JPH02206797A - Fuel assembly - Google Patents

Fuel assembly

Info

Publication number
JPH02206797A
JPH02206797A JP1028422A JP2842289A JPH02206797A JP H02206797 A JPH02206797 A JP H02206797A JP 1028422 A JP1028422 A JP 1028422A JP 2842289 A JP2842289 A JP 2842289A JP H02206797 A JPH02206797 A JP H02206797A
Authority
JP
Japan
Prior art keywords
fuel
fuel assembly
pins
reactor
fuel pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1028422A
Other languages
Japanese (ja)
Other versions
JPH079473B2 (en
Inventor
Mitsuru Kanbe
満 神戸
Kazuo Haga
一男 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP1028422A priority Critical patent/JPH079473B2/en
Priority to FR9001306A priority patent/FR2642887B1/en
Publication of JPH02206797A publication Critical patent/JPH02206797A/en
Publication of JPH079473B2 publication Critical patent/JPH079473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To flatten the output distribution in a diametral direction by fixing many fuel pins with plural stages of grids in an axial direction, enclosing the pins with an outside cylinder and providing partition walls which partition the fuel pins to the plural regions in the outside cylinder. CONSTITUTION:In this fuel assembly about 10,000 pieces of the fuel pins 1 are fixed apart suitable intervals from each other by means of the grids 6 provided in plural stages in the axial direction in the case of using this fuel assembly in the core of a nuclear reactor for power generation which outputs, for example, 100MW electric power. The mutual interferences between the outside cylinder 8 and the fuel pins 1 and between the partition walls 7 and the fuel pins 1 are, therefore, hardly generated in spite of the expansion during the operation of the reactor. Since the fuel pins 1 are partitioned to plural regions by the outside cylinder 8 and the partition walls 7, the distribution of the flow rate of the coolant for flattening the diametral output distribution is possible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、原子炉、特に出力規模の小さい高速炉に使
用するための燃料集合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fuel assembly for use in a nuclear reactor, particularly a fast reactor with a small output scale.

〈従来の技術〉 従来、高速炉には、第5図に示す構造の燃料集合体が一
般的に使用されている。この一般的な燃料集合体は燃料
ピン1が200〜300本程度まとめられて断面正六角
形の筒状のラッパ管2に収納されている。このラッパ管
2の下端にはエントランスノズル3を備え、このエント
ランスノズル3により冷却材の流量配分が行なわれてい
る。また、上端には燃料取扱いのためのハンドリングヘ
ッド4が備えられている。
<Prior Art> Conventionally, a fuel assembly having the structure shown in FIG. 5 has been generally used in fast reactors. In this general fuel assembly, about 200 to 300 fuel pins 1 are grouped together and housed in a cylindrical wrapper tube 2 with a regular hexagonal cross section. An entrance nozzle 3 is provided at the lower end of the trumpet tube 2, and the entrance nozzle 3 distributes the flow rate of the coolant. Further, a handling head 4 for handling fuel is provided at the upper end.

更に高速炉に使用される燃料集合体としては第6図の構
造のものが知られている。この燃料集・合体は、上記一
般的な燃料集合体からラッパ管2を外し、代りに6本の
支柱5によりエントランスノズル3とハンドリングヘッ
ド4を支持した構造となっ、ている。この剥き出し型の
燃料集合体においては燃料ピン1は軸方向に何段かのグ
リッド6で固定されている。
Further, as a fuel assembly used in a fast reactor, one having the structure shown in FIG. 6 is known. This fuel assembly/assembly has a structure in which the wrapper tube 2 is removed from the above-mentioned general fuel assembly, and the entrance nozzle 3 and handling head 4 are supported by six struts 5 instead. In this exposed type fuel assembly, the fuel pins 1 are fixed in the axial direction by several stages of grids 6.

