JPH02207215A - Multi-branch optical device and beam splitter holder - Google Patents

Multi-branch optical device and beam splitter holder

Info

Publication number
JPH02207215A
JPH02207215A JP2817189A JP2817189A JPH02207215A JP H02207215 A JPH02207215 A JP H02207215A JP 2817189 A JP2817189 A JP 2817189A JP 2817189 A JP2817189 A JP 2817189A JP H02207215 A JPH02207215 A JP H02207215A
Authority
JP
Japan
Prior art keywords
light
beam splitter
half mirror
mirror
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2817189A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kuriyama
勝裕 栗山
Koji Funemi
浩司 船見
Yuji Uesugi
雄二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2817189A priority Critical patent/JPH02207215A/en
Publication of JPH02207215A publication Critical patent/JPH02207215A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct variance in the branch light intensity of a half-mirror variably and to branch beam intensity at a uniform rate by slanting the reflecting surface of the beam splitter specifically to the optical axis of incident light and also rotating the reflecting surface of the beam splitter around the optical axis of the incident light. CONSTITUTION:The device consists of dielectric multi-layered thin film half- mirrors 7-9 for 45 deg. reflection and beam splitter holders 10-12 which hold the half-mirrors respectively. Then the polarization coordinates (S-P system) of the half-mirror 8 are rotated by an angel PSI to the polarization coordinates (s-p system) of the half-mirror 7 and then the apparent S-polarized component and P-polarized component of light 17 incident on the half-mirror 8 become equal, so that reflected light 19 and transmitted light 20 become equal in beam intensity. Namely, the beam splitter holder 11 is rotated to the beam splitter holder 10 and fixed with an adjusting ring 14 where the reflected light 19 and transmitted light 20 become equal in beam intensity. Consequently, circular polarized incident light 16 can be branched in many directions while the beam diameters and energy distributions are equalized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光等を分岐する多分岐装置及びそれに
用いるビームスプリッタホルダに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multi-branching device for branching laser light, etc., and a beam splitter holder used therein.

従来の技術 近年、レーザ発振器の大出力化に伴い、レーザ光を複数
のレーザ光に分岐して、同時に多数の加工を行う方法が
多用されている。レーザ光を分岐する場合、一般に、ビ
ーム強度1/2反射、1/2透過するビームスプリッタ
(通常・/’%−フミラー:以後、ハーフミラ−と略す
)が用いられている。このハーフミラ−の反射面をレー
ザ光の光軸に対して45度傾けることにより、透過光と
反射光とのビーム径、ビーム強度、エネルギ分布を同一
にして分岐している。
2. Description of the Related Art In recent years, with the increase in the output of laser oscillators, a method of branching a laser beam into a plurality of laser beams and simultaneously performing a large number of processes has been frequently used. When splitting a laser beam, a beam splitter (usually referred to as a half mirror hereinafter) that reflects 1/2 of the beam intensity and transmits 1/2 of the beam intensity is generally used. By tilting the reflecting surface of this half mirror at 45 degrees with respect to the optical axis of the laser beam, the transmitted light and the reflected light are split with the same beam diameter, beam intensity, and energy distribution.

ハーフミラ−は、金属薄膜もしくは誘電体多層薄膜を真
空蒸着により透明基板上に形成したものを用いる。
The half mirror used is one in which a metal thin film or a dielectric multilayer thin film is formed on a transparent substrate by vacuum deposition.

金属薄膜ハーフミラ−は、入射光に対して反射光および
透過光とも偏光成分の変化は少ないが、レーザ光の吸収
が数%と大きいためレーザ光による損傷が生し易く、大
出力レーザ光のノλ−フミラーとしてはイ吏用されない
Metal thin film half mirrors have little change in the polarization components of both reflected and transmitted light with respect to incident light, but because they absorb laser light as high as several percent, they are easily damaged by laser light, and are susceptible to damage from high-power laser light. It is not used as a λ-humirar.

