形成され、
半導体導波路型偏光ビームスプリッタが完成する。Next, the manufacturing method of this example will be explained. n-I
On a semiconductor substrate 10 made of nP, a first cladding layer 11 made of non-doped InP (thickness 1 μm) and a non-doped InGaAs(P) (thickness 28 μm) lattice-matched to InP are formed by vapor phase growth or molecular beam growth. An optical guide layer 12 consisting of a 100-period superlattice of undoped InP (thickness: 46 mm) and non-doped InP (thickness: 46 mm) is grown. Next, plasma CVD
A SiNx film is selectively formed using the method of oxidation and photo-roughing, and heat treatment is performed at 800°C to make the superlattice structure under the SiNx film into a mixed crystal and disappear (so-called cap annealing mixed crystal formation method). forming a chemical region 14. Next, after removing SiNx, a second cladding layer 13 (thickness: 1 pm) made of non-doped InP is grown by vapor phase growth, molecular beam growth, or the like. Furthermore, the waveguide width was reduced to 3 using dry etching technology using chlorine gas.
A Y-branch optical waveguide 15 with an etching depth of 0.8 m and a branching angle of 4° is formed. Here, the first and third optical waveguides were arranged to be straight lines. In this case, the mixed crystal region 14
is the Y branch optical waveguide 15 plane shown in FIG. 1(a).
It needs to be at the branch point. The angle between the mixed crystal region and the first optical waveguide was set to 2°, which is half the branching angle. Finally, the semiconductor substrate 1o is polished to a thickness of 11004z, and cleaved to form a light entrance surface and a light exit surface.
A semiconductor waveguide type polarizing beam splitter is completed.
次にこの実施例の半導体導波路型偏光ビームスプリッタ
動作について説明する。作用のところでも述べた力飄I
nGaAs/InPに代表される超格子構造を有する光
導波路は、TEとTMモードの導波光に対して異なる屈
折率の値(それぞれnTE、nTMどする)を示し、混
晶化するとTEとTMモードの導波光に対してほぼ同じ
値(noとする)とる。これらの間には、nTE>no
>nTMの関係が存在するため、第1の先導波路4に入
射した光1のTEモード成分はY分岐部で全反射し第2
の光導波路5に導波され、一方TMモード成分は混晶化
領域14を透過し第3の先導波路6に導波される。TE
とTMモードの導波光に対する混晶化前後の屈折率変化
(それぞれΔnTE=nTF、−no、ΔnTM=no
−nTMである)は、どちらも約4×10−3とおおき
く、Y分岐角は約4°素子長は100μm以下と小型化
が図れ導波路損失として0.1dBが可能である。更に
、本発明の構造では、導波路幅の加工精度は0.5μm
程度で十分である。従って、製作容易で低損失な半導体
導波路型偏光ビームスプリッタが実現できる。Next, the operation of the semiconductor waveguide type polarizing beam splitter of this embodiment will be explained. Rikatsu I mentioned in the section on action.
An optical waveguide with a superlattice structure represented by nGaAs/InP exhibits different refractive index values (nTE, nTM, etc.) for guided light in TE and TM modes, and when mixed crystal, it exhibits different refractive index values for guided light in TE and TM modes. It takes almost the same value (set to no) for the guided light. Between these, nTE>no
>nTM exists, the TE mode component of the light 1 incident on the first leading waveguide 4 is totally reflected at the Y branch, and the second
On the other hand, the TM mode component is transmitted through the mixed crystal region 14 and guided to the third leading waveguide 6. T.E.
and refractive index changes before and after mixed crystallization for guided light in TM mode (ΔnTE=nTF, -no, ΔnTM=no, respectively)
-nTM) are both large, approximately 4×10 −3 , and the Y branch angle is approximately 4°, and the element length is 100 μm or less, allowing for miniaturization and a waveguide loss of 0.1 dB. Furthermore, in the structure of the present invention, the processing accuracy of the waveguide width is 0.5 μm.
