JPH02207172A - Fuel feeding device - Google Patents

Fuel feeding device

Info

Publication number
JPH02207172A
JPH02207172A JP2747089A JP2747089A JPH02207172A JP H02207172 A JPH02207172 A JP H02207172A JP 2747089 A JP2747089 A JP 2747089A JP 2747089 A JP2747089 A JP 2747089A JP H02207172 A JPH02207172 A JP H02207172A
Authority
JP
Japan
Prior art keywords
fuel
pipes
air
transport pipe
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2747089A
Other languages
Japanese (ja)
Inventor
Mamoru Fujieda
藤枝 護
Takashige Oyama
宜茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2747089A priority Critical patent/JPH02207172A/en
Publication of JPH02207172A publication Critical patent/JPH02207172A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/50Arrangement of fuel distributors, e.g. with means for supplying equal portion of metered fuel to injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To improve the responsiveness of fuel and prevent the nonuniformity of fuel between cylinders by providing an injection valve with multiple injection holes, providing linear transporting pipes connected to suction pipes of individual cylinders, and flying and transporting fuel. CONSTITUTION:When an engine 4 is in operation, air flows in through an air cleaner 10 and is controlled by a throttle valve 2, then it is fed to the engine 4 via suction pipes 6, on the other hand fuel is fed to suction pipes 6 (6a-6d) through an injection valve 1 via transporting pipes 3 (3a-3d). Multiple injection holes 9 (9a-9d) corresponding to the number of cylinders are formed on the nozzle tip 8 of the injection valve 1, and linear transporting pipes 3 are installed for the injection holes 9. The injected fuel is flown in the transporting pipes 3 and fed to the suction pipes 6 respectively. The bypass air is fed to the transporting pipes 3 from a bypass pipe 7 opened at the upstream of the throttle valve 2, and air streams in the same direction as the flying direction of fuel are generated in the transporting pipes 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車の燃料供給装置に係り、特に低コスト
で高いエンジン性能を有する燃料供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel supply system for an automobile, and particularly to a fuel supply system that is low in cost and has high engine performance.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61−237882号に記載のよ
うに、主吸気管をバイパスするバイパス管を設置し、そ
のバイパス管の集合部に燃料を供給し、空気と混合して
混合気を生成し、各気筒に分流して供給している。
As described in Japanese Patent Application Laid-open No. 61-237882, the conventional device installs a bypass pipe that bypasses the main intake pipe, supplies fuel to the gathering part of the bypass pipe, and mixes it with air to form an air-fuel mixture. It is generated and distributed to each cylinder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の装置は、燃料を空気との混合気として輸送す
るため、燃料を微粒化し、気化させ、混合気を生成する
のに時間を要している。また噴射された燃料の一部はバ
イパス管壁に付着し7、液状で輸送されるため、輸送時
間が長くなる欠点を有している。また集合管に供給され
た液状燃料を各気筒に分岐する際、分岐部の形状によっ
ては不均一になり易く、気筒間の空燃比が不均一になり
易い欠点を有していた。
Since the above-mentioned conventional apparatus transports fuel as a mixture with air, it takes time to atomize the fuel, vaporize it, and generate the mixture. In addition, a part of the injected fuel adheres to the bypass pipe wall 7 and is transported in liquid form, which has the disadvantage that the transport time becomes longer. Furthermore, when the liquid fuel supplied to the collecting pipe is branched to each cylinder, it tends to become uneven depending on the shape of the branching part, and the air-fuel ratio between the cylinders tends to become uneven.

本発明の目的は、従来装置の欠点をなくし、輸送時間が
短かく、気筒間の空燃比を均一にすることにある。
The object of the present invention is to eliminate the drawbacks of conventional devices, to shorten transportation time, and to equalize the air-fuel ratio between cylinders.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、噴射弁の噴射孔を気筒数と同数にすると共
に、各輸送管を直線的に配置し、噴射された燃料が輸送
管内を飛しようして輸送されることにより達成される。
The above object is achieved by making the number of injection holes of the injection valve the same as the number of cylinders, arranging each transport pipe in a straight line, and transporting the injected fuel by flying through the transport pipe.