一方、誘電体多層薄膜ハーフミラ−の場合、入射光に対
して反射光および透過光の偏光成分は変化する。つまり
、反射光は入射光に比へS偏光成分の割合が多くP偏光
成分の割合が少ない。また、透過光は入射光に比へP偏
光成分の割合が多くS偏光成分の割合が少ない。そのた
め、誘電体多層薄膜ハーフミラ−は入射光を円偏光と仮
定し、反射光のP偏光とS偏光との和が、透過光のP偏
光とS偏光との和とに一致するように誘電体多層薄膜を
設計・蒸着している。
On the other hand, in the case of a dielectric multilayer thin film half mirror, the polarization components of reflected light and transmitted light change with respect to the incident light. In other words, the reflected light has a higher proportion of the S-polarized light component than the incident light, and a smaller proportion of the P-polarized light component. In addition, the transmitted light has a higher proportion of the P polarized light component than the incident light, and a smaller proportion of the S polarized light component. Therefore, the dielectric multilayer thin film half mirror assumes that the incident light is circularly polarized light, and uses a dielectric so that the sum of the P-polarized light and S-polarized light of the reflected light matches the sum of the P-polarized light and S-polarized light of the transmitted light. We design and deposit multilayer thin films.

第2図は円偏光の入射光がハーフミラ−により分岐され
た場合の、反射光および透過光の偏光成分を示す一例で
ある。すなわち、透過光および反射光には偏光成分にか
たよりができるが、ビーム強度は等しい。また、レーザ
光の吸収は1%以下と小さくできるため、大出力のレー
ザ光のハーフミラ−として誘電体多層薄膜ハーフミラ−
が使用される。
FIG. 2 is an example showing the polarization components of reflected light and transmitted light when circularly polarized incident light is split by a half mirror. That is, although the transmitted light and reflected light have biased polarization components, their beam intensities are equal. In addition, since the absorption of laser light can be reduced to less than 1%, dielectric multilayer thin film half mirrors can be used as half mirrors for high-output laser light.
is used.

レーザ光を3分岐以上に分岐する場合は、誘電体多層薄
膜ハーフミラ−(以後、ハーフミラ−と略す)により分
岐された光を、再びハーフミラ−を用いて分岐している
When laser light is branched into three or more branches, the light branched by a dielectric multilayer thin film half mirror (hereinafter abbreviated as half mirror) is branched again using a half mirror.

以下図面を参照しながら上述した従来のハーフミラ−に
よるレーザ光の多分岐の方法について説明する。第4図
は従来のハーフミラ−によるレーザ光の多分岐の一例で
ある。第4図において、31は発振器から出力されたレ
ーザ光で、32,33゜34はレーザ光を分岐させるた
めのハーフミラ−である。35,36,37.38は、
分岐されたレーザ光のビーム強度を一致させるための減
光フィルタ(NDフィルタ)である。
Hereinafter, a method of multi-branching a laser beam using the above-mentioned conventional half mirror will be explained with reference to the drawings. FIG. 4 is an example of multi-branching of laser light using a conventional half mirror. In FIG. 4, 31 is a laser beam output from an oscillator, and 32, 33 and 34 are half mirrors for branching the laser beam. 35, 36, 37.38 are
This is a neutral density filter (ND filter) for matching the beam intensities of the branched laser beams.

第4図において、発振器から出力されたレーザ光31は
、ハーフミラ−32により反射光IRと透過光1Tに2
分岐される。ハーフミラ−32により分岐された反射光
IRはハーフミラ−33により、同一平面上で透過光I
RIおよび反射光IRRに2分岐される。ハーフミラ−
32により分岐された透過光1Tはハーフミラ−34に
より、同一平面」二で透過光ITTおよび反射光ITR
に2分岐される。ところが、同一平面上てレーザ光を4
−分岐した場合、分岐光IRT、IRR,]、TT。
In FIG. 4, a laser beam 31 output from an oscillator is divided into reflected light IR and transmitted light 1T by a half mirror 32.
Branched out. The reflected light IR split by the half mirror 32 is split into the transmitted light I by the half mirror 33 on the same plane.
The light is branched into RI and reflected light IRR. half mirror
The transmitted light 1T branched by 32 is split by a half mirror 34 into transmitted light ITT and reflected light ITR on the same plane.
It is divided into two branches. However, when four laser beams are emitted on the same plane,
- If branched, the branched light IRT, IRR, ], TT.

]、TTのビーム強度は必ずしも一致しない。これは次
の理由による。
], the beam intensities of TT do not necessarily match. This is due to the following reason.