〈発明が解決しようとする課題〉 上に説明した第5図に示す構造の燃料集合体は、炉心圧
損が8.5Kg/cfと大きく、原子炉運転中に燃料集
合体が膨張し、これによりラッパ管と燃料ピンの相互干
渉(BDI)及び隣接するラッパ管同士の相互干渉(D
D I)が生じてラッパ管が変形し、このラッパ管の変
形が燃料を長寿命化する上での制約条件の一つになって
いるばかりか、放射性物質で汚染された多量のラッパ管
を廃棄しなければならないという問題を有する。
<Problems to be Solved by the Invention> The fuel assembly having the structure shown in FIG. Mutual interference between the trumpet pipe and fuel pin (BDI) and mutual interference between adjacent trumpet pipes (D
D I) occurs and the trumpet tube deforms, and this deformation of the trumpet tube is not only one of the constraints on extending the life of the fuel, but also a large amount of trumpet tubes contaminated with radioactive materials. The problem is that it must be disposed of.

他方、第6図に示す構造の燃料集合体においては炉心へ
の冷却材の流量配分が不可能であり、従って径方向の出
力分布を平坦化する上で不都合であるという問題を有す
る。
On the other hand, the fuel assembly having the structure shown in FIG. 6 has a problem in that it is impossible to distribute the flow rate of coolant to the core, and therefore it is inconvenient to flatten the power distribution in the radial direction.

また、上記いずれの燃料集合体においてもこれ等が使用
される原子炉に回転プラグ、燃料交換機、燃料出入機等
の燃料交換システムが必要とされ、また、約1年毎に原
子炉を停止して総数の何分の1かに相当する燃料集合体
を交換することも必要とされ、更に前記燃料交換システ
ムは、原子炉を構成する上でかなりのコストを占め、特
に出力規模を下げるにつれてこのコストの占める割合が
増す傾向にあり、加えて原子炉構造の小型化の障害とな
っている。
In addition, in any of the above fuel assemblies, the reactor in which they are used requires a fuel exchange system such as a rotating plug, a fuel exchange machine, and a fuel inlet/outlet machine, and the reactor must be shut down approximately every year. It is also necessary to replace a fraction of the total number of fuel assemblies, and furthermore, said refueling system represents a significant cost in constructing a nuclear reactor, especially as the power scale is reduced. The proportion of cost is increasing, and in addition, it is becoming an obstacle to downsizing of nuclear reactor structures.

従って、この発明は、上記欠点を排除し、出力規模が小
さくても発電単価等が大型原子炉のそれとほぼ匹敵し、
大型原子炉とコスト的に競合し得る小型原子炉に適した
原子炉構造の簡略化、特に燃料交換システムの省略を行
うことが出来、繁雑な燃料交換を必要としない燃料集合
体を提供することを目的とする。
Therefore, this invention eliminates the above-mentioned drawbacks, and even if the output scale is small, the unit cost of power generation is almost comparable to that of a large nuclear reactor.
To provide a fuel assembly suitable for a small nuclear reactor that can compete with large nuclear reactors in terms of cost, which can simplify the structure of a nuclear reactor, in particular can omit a fuel exchange system, and does not require complicated fuel exchange. With the goal.

〈課題を解決するための手段〉 この発明の燃料集合体は、多数の燃料ピンを軸方向に複
数段のグリッドで固定して外筒で囲み、且つ前記燃料ピ
ンを複数の領域に仕切る隔壁を前記外筒内に設けたこと
により上記目的を達成したものである。
<Means for Solving the Problems> The fuel assembly of the present invention has a large number of fuel pins fixed in the axial direction with a plurality of grids and surrounded by an outer cylinder, and a partition wall that partitions the fuel pins into a plurality of regions. The above object is achieved by providing it within the outer cylinder.

この場合、前記外筒の開口端部に流量調節手段を設ける
ことが好ましい。
In this case, it is preferable to provide a flow rate adjusting means at the open end of the outer cylinder.