【作用〕[Effect]

燃料は、噴射孔と1対をなす輸送管に直接燃料の圧力を
利用して噴射される。また直射された燃料は、直線的に
配置された輸送管内を飛しようして輸送される。このた
め燃料の各気筒への分配が均一になると共に輸送時間が
短かくなる。
The fuel is directly injected into the transport pipe that is paired with the injection hole using the pressure of the fuel. Furthermore, the directly injected fuel is transported by flying through transport pipes arranged in a straight line. Therefore, the distribution of fuel to each cylinder becomes uniform and the transportation time is shortened.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG. 1 below.

空気は、エアクリーナ10より流入し、絞り弁2により
調節され、吸気管6を通ってエンジン4に供給される。
Air flows in from the air cleaner 10, is regulated by the throttle valve 2, and is supplied to the engine 4 through the intake pipe 6.

燃料は、クランク軸12の回転数信号と絞り弁開度肝1
1の開度信号により制御回路5で噴射時間が演算され、
噴射弁1が開弁され、ノズルチップ8の噴射孔9より各
々の噴射孔に対向して設置されている輸送管3に噴射さ
れる。噴射された燃料は、各々の輸送管内を飛しょう1
゜吸気弁13近くに輸送される。また絞り弁2の上流に
開口したバイパス管7よりバイパス空気が輸送管3に供
給され、輸送管内に燃料の飛しよう方向と同じ方向に空
気の流れを生じさせる。
The fuel is controlled by the rotation speed signal of the crankshaft 12 and the throttle valve opening.
The injection time is calculated in the control circuit 5 based on the opening signal of 1,
The injection valve 1 is opened, and the injector is injected from the injection holes 9 of the nozzle tip 8 into the transport pipe 3 installed facing each injection hole. The injected fuel will fly through each transport pipe.1
° It is transported near the intake valve 13. Also, bypass air is supplied to the transport pipe 3 from a bypass pipe 7 opened upstream of the throttle valve 2, causing an air flow in the transport pipe in the same direction as the direction in which the fuel flies.

第2図に輸送管の断面図を示す。輸送管3a〜3dは、
ノズルチップ8の噴射孔98〜9dと各各対になってい
る。また輸送管3a〜3dの他端はシリンダヘッド21
の吸気弁20a〜20d近くに開口している。噴射孔9
a〜9dより噴射された燃料は、直線的に配置されてい
る各々の輸送管内を輸送管壁面に付着することなく飛し
ようして輸送され、シリンダヘッド21の吸気弁20近
くに供給される。
FIG. 2 shows a cross-sectional view of the transport pipe. The transport pipes 3a to 3d are
Each pair is formed with the injection holes 98 to 9d of the nozzle chip 8. Further, the other end of the transport pipes 3a to 3d is a cylinder head 21.
It opens near the intake valves 20a to 20d. Injection hole 9
The fuel injected from a to 9d is transported within each of the linearly arranged transport pipes without adhering to the transport pipe walls, and is supplied near the intake valve 20 of the cylinder head 21.

第3図に輸送管直径りと噴射孔直径dの比と付着率Xx
の関係を示す。ここでxlは 付着率X i =付着量/供給量     ・・・(1
)である。輸送管長さL=200nmである。なおL=
200nnは輸送管3a、3dの長さにほぼ等しい。空
気速度v&=0は、輸送管内の空気の流れを停止した場
合である。また燃料の噴射速度Vlは、 γ ここで K :定数 Po:噴射圧力 γ :燃料密度 で示される。
Figure 3 shows the ratio of the transport pipe diameter to the injection hole diameter d and the adhesion rate Xx.
shows the relationship between Here, xl is the adhesion rate X i = adhesion amount/supply amount ... (1
). The transport tube length L is 200 nm. Note that L=
200 nn is approximately equal to the length of the transport pipes 3a and 3d. Air velocity v&=0 is the case when the flow of air in the transport pipe is stopped. Further, the fuel injection speed Vl is expressed as γ where K: constant Po: injection pressure γ: fuel density.

第3図において、ya=Qの場合D/d=10より小さ
くなると急にXlが大きくなることがねかった。また、
vlと同じ速度の空気を流した場合は、Xlが小さくな
っている。これは、空気と燃料の相対速度がなくなるた
めである。va=3vzの場合は、Xlが大きくなる。
In FIG. 3, when ya=Q, when D/d became smaller than 10, Xl did not suddenly increase. Also,
When air flows at the same speed as vl, Xl becomes smaller. This is due to the lack of relative velocity between air and fuel. When va=3vz, Xl becomes large.