まず、発振器から出力されたレーザ光31を円偏光と仮
定し、ハーフミラ−32,33,34を例えば第2図に
示す特性のものを用いた場合、ハーフミラ−32により
分岐された反射光IRおよび透過光ITの偏光成分は、 第2図より、 反射光]、R:2/3 (S)+1./3 (P)透過
光IT 、1/3 (S) +2/3 (P)となる。
First, assuming that the laser beam 31 output from the oscillator is circularly polarized, and using the half mirrors 32, 33, and 34 with the characteristics shown in FIG. 2, for example, the reflected light IR and From FIG. 2, the polarization component of the transmitted light IT is: Reflected light], R: 2/3 (S) + 1. /3 (P) Transmitted light IT becomes 1/3 (S) + 2/3 (P).

ここで、(S)および(P)はレーザ光のS偏光とP偏
光の成分の割合を示す。次に、この反射光IRを同特性
のハーフミラ−33により同一平面上で分岐した場合、 反射光IRR・2/3X2/3 (S) +1/3X1
/3 (P) 透過光IRT: 2/3xl/3 (S)+1、/3X
2/3(P) となる。同様に、ハーフミラ−32により分岐された透
過光ITを同特性のハーフミラ−34により同一平面上
で分岐した場合、 反射光ITR・2/3X 1/3 (S) +1/3x
2/3 (P) 透過光ITT : 2/3x2/3 (S)+2/3x
2/3 (P) となる。ゆえに、分岐光IRT、IRR,ITT。
Here, (S) and (P) indicate the ratio of S-polarized light and P-polarized light components of the laser beam. Next, when this reflected light IR is split on the same plane by a half mirror 33 with the same characteristics, reflected light IRR 2/3X2/3 (S) +1/3X1
/3 (P) Transmitted light IRT: 2/3xl/3 (S)+1, /3X
It becomes 2/3 (P). Similarly, when the transmitted light IT split by the half mirror 32 is split on the same plane by the half mirror 34 with the same characteristics, the reflected light ITR 2/3X 1/3 (S) +1/3x
2/3 (P) Transmitted light ITT: 2/3x2/3 (S)+2/3x
2/3 (P). Therefore, branch light IRT, IRR, ITT.

ITRのビーム強度の比は、4:5M5:4となる。た
だし、ここでは簡単のためハーフミラ−裏面ての光の反
射はないものとしている。
The ITR beam intensity ratio is 4:5M5:4. However, here, for simplicity, it is assumed that there is no reflection of light from the back surface of the half mirror.

さらに、発振器から出力されたレーザ光31を円偏光と
仮定したが、この偏光成分が発振器の出力の変化等によ
り変化する場合、分岐光IRT。
Furthermore, although it is assumed that the laser beam 31 output from the oscillator is circularly polarized light, if this polarization component changes due to a change in the output of the oscillator, etc., branched light IRT is generated.

IRR,1,TT、ITRのビーム強度の比は、さらに
変化する。第5図は、第2図に示した特性のハーフミラ
−を用いた場合の、発振器から出力されたレーザ光31
の偏光成分の変化に対する分岐光IRT、IRR,IT
T、ITRのビーム強度の割合を計算により求めたグラ
フである。
The ratio of the beam intensities of IRR,1, TT and ITR is further varied. FIG. 5 shows the laser beam 31 output from the oscillator when a half mirror with the characteristics shown in FIG. 2 is used.
Branched light IRT, IRR, IT for changes in polarization component of
It is a graph obtained by calculation of the ratio of beam intensity of T and ITR.

また、以上はハーフミラ−の設計値より求めた分光強度
の割合であるが、実際には誘電体多層薄膜の膜厚のバラ
ツキ等により分光強度の割合は計算値と誤差が生しる。
Further, the above is the ratio of spectral intensity determined from the design value of the half mirror, but in reality, the ratio of spectral intensity will differ from the calculated value due to variations in the film thickness of the dielectric multilayer thin film.

レーザ加工において、ビーム強度の変化により加工状態
も変化する。そこで、レーザ光を多分岐する場合分岐光
のビーム強度の均等性が要求される。この問題の対策と
して、現状では、分岐光IRT。
In laser processing, the processing state also changes due to changes in beam intensity. Therefore, when a laser beam is branched into multiple branches, uniformity of the beam intensity of the branched lights is required. Currently, as a countermeasure to this problem, branch optical IRT is used.