〈作 用〉 上記燃料集合体においては、グリッドにより燃料ピン同
士及び燃料ピンと外筒との間隔が適当に離間して保持さ
れる。このため原子炉運転中の膨張に対しても外筒と燃
料ピン及び隔壁と燃料ピンの相互干渉がほとんど生じな
い。
<Function> In the fuel assembly described above, the grid maintains appropriate distances between the fuel pins and between the fuel pins and the outer cylinder. Therefore, even with expansion during reactor operation, mutual interference between the outer cylinder and the fuel pins and between the partition wall and the fuel pins hardly occurs.

また、外筒と隔壁により燃料ピンが複数の領域に仕切ら
れているので、径方向の出力分布を平坦化するための冷
却材の流量配分ができる。
Further, since the fuel pin is partitioned into a plurality of regions by the outer cylinder and the partition wall, the flow rate of the coolant can be distributed to flatten the power distribution in the radial direction.

外筒の開口端部に流量調節手段を設けると、更に、その
配分の均一化が可能である。
If a flow rate adjustment means is provided at the open end of the outer cylinder, it is possible to further equalize the distribution.

燃料交換に際しては、この燃料集合体全体を一括交換す
る。
When replacing the fuel, the entire fuel assembly is replaced at once.

〈実施例〉 以下に実施例を示し、この発明を更に具体的に説明する
<Example> The present invention will be explained in more detail with reference to Examples below.

第1図は、この発明の燃料集合体の1例を概略的に示す
もので、例えば電力100M Wを出力する発電用原子
炉の炉心に使用する場合には、10.000本程度の燃
料ピン1が軸方向に複数段設けられたグリッド6により
互いに適当間隔離間して固定されている。また、多数の
燃料ピン1は第2図aに示す様に断面正六角形の隔壁7
で内側領域■及び外側領域Hに仕切られている。
FIG. 1 schematically shows an example of the fuel assembly of the present invention. For example, when used in the core of a power generation reactor that outputs 100 MW of power, about 10,000 fuel pins are required. 1 are fixed at appropriate intervals from each other by a grid 6 provided in multiple stages in the axial direction. Further, a large number of fuel pins 1 are connected to a partition wall 7 having a regular hexagonal cross section as shown in FIG.
It is divided into an inner area (■) and an outer area (H).

更に外側領域■の燃料ピン1は外筒8で囲まれ、この外
筒8の下端開口部には外側領域Hにおいて流量調節オリ
フィス9が設けられている。
Further, the fuel pin 1 in the outer region (3) is surrounded by an outer cylinder 8, and a flow rate regulating orifice 9 is provided in the lower end opening of the outer cylinder 8 in the outer region H.

上記燃料集合体の炉心圧損は、これまでの実験及び解析
結果によれば既に説明した第5図に示す構造の燃料集合
体が・3.5Kg/Cfであるのに比べて1.5Kg/
cfと大幅に低減される。このため冷却材を循環する循
環ポンプの動力が低減し、冷却材が炉心を通過する循環
系をスムーズに循環するようになる。
According to the experimental and analytical results so far, the core pressure drop of the fuel assembly is 1.5 Kg/Cf, compared to 3.5 Kg/Cf for the fuel assembly with the structure shown in FIG.
cf. This reduces the power of the circulation pump that circulates the coolant, allowing the coolant to circulate smoothly through the circulation system that passes through the reactor core.

また、各燃料ピン1はグリッド6により固定されていて
、燃料ピン1と隔壁7及び外筒8との間隔を適当に離間
して保持するので、原子炉運転中に燃料集合体が膨張し
ても、それぞれの間に相互干渉がほとんど生じないので
、隔壁7及び外筒8が相互干渉によって変形することが
なく、長期使用でき、期間当りの放射性廃棄物の量は少
量で済むことになる。
In addition, each fuel pin 1 is fixed by a grid 6, and the distance between the fuel pin 1 and the partition wall 7 and outer cylinder 8 is maintained at an appropriate distance, so that the fuel assembly does not expand during reactor operation. Also, since there is almost no mutual interference between them, the partition wall 7 and the outer cylinder 8 are not deformed due to mutual interference, and can be used for a long period of time, resulting in a small amount of radioactive waste per period.