なおVa=2vzの場合はva=oとほとんど同じであ
った。
Note that when Va=2vz, it was almost the same as when va=o.

以上の方法は、空気速度を変化させて、燃料の速度と同
調させているが、それとは逆に燃圧を変化させて、空気
の速度と同調させても同様の効果がある。
In the above method, the air speed is changed to synchronize with the fuel speed, but the same effect can be obtained by changing the fuel pressure and synchronizing it with the air speed.

第4図に噴射弁開信号と各気筒の吸気タイミングを示す
。噴射弁開信号は、クランク角180゜毎に発生し、N
α1〜Ha 4気筒に燃料が供給される。
FIG. 4 shows the injection valve opening signal and the intake timing of each cylinder. The injection valve opening signal is generated every 180° of crank angle, and
α1~Ha Fuel is supplied to 4 cylinders.

そのため各気筒共に1回の吸気に必要な燃料を4回に分
けて供給される。一方噴射弁開信号を360゜毎に発生
し、1回の吸気に必要な燃料を2回に分けて供給するこ
ともできる。第16図にそのタイミング図を示す。
Therefore, the fuel required for one intake is divided into four parts and supplied to each cylinder. On the other hand, it is also possible to generate the injection valve opening signal every 360 degrees and supply the fuel required for one intake in two parts. FIG. 16 shows the timing diagram.

第5図は本発明の他の実施例である。第5図において、
コレクタ16より吸気管6a〜6dが分岐し、シリンダ
ヘッドにフランジ22を取り付けられる。本実施例は、
燃料の噴射圧力が比較的低く噴射孔dが大きい(d=φ
/nwn)場合の例である。このため輸送管の直径も大
きくなりD=φ10IInである。輸送管の噴射孔側に
は輸送管絞りD′14a〜14dが付加されている。ま
た吸気管6aには案内板23a、吸気管6dには案内板
23dが設置され、輸送管内を飛しようしてきた燃料を
シリンダヘッド内の吸気弁側に案内し、吸気管6a、6
dの壁に付着するのを防止している。
FIG. 5 shows another embodiment of the invention. In Figure 5,
Intake pipes 6a to 6d branch from the collector 16, and a flange 22 is attached to the cylinder head. In this example,
The fuel injection pressure is relatively low and the injection hole d is large (d=φ
/nwn). Therefore, the diameter of the transport pipe also becomes large, and D=φ10IIn. Transport pipe throttles D'14a to 14d are added to the injection hole side of the transport pipe. Further, a guide plate 23a is installed on the intake pipe 6a, and a guide plate 23d is installed on the intake pipe 6d, to guide the fuel that has flown through the transport pipe to the intake valve side in the cylinder head.
This prevents it from adhering to the wall of d.

第6図は、第5図の実施例で輸送管絞りD′と輸送管り
の比D’ /Dを変化させた時の気筒間空燃比と不均一
量ΔA/Fを示した。エンジン回転数Ne=150Or
pm、絞り弁全開(WOT)の場合である。WOTであ
るためバイパス管7よりの空気の供給はない。この空気
供給なしの場合D’ /D=0.4  より急にΔA/
Fが大きくなる。
FIG. 6 shows the inter-cylinder air-fuel ratio and the amount of non-uniformity ΔA/F when the transport pipe restriction D' and the ratio D'/D of the transport pipe are changed in the embodiment shown in FIG. Engine speed Ne=150Or
pm, when the throttle valve is fully open (WOT). Since it is WOT, there is no air supply from the bypass pipe 7. Without this air supply, D' /D = 0.4, and ΔA/
F becomes larger.

また外部より強性的に空気を供給した空気供給ありの場
合は、D’ /Dには影響されず一定値である。なおΔ
A/F=0.5 はこの時の噴射弁1の各噴射孔の不均
一量と同じである。このようにバイパス管より空気の流
入がほとんどない場合は、D’ /Dが0.4  より
大きくなるとΔA/Fが大きくなる。この原因は、輸送
管を吹返してきた混合気が、再度輸送管に流入する時に
不均一に流入するためである。
Furthermore, when air is supplied forcefully from the outside, the value remains constant without being affected by D'/D. Note that Δ
A/F=0.5 is the same as the amount of non-uniformity among the injection holes of the injection valve 1 at this time. In this way, when there is almost no inflow of air from the bypass pipe, when D'/D becomes larger than 0.4, ΔA/F becomes larger. This is because the air-fuel mixture that has blown back through the transport pipe flows unevenly when it flows into the transport pipe again.