IRR,ITT、ITRのあとにそれぞれ減光フィルタ
35.36,37.38を選択挿入して均等なビーム強
度39,40,44.42を得ている。
Neutral density filters 35, 36, 37, 38 are selectively inserted after IRR, ITT, and ITR, respectively, to obtain uniform beam intensities 39, 40, 44, 42.

発明が解決しようとする課題 しかしながら、分岐が多分岐になるほど分岐光のバラツ
キは大きくなり、このバラツキを減光フィルタにて補正
した場合、ビーム強度の損失も大きいものとなる。たと
えば、第4−図に示ず4分岐光学系では、損失が10%
以上になる。さらに、高出力レーザ光の分岐においては
、レーザ光の吸収により減光フィルタの損傷が起こる。
Problems to be Solved by the Invention However, as the number of branches increases, the variation in the branched light increases, and when this variation is corrected with a neutral density filter, the loss in beam intensity also increases. For example, in a four-branch optical system (not shown in Figure 4), the loss is 10%.
That's all. Furthermore, when branching high-power laser light, damage to the neutral density filter occurs due to absorption of the laser light.

本発明は上記問題に鑑み、ハーフミラ−の分岐光強度の
バラツキを可変に補正して、均等な割合でビーム強度を
分岐し、かつ、ビーム強度の損失を低減できる多分岐光
学装置を提供するものである。
In view of the above problems, the present invention provides a multi-branching optical device that can variably correct variations in the intensity of branched light of a half mirror, branch the beam intensity at an even ratio, and reduce the loss of beam intensity. It is.

課題を解決するための手段 上記課題を解決するため、本発明の多分岐光学装置は、
ビームスプリッタの反射面が入射光の光軸に対して45
度の傾きを持ち、かつビームスプリッタの反射面が入射
光の光軸を中心軸として回転できる構造を有することを
特徴とするものである。
Means for Solving the Problems In order to solve the above problems, the multi-branching optical device of the present invention includes:
The reflective surface of the beam splitter is at 45° with respect to the optical axis of the incident light.
The beam splitter is characterized by having a structure in which the reflecting surface of the beam splitter can be rotated about the optical axis of the incident light.

又、本発明のビームスプリッタホルダは、2つの円筒の
一方が他の円筒の側面に対しそれぞれの円筒の中心軸が
直角になるように接合されると共に、接合部内側の円筒
側面は空洞とされ、かつ2つの円筒の中心軸の交点上に
反射面が2つの円筒の中心軸と45度の角度となるよう
にビームスプリッタが保持されたことを特徴とするもの
である。
Further, in the beam splitter holder of the present invention, one of the two cylinders is joined to the side surface of the other cylinder so that the central axis of each cylinder is perpendicular to the side surface of the other cylinder, and the side surface of the cylinder inside the joint part is made hollow. , and the beam splitter is held at the intersection of the central axes of the two cylinders so that the reflecting surface forms an angle of 45 degrees with the central axes of the two cylinders.

作   用 本発明は上記のように構成により、入射光の偏向成分の
変化に応じてビームスプリッタの反射面を回転させるこ
とにより、前記ビームスプリッタの反射光と透過光との
ビーム径、ビーム強度、エネルギ分布を同一にして出力
比率を調節でき、したがって分岐光強度のバラツキを可
変に補正して、均等な割合でビーム強度を分岐し、かつ
ビーム強度の損失を低減できる。
Effect of the Invention With the above-described configuration, the present invention rotates the reflecting surface of the beam splitter according to changes in the polarization component of the incident light, thereby changing the beam diameter, beam intensity, and The energy distribution can be made the same and the output ratio can be adjusted, so variations in the intensity of the branched light can be variably corrected, the beam intensity can be split at an even ratio, and the loss of the beam intensity can be reduced.

又、本発明のビームスプリッタホルダを接合することに
より、上記多分岐光学装置を簡単に構成することができ
る。
Further, by joining the beam splitter holder of the present invention, the multi-branch optical device described above can be easily constructed.