更に、流量調節オリフィス9の調節により炉心における
上に述べた領域I及び領域■を流れる冷却材の流量が適
当に配分できるため、燃料の燃焼特性は良好となる。
Further, by adjusting the flow rate regulating orifice 9, the flow rate of the coolant flowing through the above-mentioned areas I and II in the core can be appropriately distributed, so that the combustion characteristics of the fuel are improved.

更にまた、上記燃料集合体を例えば電力100MW程度
以下を出力する発電用原子炉の小型炉心に使用した場合
、燃料破損率を0.01%とすると破損燃料ビンは高々
1本捏度であり、充分許容できるために、交換の必要は
ない。
Furthermore, when the above-mentioned fuel assembly is used in a small core of a power generating nuclear reactor that outputs less than about 100 MW of electric power, if the fuel failure rate is 0.01%, the number of damaged fuel bottles is at most one, There is no need for replacement as it is well tolerated.

因みにこの原子炉について簡単に説明すると、第3図に
おいて原子炉容器11内に環状の径方向反射体12が冷
却材13中に配置されて固定されている。更に上記燃料
集合体の外筒8の上下両端が2つの軸方向反射体14a
 、 14bに挾まれて接合され、軸方向反射体14a
が連結管15の下端に接合され、外筒8は2つの軸方向
反射体14a 、 14b及び連結管15と一緒に径方
向反射体12の環内を貫通可能であって、連結管15は
外筒8が径方向反射体12の管内を貫通してもその上端
が原子炉容器11外に突出する長さを有し、原子炉容器
11の上端開口部を封栓し、外部への放射線の漏洩を防
止する遮蔽プラグ16を気密に貫通して原子炉容器11
内に挿入されている。また、2つの軸方向反射体14a
 、 14bには共に軸方向に冷却材流路が形成され、
連結管15の上部には冷却材流通孔19が開けられ、冷
却材13は例えば連結管15内に設けられた循環ポンプ
20により、あるいは自然循環により外筒8の内部、即
ち炉心10を通って連結管15上部の冷却材流通孔19
を通って原子炉容器11内を循環するようになっている
。この原子炉の出力は、径方向反射体12に対する炉心
10の挿入位置により定まり、第4図aの様に炉心10
が2つの軸方向反射体14a 、 14bと径方向反射
体12とによって囲まれるようになると臨界に達し、更
に炉心10が径方向反射体12の中央に挿入される(第
4図b)と最大となり、次いで原子炉の出力は徐々に減
少し、炉心10が径方向反射体12を完全に通過する(
第4図C)と炉がスクラムされるようになっている。炉
心で発生する熱は、例えば連結管15中に配設されたヒ
ートバイブ17を介してその上端から外部に取出される
ようになっている。
Incidentally, to briefly explain this nuclear reactor, as shown in FIG. 3, an annular radial reflector 12 is disposed in a coolant 13 and fixed in a reactor vessel 11. Furthermore, two axial reflectors 14a are provided at both upper and lower ends of the outer cylinder 8 of the fuel assembly.
, 14b, and are joined to the axial reflector 14a.
is connected to the lower end of the connecting tube 15, the outer tube 8 can pass through the ring of the radial reflector 12 together with the two axial reflectors 14a, 14b and the connecting tube 15, and the connecting tube 15 is connected to the outer tube 15. Even if the cylinder 8 passes through the inside of the radial reflector 12, its upper end is long enough to protrude outside the reactor vessel 11, sealing the upper end opening of the reactor vessel 11 and preventing radiation from going outside. The reactor vessel 11 is airtightly penetrated through the shielding plug 16 that prevents leakage.
inserted inside. In addition, two axial reflectors 14a
, 14b both have a coolant flow path formed in the axial direction,
A coolant flow hole 19 is opened in the upper part of the connecting pipe 15, and the coolant 13 is passed through the inside of the outer cylinder 8, that is, through the core 10, by a circulation pump 20 provided in the connecting pipe 15, or by natural circulation. Coolant flow hole 19 in the upper part of the connecting pipe 15
It is designed to circulate within the reactor vessel 11 through. The output of this nuclear reactor is determined by the insertion position of the reactor core 10 with respect to the radial reflector 12, and as shown in FIG.
When the core 10 becomes surrounded by the two axial reflectors 14a and 14b and the radial reflector 12, it reaches a critical value, and when the core 10 is further inserted into the center of the radial reflector 12 (FIG. 4b), it reaches a maximum. , and then the power of the reactor gradually decreases until the core 10 completely passes through the radial reflector 12 (
Figure 4C) and the furnace is now scrammed. Heat generated in the reactor core is taken out to the outside from the upper end of the connecting pipe 15, for example, via a heat vibrator 17 disposed in the connecting pipe 15.