第7図に部分負荷時の空気の流れを示す。部分負荷時は
、吸入負圧が大きいため、バスパス管7を通って各輸送
管3a〜3dに流れる。この流れは各々の輸送管に連通
ずる気筒の行程には左右されない。そのため混合気の吹
返しはない。
Figure 7 shows the air flow during partial load. During partial load, since the suction negative pressure is large, it flows through the bus pass pipe 7 to each of the transport pipes 3a to 3d. This flow is independent of the stroke of the cylinder communicating with each transport pipe. Therefore, there is no air-fuel mixture blowback.

第8図はWOTのような吸入負圧が小さい場合の空気の
流れである。バイパス管7より空気はほとんと流入しな
い。今輸送管3cに連通するNα3気筒が吸気行程とす
ると、輸送管3a、3b。
FIG. 8 shows the air flow when the suction negative pressure is small, such as in WOT. Almost no air flows into the bypass pipe 7. Now, if the Nα3 cylinders communicating with the transport pipe 3c are in the intake stroke, the transport pipes 3a and 3b.

3dでは気筒側より空気(混合気)が逆流し、輸送管3
cに流入する。次にNα4気筒が吸気行程になると輸送
管3dに流入する。しかし輸送管3c(3b)の場合は
両側(3b、3d)から供給されるのに対し、3d (
3a)は片側から供給されるため、不均一になる。その
ため、輸送管絞りD′を付加するとその絞り効果により
不均一が改善される。しかし不均一の最大量は2.0近
くであるためφD′を大きくしてもΔA/F=2以上に
はならない。
In 3d, air (air mixture) flows backwards from the cylinder side, and the transport pipe 3
flows into c. Next, when the Nα4 cylinder enters the intake stroke, it flows into the transport pipe 3d. However, in the case of transport pipe 3c (3b), it is supplied from both sides (3b, 3d), whereas 3d (
3a) is supplied from one side, resulting in non-uniformity. Therefore, when the transport pipe throttle D' is added, the non-uniformity is improved due to its throttle effect. However, since the maximum amount of non-uniformity is close to 2.0, even if φD' is increased, ΔA/F will not exceed 2.

第9図は噴射弁1のノズルチップ8の断面図である。弁
体17が弁座18より離れると燃料が燃料通路19に流
入し、噴射孔9より噴射される。
FIG. 9 is a sectional view of the nozzle tip 8 of the injection valve 1. When the valve body 17 separates from the valve seat 18, fuel flows into the fuel passage 19 and is injected from the injection hole 9.

第10図は第9図のA−A’断面図である。噴射孔98
〜9dは放射状に穿孔されている。また噴射孔98〜9
dは、燃料通路19に対し直角方向に穿孔されている。
FIG. 10 is a sectional view taken along line AA' in FIG. Injection hole 98
~9d are radially perforated. In addition, the injection holes 98 to 9
d is bored in a direction perpendicular to the fuel passage 19.

第11図は、噴射弁1の他の実施例である。燃料通路1
9と噴射孔9a〜9dは、同一平面上に穿孔されている
。この場合は、噴射孔9b、9cに燃料通路19よりの
動圧が多くかかる。そのため、噴射孔9b、9cは、噴
射孔9a、9dより小さくする必要がある。
FIG. 11 shows another embodiment of the injection valve 1. Fuel passage 1
9 and the injection holes 9a to 9d are bored on the same plane. In this case, a large amount of dynamic pressure from the fuel passage 19 is applied to the injection holes 9b and 9c. Therefore, the injection holes 9b and 9c need to be smaller than the injection holes 9a and 9d.

第12図は輸送管の他の実施例である。ノズルチーツブ
8と輸送管3a〜3dの間のすきまをなくし、各々の輸
送管を独立にしたものである。そのため輸送管どうしの
混合気の交流がなくなるため、吸入負圧にΔA/Fが影
響されない。
FIG. 12 shows another embodiment of the transport pipe. The gap between the nozzle tube 8 and the transport pipes 3a to 3d is eliminated, and each transport pipe is made independent. Therefore, since there is no exchange of air-fuel mixture between the transport pipes, ΔA/F is not affected by the suction negative pressure.