実施例 以下本発明の一実施例の多分岐光学装置について、図面
を参照しながら説明する。第1図は本発明における多分
岐光学装置の一実施例を示す。第1図(a)は多分岐光
学装置を構成する単位体であるビームスプリッタホルダ
であり、第1図(b)は第1図(a)のビームスプリッ
タホルダを3個組合せてレーザ光を4分岐できる多分岐
光学装置を構成したものである。
EXAMPLE Hereinafter, a multi-branching optical device according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of a multi-branching optical device according to the present invention. Fig. 1(a) shows a beam splitter holder which is a unit that constitutes a multi-branching optical device, and Fig. 1(b) shows a beam splitter holder that is a unit that constitutes a multi-branching optical device. This is a multi-branching optical device that can branch.

第1図(a)において、1は45度反射用誘電体多層薄
膜ハーフミラ−(ビームスプリッタ)であり、2は2つ
の円筒の一方が他の円筒の側面に対しそれぞれの円筒の
中心軸が直角になるように接合されると共に、接合部内
側の円筒側面が空洞とされ、かつ、2つの円筒の中心軸
の交点上にハーフミラ−1の反射面を2つの円筒の中心
軸と45度の角度で保持したビームスプリッタホルダで
ある。3はハーフミラ−1を保持する円筒の中心軸」二
に入射する入射光である。4はハーフミラ−1により分
岐された透過光であり、同円筒の中心軸に平行上に進む
。5はハーフミラ−1により分岐された反射光であり、
他方の円筒の中心軸」−を進むものである。また、6は
ハーフミラ−1を保持する円筒の中心軸を入射光の光軸
と一致させ、かつ入射光の光軸を中心軸として回転位置
を任意に変えて固定するため、円筒の一端に設けられた
調節リングである。入射光3はハーフミラ−1により2
分岐されるが、ハーフミラ−1の反射面は入射光3と4
5度の角度であるため、透過光4と反射光5とのビーム
径、ビーム強度、エネルギ分布は同一になる。
In Fig. 1(a), 1 is a 45-degree reflective dielectric multilayer thin film half mirror (beam splitter), and 2 is two cylinders, one of which has its central axis perpendicular to the side surface of the other cylinder. At the same time, the side surface of the cylinder inside the joint part is made hollow, and the reflective surface of the half mirror 1 is placed at the intersection of the central axes of the two cylinders at a 45 degree angle with the central axes of the two cylinders. This is the beam splitter holder held by the holder. Reference numeral 3 denotes incident light that enters the central axis ``2'' of the cylinder holding the half mirror 1. Reference numeral 4 denotes transmitted light that is split by the half mirror 1, and travels parallel to the central axis of the cylinder. 5 is the reflected light branched by the half mirror 1;
It moves along the center axis of the other cylinder. Further, 6 is provided at one end of the cylinder in order to align the central axis of the cylinder holding the half mirror 1 with the optical axis of the incident light, and to fix it by changing the rotational position arbitrarily with the optical axis of the incident light as the central axis. Adjustment ring. Incident light 3 is converted into 2 by half mirror 1.
However, the reflective surface of half mirror 1 splits the incident light beams 3 and 4.
Since the angle is 5 degrees, the transmitted light 4 and the reflected light 5 have the same beam diameter, beam intensity, and energy distribution.

次に、第1図(a)のビームスプリッタホルダを3個組
合せてレーザ光を4分岐する様にした多分岐光学装置を
第1図(b)を用いて説明する。第1図(1))におい
て、7,8.9は45度反射用誘電体多層薄膜ハーフミ
ラ−であり、10,11.12はそれぞれハーフミラ−
7,8,9を保持した第1図(a)で示したビームスプ
リッタホルダである。ビームスプリッタホルダ11はビ
ームスプリッタホルダ10の反射光側の円筒と、ビーム
スプリッタホルダ11の調節リング14により接合され
、また、回転できるものである。ビームスプリッタホル
ダ12はビームスプリッタホルダ10の透過光側の円筒
と、ビームスプリッタホルダ12の調節リング15によ
り接合され、また回転できるものである。16,17.
18はそれぞれハーフミラ−7の入射光2反射光、透過
光である。]9゜20はそれぞれハーフミラ−8の反射
光および透過光であり、21.22はそれぞれハーフミ
ラ−9の反射光および透過光である。
Next, a multi-branching optical device in which three beam splitter holders shown in FIG. 1(a) are combined to split a laser beam into four branches will be described with reference to FIG. 1(b). In FIG. 1 (1)), 7, 8.9 are dielectric multilayer thin film half mirrors for 45-degree reflection, and 10, 11.12 are half mirrors, respectively.
This is the beam splitter holder shown in FIG. 1(a) holding the beams 7, 8, and 9. The beam splitter holder 11 is connected to the cylinder on the reflected light side of the beam splitter holder 10 by an adjustment ring 14 of the beam splitter holder 11, and is rotatable. The beam splitter holder 12 is connected to the cylinder on the transmitted light side of the beam splitter holder 10 by an adjustment ring 15 of the beam splitter holder 12, and is rotatable. 16,17.
Reference numerals 18 denote incident light 2, reflected light, and transmitted light of the half mirror 7, respectively. ]9.20 are the reflected light and transmitted light of the half mirror 8, respectively, and 21.22 are the reflected light and transmitted light of the half mirror 9, respectively.