It is enough. Therefore, it is possible to realize a semiconductor waveguide type polarizing beam splitter that is easy to manufacture and has low loss.
尚、上記実施例に於いては寸法例も示したが、結晶成長
や混晶化及びエツチングの様子は成長法・条件などで大
幅に変化するからそれらと共に適切な寸法を採用すべき
ことは言うまでもない。半導体導波路型偏光ビームスプ
リッタの材料としては、InGaAs(P)/InP系
につき説明したが、これに限定されるものではなく 、
InGaAs/InAlAs系、GaAs/GaAlA
s系の材料でもよく、超格子の混晶化の方法としては、
ギャップアニール混晶化法を用いたが、Zn、 Cdな
どの不純物拡散法、Si、H等のイオン注入法を用いて
もよい。Y分岐導波路の7字の形や分岐角、混晶化領域
も必要に応じて自由に変形できる。混晶化領域で、一方
のモードのみ反射され、他方は透過し、それぞれ導波さ
れるようにすれば良い。Incidentally, in the above embodiments, size examples are also shown, but since the appearance of crystal growth, mixed crystal formation, and etching vary greatly depending on the growth method and conditions, it goes without saying that appropriate dimensions should be adopted. stomach. Although InGaAs(P)/InP has been described as the material for the semiconductor waveguide type polarizing beam splitter, it is not limited to this.
InGaAs/InAlAs system, GaAs/GaAlA
S-based materials may also be used, and the method of mixed crystallization of the superlattice is as follows:
Although the gap annealing mixed crystallization method is used, a method of impurity diffusion such as Zn, Cd, etc., or an ion implantation method of Si, H, etc. may also be used. The shape of the figure 7, the branching angle, and the mixed crystal region of the Y-branch waveguide can be freely modified as necessary. In the mixed crystal region, only one mode may be reflected, the other mode may be transmitted, and each mode may be guided.
(発明の効果)
以上詳細に説明したように、本発明によれば製作容易で
低損失な半導体導波路型偏光ビームスプリッタが得られ
、コヒーレント光通信システム等に用いられる将来の半
導体光集積回路の実現に貢献すること犬である。(Effects of the Invention) As explained in detail above, according to the present invention, a semiconductor waveguide type polarizing beam splitter that is easy to manufacture and has low loss can be obtained, and it can be used for future semiconductor optical integrated circuits used in coherent optical communication systems and the like. It is the dog that contributes to the realization.
第1図(a)は本発明の実施例の主要部を示す半導体導
波路型偏光ビームスプリッタの平面図、第1図化)は第
1図(a)のA−B線断面図である。
図に於て、
1・・・入射光、2・・・出射光1(TEモード)、3
・・・出射光2(TMモード)、4・・・第1の先導波
路、5・・・第2の先導波路、6川第3の先導波路、1
0・・・InP半導体基板、
11・・・InPからなる第2のクラッド層、12−I
nGaAs(P)/InP超格子からなる光ガイド層、
13・・・InPからなる第2のクラッド層、14・、
・混晶化領域、15・・・先導波路である。FIG. 1(a) is a plan view of a semiconductor waveguide type polarizing beam splitter showing the main part of an embodiment of the present invention, and FIG. 1(a) is a sectional view taken along the line AB in FIG. 1(a). In the figure, 1...Incoming light, 2...Outgoing light 1 (TE mode), 3
... Outgoing light 2 (TM mode), 4... First leading wave path, 5... Second leading wave path, 6th river third leading wave path, 1
0... InP semiconductor substrate, 11... Second cladding layer made of InP, 12-I
a light guide layer made of nGaAs(P)/InP superlattice;
13... Second cladding layer made of InP, 14...
-Mixed crystal region, 15... Leading waveguide.