例えば出力300M W以下の小型の上記液体金属冷却
高速炉に上記実施例の燃料集合体を使用し、冷却材13
に溶融金属ナトリウム(Na)またはチック(Nak)
等の液体金属を使用する場合、冷却材ボイド係数は負で
あるため、燃料集合体を空気中で組立てる段階での臨界
に対する安全性は確保できる。また、出力10MWの炉
心10に上記実施例の燃料集合体を使用し、炉心10が
径方向反射体12に挿入されている場合と引抜かれた場
合の反射体ワースは18%Δに/にであり、これは従来
の大型炉心の制御棒ワース(通常7〜8%Δに/K)に
比べてかなり大きい。従って上記実施例の燃料集合体で
は余剰反応度を大きくできる。また、1年間原子炉を運
転した場合の燃焼欠損反応度は約2.5%Δに/にであ
るため、大まかな目安として燃料寿命は約7年となるこ
とが期待できる。
For example, the fuel assembly of the above embodiment is used in a small liquid metal cooled fast reactor with an output of 300 MW or less, and the coolant 13
Molten metal sodium (Na) or tick (Nak)
When using a liquid metal such as, the coolant void coefficient is negative, so safety against criticality can be ensured at the stage of assembling the fuel assembly in the air. In addition, when the fuel assembly of the above embodiment is used in a core 10 with an output of 10 MW, the reflector worth is 18% Δ when the core 10 is inserted into the radial reflector 12 and when it is pulled out. This is considerably larger than the control rod worth of conventional large cores (usually 7 to 8% Δ/K). Therefore, in the fuel assembly of the above embodiment, the surplus reactivity can be increased. Furthermore, since the combustion defect reactivity when the reactor is operated for one year is approximately 2.5% Δ/N, the fuel life can be expected to be approximately 7 years as a rough guide.

この様にして寿命に達した燃料集合体は、崩壊熱の減衰
した後に連結管15ごと引抜かれ、燃料交換が行なわれ
る。
The fuel assembly that has reached the end of its life in this way is pulled out together with the connecting pipe 15 after the decay heat has attenuated, and the fuel assembly is replaced.

以上にこの発明の燃料集合体の1例を示したが、この発
明の燃料集合体は、例えば炉心規模がある程度大きい場
合には、第2図すに示すように制御棒案内管18を設け
、制御棒を挿入できる構造とすることもてきるなど、使
用する原子炉の種類及び規模等に応じて種々の変形が可
能である。
An example of the fuel assembly of the present invention has been shown above. For example, when the scale of the reactor core is large to some extent, the fuel assembly of the present invention may be provided with a control rod guide tube 18 as shown in FIG. Various modifications are possible depending on the type and scale of the nuclear reactor used, such as a structure that allows control rods to be inserted.