以下、本実施例の分岐原理について説明する。The branching principle of this embodiment will be explained below.

入射光16はハーフミラ−7により反射光17と透過光
18に分岐される。ハーフミラ−7を例えば第2図に示
す特性のものを用い、入射光17が円偏光と仮定した場
合、反射光17の偏光成分は 反射光17.2/3 (S)+1/3 (P)これを電
解ベクトル座標で示すと第3図のようになる。第3図に
おいて、座標系s−pはハーフミラ−7の偏光の座標を
表わし、OAはS偏光の電解ベクトル、OBはP偏光の
電解ベクトル、OCはS偏光とP偏光の合成電解ベクト
ルを表わす。
Incident light 16 is split by half mirror 7 into reflected light 17 and transmitted light 18. For example, if the half mirror 7 has the characteristics shown in Fig. 2 and the incident light 17 is assumed to be circularly polarized, the polarization component of the reflected light 17 is the reflected light 17.2/3 (S) + 1/3 (P) This is shown in Fig. 3 using electrolytic vector coordinates. In Fig. 3, the coordinate system s-p represents the coordinates of polarized light of the half mirror 7, OA represents the electrolytic vector of S-polarized light, OB represents the electrolytic vector of P-polarized light, and OC represents the combined electrolytic vector of S-polarized light and P-polarized light. .

また、回転角θは、 tanθ=1/2 となる。ここでtanθ−1なるように座標軸をψだけ
回転しその場合の座標系をS−Pとすると、座標系S−
Pから見た反射光17のS偏光成分とP偏光成分は等し
くなる。すなわち、第1図(b)において、ハーフミラ
−8の偏光座標(S−P系)をハーフミラ−7の偏光座
標(s−p系〉に対して角度ψだけ回転すれば、ハーフ
ミラ−8に対する入射光17の見かけ上のS偏光成分と
P偏光成分は等しくなり、反射光]9および透過光20
のビーム強度は等しくなる。つまり、ビームスプリッタ
ホルダ11をビームスプリッタホルダ10に対して回転
させ、反射光19と透過光20のビーム強度が等しくな
るところで調節リング14にて固定すればよい。同様の
原理で、ビームスプリッタホルダ12の調節リング15
によりビームスプリッタホルダ10に調節し固定するこ
とにより分岐光21および22のビーム強度を等しくて
きる。ところで、ハーフミラ−7の透過光はハーフミラ
−の厚みのためビームスプリッタホルダ12の円筒中心
軸と光軸がずれるが、調節リングにより調節できる。
Further, the rotation angle θ is tanθ=1/2. Here, if the coordinate axis is rotated by ψ so that tanθ-1 and the coordinate system in that case is S-P, then the coordinate system S-
The S-polarized light component and the P-polarized light component of the reflected light 17 viewed from P are equal. That is, in FIG. 1(b), if the polarization coordinates of the half mirror 8 (SP system) are rotated by an angle ψ with respect to the polarization coordinates of the half mirror 7 (SP system), the incidence on the half mirror 8 is The apparent S-polarized light component and P-polarized light component of the light 17 are equal, and the reflected light]9 and the transmitted light 20
The beam intensities of will be equal. That is, the beam splitter holder 11 may be rotated relative to the beam splitter holder 10 and fixed using the adjustment ring 14 at a point where the beam intensities of the reflected light 19 and the transmitted light 20 become equal. On a similar principle, the adjusting ring 15 of the beam splitter holder 12
By adjusting and fixing it to the beam splitter holder 10, the beam intensities of the split lights 21 and 22 can be made equal. Incidentally, due to the thickness of the half mirror, the optical axis of the light transmitted through the half mirror 7 is misaligned with the cylindrical center axis of the beam splitter holder 12, but this can be adjusted using an adjustment ring.