第13図はV型6気筒の適用例である。コレクタ16よ
り吸気管6a〜6fが分岐している。噴射弁1bより3
方向に燃料が噴射されるため、輸送管3a、3c、3e
と3本ある。
FIG. 13 shows an example of application of a V type 6 cylinder. Inlet pipes 6a to 6f are branched from the collector 16. 3 from injection valve 1b
Since the fuel is injected in the direction, the transport pipes 3a, 3c, 3e
There are three.

第14図は第13図の中心断面図である。噴射弁1a、
lbと2個の噴射弁があり、各々3気筒に燃料を供給す
る。
FIG. 14 is a central sectional view of FIG. 13. injection valve 1a,
There are lb and 2 injectors, each supplying fuel to 3 cylinders.

第15図は第5図のP矢視図である。案内板23dは半
円状である。
FIG. 15 is a view taken along arrow P in FIG. The guide plate 23d has a semicircular shape.

第17図は第7図のA−A’断面である。通路25を付
けて、空気を流すことにより、第7図の3a、3dの燃
料が空気流により3b、3cに流入するのを防止できる
。また第18図のように空気の導入口をノズルチップ8
の先端に開孔することにより、空気の流れが各輸送管3
a、3b。
FIG. 17 is a cross section taken along line AA' in FIG. By providing the passage 25 to allow air to flow, it is possible to prevent the fuel 3a and 3d in FIG. 7 from flowing into 3b and 3c due to the air flow. Also, as shown in Figure 18, connect the air inlet to the nozzle tip 8.
By opening a hole at the tip of each transport pipe 3, the air flow is
a, 3b.

3c、3dで同一にできるため、燃料分配の不均一がな
くなる。
3c and 3d can be made the same, eliminating uneven fuel distribution.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各気筒毎に噴射孔、輸送管を設置した
ため、気筒間の燃料不均一が少なくなる。
According to the present invention, since the injection hole and the transport pipe are provided for each cylinder, fuel non-uniformity between the cylinders is reduced.

また輸送管内を燃料が飛しようして輸送されるため、燃
料の応答が早くなる。
Furthermore, since the fuel is transported while flying through the transport pipe, the response of the fuel becomes faster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は輸送管の断面図、第
3図はD/dとXlの関係を示す実験値を示す図、第4
図は噴射弁開信号と各気筒の吸気行程の関係を示す説明
図、第5図は他の実施例の輸送管の断面図、第6図はD
’ /DとΔA、/Fの関係を示す実験値を示す図、第
7図は部分負荷時の空気の流れを示す説明図、第8図は
WOT時の混合気の流れを示す説明図、第9図、第11
図は噴射弁のノズルチップの断面図、第10図は第9図
のA−A’部を示す図、第12図は輸送管の一部断面図
、第13図は他の実施例の正面図、第14図は第13図
の中心断面図、第15図は第5図のP矢視図、第16図
はタイミング図、第17図、第18図は第7図のA−A
’断面図である。 1・・・噴射弁、2・・・絞り弁、3・・・輸送管、4
・・・エンジン、5・・・制御回路、6・・・吸気管、
7・・・バイパス管、8・・・ノズルチップ、9・・・
噴射孔、13・・・吸気弁、14・・・輸送管絞り、1
5・・・バイパス管絞り。 第3図 ()/圧 高4図 帛 図 ()/D 為8図 応 2口 高10区 右 午 図 來15図 l1lL 3Q−
Fig. 1 is a block diagram of the present invention, Fig. 2 is a sectional view of a transport pipe, Fig. 3 is a diagram showing experimental values showing the relationship between D/d and Xl, and Fig. 4 is a diagram showing experimental values showing the relationship between D/d and Xl.
The figure is an explanatory diagram showing the relationship between the injection valve opening signal and the intake stroke of each cylinder, Figure 5 is a sectional view of the transport pipe of another embodiment, and Figure 6 is D
' A diagram showing experimental values showing the relationship between /D and ΔA, /F, Figure 7 is an explanatory diagram showing the air flow at partial load, Figure 8 is an explanatory diagram showing the air-fuel mixture flow at WOT, Figures 9 and 11
The figure is a cross-sectional view of the nozzle tip of the injection valve, Figure 10 is a view showing the AA' section of Figure 9, Figure 12 is a partial cross-sectional view of the transport pipe, and Figure 13 is a front view of another embodiment. 14 is a central sectional view of FIG. 13, FIG. 15 is a view taken along arrow P in FIG. 5, FIG. 16 is a timing diagram, and FIGS. 17 and 18 are A-A in FIG. 7.
'This is a cross-sectional view. 1... Injection valve, 2... Throttle valve, 3... Transport pipe, 4
...Engine, 5...Control circuit, 6...Intake pipe,
7... Bypass pipe, 8... Nozzle tip, 9...
Injection hole, 13... Intake valve, 14... Transport pipe throttle, 1
5... Bypass pipe restriction. Figure 3 () / Pressure height 4 map () / D Tame 8 Figure 2 Kuchi height 10 section Right horse map Lai 15 Figure l1lL 3Q-