〈発明の効果〉 以上の説明から明らかな様に、この発明の燃料集合体は
炉心圧損が小さく、炉心を通過する冷却材は複数領域に
配分されるため径方向の出力分布を平坦化できる。また
、外筒と燃料ピン及び隔壁と燃料ピンの相互干渉がほと
んどないので、外筒、隔壁等が変形するようなことも生
じないから、長期間の原子炉運転が可能となる。
<Effects of the Invention> As is clear from the above description, the fuel assembly of the present invention has a small core pressure drop, and the coolant passing through the core is distributed to a plurality of regions, so that the power distribution in the radial direction can be flattened. Further, since there is almost no mutual interference between the outer cylinder and the fuel pins and between the partition walls and the fuel pins, deformation of the outer cylinder, partition walls, etc. does not occur, so long-term reactor operation is possible.

しかも燃料集合体を一括交換するような使用法が可能で
あるので、従来の回転プラグ、燃料交換機及び燃料出入
機といった燃料交換システムを必要としないし、繁雑な
燃料交換作業を省略できる。この発明の燃料集合体は、
従って、出力規模の小さい小型の高速炉用として極めて
有効である。
Moreover, since the fuel assembly can be used to replace the fuel assembly all at once, there is no need for a conventional fuel exchange system such as a rotating plug, a fuel exchanger, and a fuel inlet/outlet machine, and the complicated fuel exchange work can be omitted. The fuel assembly of this invention is
Therefore, it is extremely effective for use in small fast reactors with small output scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の燃料集合体の1例を概略的に示す
縦断面図、第2図aは、第1図の燃料集合体の1部省略
横断面図、第2図すは、この発明の燃料集合体の別の1
例を示す1部省略横断面図、第3図は、第1図の燃料集
合体を使用した液体金属冷却高速炉の1例を示す1部省
略縦断面図、第4図a、b、cはそれぞれ第3図の液体
金属冷却高速炉が臨界出力、最大出力、スクラムにある
時の炉心の配置を示す説明図、第5図は、従来の燃料集
合体の1例を示す説明図、第6図は、従来の燃料集合体
の別の1例を示す概略縦断面図である。 1・・・燃料ビン、6・・・グリッド、7・・・隔壁、
8・・・外筒、9・・・流量調節オリフィス、10・・
・炉心。 a 笛4 回 笛6図
FIG. 1 is a vertical sectional view schematically showing one example of a fuel assembly of the present invention, FIG. 2a is a partially omitted cross-sectional view of the fuel assembly of FIG. 1, and FIG. Another fuel assembly of this invention
FIG. 3 is a partially omitted cross-sectional view showing an example, and FIG. 3 is a partially omitted longitudinal cross-sectional view showing an example of a liquid metal cooled fast reactor using the fuel assembly of FIG. 1, and FIGS. 4 a, b, c are an explanatory diagram showing the arrangement of the reactor core when the liquid metal cooled fast reactor in FIG. 3 is at critical power, maximum power, and scram, respectively. FIG. FIG. 6 is a schematic vertical sectional view showing another example of a conventional fuel assembly. 1... Fuel bin, 6... Grid, 7... Bulkhead,
8... Outer cylinder, 9... Flow rate adjustment orifice, 10...
・Reactor core. a Whistle 4 Whistle 6 diagram

Claims (1)