発明の効果 以上のように本発明は、ビームスプリッタの反射面が入
射光の光軸に対して45度の傾きを持ち、かつビームス
プリッタの反射面が入射光の光軸を中心軸として回転で
きる構造を有することにより、円偏光の入射光をビーム
径、エネルギ分布を同一にして多分岐でき、かつ減光フ
ィルタを用いないためビームの損失を低減でき、ビーム
強度を均一に多分岐できる。
Effects of the Invention As described above, in the present invention, the reflective surface of the beam splitter has an inclination of 45 degrees with respect to the optical axis of the incident light, and the reflective surface of the beam splitter can rotate around the optical axis of the incident light. By having this structure, the incident circularly polarized light can be branched into multiple branches with the same beam diameter and energy distribution, and since a neutral density filter is not used, beam loss can be reduced, and the beam intensity can be uniformly split into multiple branches.

さらに、誘電体多層薄膜の膜厚のバラツキ等によるハー
フミラ−分光強度の割合を補正できるだけでなく、同一
のハーフミラ−により反射光と透過光との出力比率も調
節できる。
Furthermore, not only can the ratio of half mirror spectral intensity due to variations in the film thickness of the dielectric multilayer thin film be corrected, but also the output ratio of reflected light and transmitted light can be adjusted using the same half mirror.

さらに、多分岐光学装置の入射光が円偏光の場合に限ら
ず、円偏光以外の場合も利用でき、特に入射光たるレー
ザビームの偏光成分が出力の変化等により変化する場合
に効果的に利用できる。
Furthermore, it can be used not only when the incident light of the multi-branching optical device is circularly polarized light, but also when it is other than circularly polarized light, and is particularly effective when the polarization component of the laser beam that is the incident light changes due to changes in output, etc. can.

又、本発明のビームスプリッタホルダを用いると、その
回転調節により簡単に対応できる。
Furthermore, by using the beam splitter holder of the present invention, the rotation can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における多分岐光学装置を示
し、同図(a)は同装置に用いるビームスプリッタホル
ダの斜視図、同図(b)はビームスプリッタホルダを組
合せて構造した多分岐光学装置の斜視図、第2図は円偏
光の入射光がハーフミラ−により分岐された場合の反射
光および透過光の偏光成分の特性図、第3図は電解ベク
)・ル座標ての偏光状態説明図、第4図は従来の多分岐
光学装置の構成図、第5図は従来の多分岐光学装置によ
る分岐光のビーム強度特性図である。 1.7,8.9・・・・・・ハーフミラ−(ビームスプ
リッタ)、2,10,11.12・・・・・・ビームス
プリッタホルダ、3,16・・・・・・入射光、4,1
8・・・・・・透過光、5,17・・・・・・反射光、
19.21・・・・・・反射光、20.22・・・・・
・透過光。 代理人の氏名 弁理士 粟野重孝 はか1名味 第 図 第 図 入#尤の51!!、長 (pm) 第 図 入歓たのS偵えプ凝へ C’10)
FIG. 1 shows a multi-branch optical device according to an embodiment of the present invention, FIG. 1(a) is a perspective view of a beam splitter holder used in the device, and FIG. A perspective view of the branching optical device. Figure 2 is a characteristic diagram of the polarization components of the reflected light and transmitted light when circularly polarized incident light is split by a half mirror. Figure 3 is the polarization at the electrolytic vector) and le coordinates. FIG. 4 is a configuration diagram of a conventional multi-branching optical device, and FIG. 5 is a beam intensity characteristic diagram of branched light by the conventional multi-branching optical device. 1.7, 8.9... Half mirror (beam splitter), 2, 10, 11.12... Beam splitter holder, 3, 16... Incident light, 4 ,1
8...Transmitted light, 5,17...Reflected light,
19.21...Reflected light, 20.22...
·Transmitted light. Agent's name: Patent attorney Shigetaka Awano Haka 1 name number 51! ! , length (pm) Fig. 10.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 color type type form type form form is to be seen by the S.P.C'10)