Claims (1)

【特許請求の範囲】 1、複数の噴射孔を有する噴射弁と前記噴射孔と対をな
した輸送管を有し、この輸送管内を燃料を飛しよさせて
輸送するように前記輸送管を直線的に配設したことを特
徴とする燃料供給装置。 2、前記噴射孔の直径dと前記輸送管の直径Dの比D/
dが10以上である第1項記載の燃料供給装置。 3、前記輸送管の噴射孔側に絞りを付けその絞り径D′
と輸送管直径Dの比D′/Dが0.4以下である第1項
記載の燃料供給装置。
[Scope of Claims] 1. An injection valve having a plurality of injection holes and a transport pipe paired with the injection holes, and the transport pipe is configured to transport fuel by flying it through the transport pipe. A fuel supply device characterized by being arranged linearly. 2. Ratio D/ of the diameter d of the injection hole and the diameter D of the transport pipe
2. The fuel supply device according to claim 1, wherein d is 10 or more. 3. A throttle is attached to the injection hole side of the transport pipe, and the diameter of the throttle is D'.
2. The fuel supply device according to claim 1, wherein the ratio D'/D of the diameter D of the transport pipe and the diameter D of the transport pipe is 0.4 or less.
JP2747089A 1989-02-08 1989-02-08 Fuel feeding device Pending JPH02207172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2747089A JPH02207172A (en) 1989-02-08 1989-02-08 Fuel feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2747089A JPH02207172A (en) 1989-02-08 1989-02-08 Fuel feeding device

Publications (1)

Publication Number Publication Date
JPH02207172A true JPH02207172A (en) 1990-08-16

Family

ID=12221999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2747089A Pending JPH02207172A (en) 1989-02-08 1989-02-08 Fuel feeding device

Country Status (1)

Country Link
JP (1) JPH02207172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803053A (en) * 1996-03-23 1998-09-08 Robert Bosch Gmbh Method and arrangement for supplying fuel vapor to an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803053A (en) * 1996-03-23 1998-09-08 Robert Bosch Gmbh Method and arrangement for supplying fuel vapor to an internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6056908B2 (en) Fuel control device for fuel injection system
JPS61226555A (en) Fuel injector/feeder associated with atomizer
EP0144354A1 (en) Apparatus for the uniform distribution of fuel to a multi-cylinder spark ignition engine
US4211191A (en) Fuel supplying device for internal combustion engine
JPH09268923A (en) Fuel supplying device of gas engine
US4470391A (en) Air-fuel mixture intake construction for internal combustion engines
JPH02207172A (en) Fuel feeding device
US2827269A (en) Idle control system
US4259935A (en) Fuel injection type throttle valve
US4462367A (en) Fuel controller for internal combustion engine
JPS63223364A (en) Fuel injection device of gasoline engine
JPS6042352B2 (en) fuel injector
JPS61178548A (en) Accelerating fuel feeding device for compound carburetor
JPS6034769Y2 (en) Exhaust gas recirculation device for fuel-injected engines
US4700666A (en) Induction system for internal combustion engine
JPS6129962Y2 (en)
JP3321861B2 (en) Engine intake system
JPS61212666A (en) Air-fuel supply apparatus of engine
JPH0326831A (en) Intake system structure of engine
JPH0141903Y2 (en)
JPS63309765A (en) Fuel feeding device
JPH022935Y2 (en)
JPS61116065A (en) Inlet device for fuel injection type engine
GB2167126A (en) Mixture-forming device for multicylinder internal combustion engines
JPS6326265B2 (en)