【特許請求の範囲】 1、多数の燃料ピンを軸方向に複数段のグリッドで固定
して外筒で囲み、且つ前記燃料ピンを複数の領域に仕切
る隔壁を前記外筒内に設けたことを特徴とする燃料集合
体。 2、前記外筒の開口端部に流量調節手段を設けた請求項
1記載の燃料集合体。
[Claims] 1. A large number of fuel pins are fixed in the axial direction with a plurality of grids and surrounded by an outer cylinder, and a partition wall is provided in the outer cylinder to partition the fuel pins into a plurality of regions. Characteristic fuel assembly. 2. The fuel assembly according to claim 1, further comprising a flow rate adjusting means provided at the open end of the outer cylinder.
JP1028422A 1989-02-07 1989-02-07 Fuel assembly Expired - Lifetime JPH079473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1028422A JPH079473B2 (en) 1989-02-07 1989-02-07 Fuel assembly
FR9001306A FR2642887B1 (en) 1989-02-07 1990-02-05 FUEL ASSEMBLY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028422A JPH079473B2 (en) 1989-02-07 1989-02-07 Fuel assembly

Publications (2)

Publication Number Publication Date
JPH02206797A true JPH02206797A (en) 1990-08-16
JPH079473B2 JPH079473B2 (en) 1995-02-01

Family

ID=12248222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028422A Expired - Lifetime JPH079473B2 (en) 1989-02-07 1989-02-07 Fuel assembly

Country Status (2)

Country Link
JP (1) JPH079473B2 (en)
FR (1) FR2642887B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075285A (en) * 2009-09-29 2011-04-14 Hitachi-Ge Nuclear Energy Ltd Core of fast breeder reactor
JP5716920B2 (en) * 2009-07-31 2015-05-13 国立大学法人東京工業大学 Reactor core and reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884295A (en) * 1972-02-16 1973-11-09
JPS508991A (en) * 1973-04-18 1975-01-29

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1276233A (en) * 1960-03-14 1961-11-17 Gen Nuclear Engineering Co Improvements to nuclear reactors
DE2715067A1 (en) * 1977-04-04 1978-10-12 Iljunin FOCUS PACKAGE FOR NUCLEAR REACTORS WITH FAST NEUTRONS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884295A (en) * 1972-02-16 1973-11-09
JPS508991A (en) * 1973-04-18 1975-01-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5716920B2 (en) * 2009-07-31 2015-05-13 国立大学法人東京工業大学 Reactor core and reactor
JP2011075285A (en) * 2009-09-29 2011-04-14 Hitachi-Ge Nuclear Energy Ltd Core of fast breeder reactor

Also Published As

Publication number Publication date
FR2642887B1 (en) 1994-04-15
JPH079473B2 (en) 1995-02-01
FR2642887A1 (en) 1990-08-10

Similar Documents

Publication Publication Date Title
US7139352B2 (en) Reactivity control rod for core
US20180268950A1 (en) Nuclear reactors including heat exchangers and related methods
US3154471A (en) Nuclear reactor
EP0538407A4 (en) Nuclear reactor with bi-level core
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US3219535A (en) Nuclear reactor control means
Baeten et al. MYRRHA: A multipurpose nuclear research facility
US3240678A (en) Pressure tube neutronic reactor and coolant control means therefor
US3475272A (en) Gas-cooled fast reactor
US5204053A (en) Bi-level fuel management method for boiling-water nuclear reactor
JPH02206797A (en) Fuel assembly
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
US3342689A (en) Liquid-moderated, gas-cooled nuclear reactor and pressure equalization system
JPH0321878B2 (en)
JP3874310B2 (en) Liquid metal cooled fast reactor
US3703437A (en) Means for supporting fissile material in a nuclear reactor
JPH01172797A (en) Fast breeder reactor
JP7570297B2 (en) Fuel assemblies
JPH05180968A (en) Compact liquid-metal cooling fast reactor
WO2019160174A1 (en) Pool-type integral leading facility for lead-alloy cooled advanced small modular reactor
JPH11295466A (en) Gas expansion module for reactor reactivity control
Troyanov et al. Status of fast reactor activities in the USSR
JPH08201562A (en) Control rod assembly
JPH08211175A (en) Fuel assembly and reactor using it
Morse et al. REACTOR ARRANGEMENT STUDIES FOR A LARGE HTGR PLANT.