Claims (1)
光ガイド層と前記光ガイド層より屈折率が低いクラッド
層とから構成され、前記光ガイド層の超格子構造がY分
岐部の一部で混晶化し消失していることを特徴とする半
導体偏光ビームスプリッタ。A Y-branch optical waveguide on a semiconductor substrate is composed of an optical guide layer having a superlattice structure and a cladding layer having a lower refractive index than the optical guide layer, and the superlattice structure of the optical guide layer is a part of the Y-branch. A semiconductor polarizing beam splitter characterized in that it becomes a mixed crystal and disappears.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18633990A JPH0473606A (en) | 1990-07-13 | 1990-07-13 | Semiconductor polarizing beam splitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18633990A JPH0473606A (en) | 1990-07-13 | 1990-07-13 | Semiconductor polarizing beam splitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0473606A true JPH0473606A (en) | 1992-03-09 |
Family
ID=16186624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18633990A Pending JPH0473606A (en) | 1990-07-13 | 1990-07-13 | Semiconductor polarizing beam splitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0473606A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100364761B1 (en) * | 2000-06-02 | 2002-12-16 | 엘지전자 주식회사 | A polarization splitter in electro-optic polymer and method for fabricating the same |
KR101371832B1 (en) * | 2012-09-25 | 2014-03-12 | 한국과학기술원 | Optical device using semiconductor |
-
1990
- 1990-07-13 JP JP18633990A patent/JPH0473606A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100364761B1 (en) * | 2000-06-02 | 2002-12-16 | 엘지전자 주식회사 | A polarization splitter in electro-optic polymer and method for fabricating the same |
KR101371832B1 (en) * | 2012-09-25 | 2014-03-12 | 한국과학기술원 | Optical device using semiconductor |
WO2014051208A1 (en) * | 2012-09-25 | 2014-04-03 | 한국과학기술원 | Optical device using semiconductor |
CN104662456A (en) * | 2012-09-25 | 2015-05-27 | 韩国科学技术院 | Optical device using semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soldano et al. | Mach-Zehnder interferometer polarization splitter in InGaAsP/InP | |
US5838844A (en) | Integrated optical circuit comprising a polarization convertor | |
CA1306629C (en) | Waveguide type optical device | |
US5127081A (en) | Optical branching waveguide | |
US7085453B2 (en) | Optical functional device and optical module | |
US20020076133A1 (en) | Guided wave optical switch based on an active semiconductor amplifier and a passive optical component | |
JPS60134219A (en) | Optical switch | |
US20090180731A1 (en) | Photonic coupler | |
JP2002540470A (en) | Optical crosspoint switch using vertically coupled waveguide structures | |
US5396365A (en) | Polarization-independent optical device and method for polarization-independent processing of a signal | |
Benson | Etched-wall bent-guide structure for integrated optics in the III-V semiconductors | |
CA2304804C (en) | Tightly curved digital optical switches | |
JPH0473606A (en) | Semiconductor polarizing beam splitter | |
JP3104798B2 (en) | Integrated optical coupler and method of manufacturing the same | |
JP3225819B2 (en) | Waveguide type optical branching device | |
JP2965011B2 (en) | Semiconductor optical device and method of manufacturing the same | |
JP2004191954A (en) | Optical function element and optical module | |
Van Roijen et al. | Over 15 dB gain from a monolithically integrated optical switch with an amplifier | |
KR930010131B1 (en) | Tapered semiconductor waveguides and method of making same | |
JPH04283704A (en) | Semiconductor light guide | |
JPH1078521A (en) | Semiconductor polarization rotating element | |
Sugimoto et al. | Fabrication and characterization of photonic crystal-based symmetric Mach-Zehnder (PC-SMZ) structures based on GaAs membrane slab waveguides | |
JP2897371B2 (en) | Semiconductor waveguide polarization controller | |
Cho et al. | Improved Extinction Ratios for Both Cross and Bar States Using Two-Section Ultra Short Vertical Directional Couplers | |
JPH04115237A (en) | Semiconductor optical integrated circuit |