Claims (2)

【特許請求の範囲】[Claims] (1)ビームスプリッタの反射面が入射光の光軸に対し
て45度の傾きを持ち、かつビームスプリッタの反射面
が入射光の光軸を中心軸として回転できる構造を有する
ことを特徴とする多分岐光学装置。
(1) The reflective surface of the beam splitter is tilted at 45 degrees with respect to the optical axis of the incident light, and the reflective surface of the beam splitter has a structure that can rotate around the optical axis of the incident light. Multi-branch optical device.
(2)2つの円筒の一方が他の円筒の側面に対しそれぞ
れの円筒の中心軸が直角になるように接合されると共に
、接合部内側の円筒側面は空洞とされ、かつ2つの円筒
の中心軸の交点上に反射面が2つの円筒の中心軸と45
度の角度となるようにビームスプリッタが保持されたこ
とを特徴とするビームスプリッタホルダ。
(2) One of the two cylinders is joined so that the central axis of each cylinder is perpendicular to the side surface of the other cylinder, and the side surface of the cylinder inside the joint is hollow, and the center of the two cylinders is The reflective surface is on the intersection of the axes with the central axis of the two cylinders and 45
A beam splitter holder characterized in that the beam splitter is held at an angle of 100 degrees.
JP2817189A 1989-02-07 1989-02-07 Multi-branch optical device and beam splitter holder Pending JPH02207215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2817189A JPH02207215A (en) 1989-02-07 1989-02-07 Multi-branch optical device and beam splitter holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2817189A JPH02207215A (en) 1989-02-07 1989-02-07 Multi-branch optical device and beam splitter holder

Publications (1)

Publication Number Publication Date
JPH02207215A true JPH02207215A (en) 1990-08-16

Family

ID=12241289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2817189A Pending JPH02207215A (en) 1989-02-07 1989-02-07 Multi-branch optical device and beam splitter holder

Country Status (1)

Country Link
JP (1) JPH02207215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736749A1 (en) 2005-06-22 2006-12-27 Fujitsu Limited Light intensity measurement system
JP2016513263A (en) * 2013-02-28 2016-05-12 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Inspection apparatus having an optical channel composed of a plurality of channel elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736749A1 (en) 2005-06-22 2006-12-27 Fujitsu Limited Light intensity measurement system
US7291829B2 (en) 2005-06-22 2007-11-06 Fujitsu Limited Light intensity detector
JP2016513263A (en) * 2013-02-28 2016-05-12 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Inspection apparatus having an optical channel composed of a plurality of channel elements

Similar Documents

Publication Publication Date Title
US4793694A (en) Method and apparatus for laser beam homogenization
US4755027A (en) Method and device for polarizing light radiation
US6704469B1 (en) Polarization beam combiner/splitter
JP2000180785A (en) Optical image formation device
CN108803061A (en) A kind of optical amplifier module folding light path
JP3678120B2 (en) Polarized light irradiation device
JP2006038844A (en) Heterodyne laser interferometer equipped with porro prism for measuring displacement of stage
US6084717A (en) Laser beam splitter
JPH02207215A (en) Multi-branch optical device and beam splitter holder
US6392801B1 (en) Wide-angle rugate polarizing beamsplitter
JPH0489192A (en) Laser beam machine
US6627845B2 (en) Method and apparatus for laser machining using a laser beam
JP3923560B2 (en) Lighting device
EP0285397B1 (en) Cube corner polarizer
JP2610174B2 (en) Optical isolator
RU2176762C2 (en) Combination polarized-radiation source
JPH08222792A (en) Laser amplifier and laser oscillator
JP2500196Y2 (en) Laser annealing device
JPS6262323A (en) Optical isolator
JP2003066375A (en) Device and method for branching laser beam
JPH0264613A (en) Polarization light source
TWI235874B (en) Polarization conversion light pipe device
JPS63259601A (en) Cube corner polarizer
WO1985001590A1 (en) A multiple-path dichroic optical beam splitter
JPH07168011A (en) Optical system including total reflection prism