JPH02206619A - Alkali metal compound of carbon nitride and production thereof - Google Patents

Alkali metal compound of carbon nitride and production thereof

Info

Publication number
JPH02206619A
JPH02206619A JP2724089A JP2724089A JPH02206619A JP H02206619 A JPH02206619 A JP H02206619A JP 2724089 A JP2724089 A JP 2724089A JP 2724089 A JP2724089 A JP 2724089A JP H02206619 A JPH02206619 A JP H02206619A
Authority
JP
Japan
Prior art keywords
carbon nitride
alkali metal
compound
aqueous solution
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2724089A
Other languages
Japanese (ja)
Other versions
JP2650753B2 (en
Inventor
Masayuki Kawaguchi
雅之 川口
Yasushi Kita
喜多 康
Koji Nozaki
野崎 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2724089A priority Critical patent/JP2650753B2/en
Priority to GB8915029A priority patent/GB2221679B/en
Priority to FR8909334A priority patent/FR2634214B1/en
Priority to DE3923009A priority patent/DE3923009A1/en
Priority to US07/378,914 priority patent/US5023308A/en
Publication of JPH02206619A publication Critical patent/JPH02206619A/en
Application granted granted Critical
Publication of JP2650753B2 publication Critical patent/JP2650753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the subject compound having narrow luminescent wavelength range and high strength and suitable for fluorescent material, lubricating material, ionic conductor, etc., by reacting carbon nitride with an aqueous solution of an alkali metal hydroxide. CONSTITUTION:The objective compound of formula (alpha is 5.0-10.0; beta and gamma are 0-14.0; delta is 0-5.0) is produced by (1) reacting cyanuryl chloride with ammonia and thermally decomposing the reaction product and (2) mixing the obtained carbon nitride in an aqueous solution of MOH (M is K, Na or Li) having a concentration of preferably 0.1-10N and reacting under stirring e.g. at room temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規な化学組成を存する窒化炭素のアルカリ
金属化合物およびその製造法に関し、詳しくは光学材料
、特に螢光材料、半導性を利用した機能性材料、潤滑材
料、またイオン交換体、イオン導電体として有用な窒化
炭素のアルカリ金属化合物の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an alkali metal compound of carbon nitride having a novel chemical composition and a method for producing the same. The present invention relates to a method for producing an alkali metal compound of carbon nitride useful as a functional material, a lubricating material, an ion exchanger, or an ion conductor.

[従来の技術とその解決しようとする課題]従来、窒素
の化合物としては、窒化珪素、窒化はう素等種々のもの
が知られており、例えば窒化珪素は四塩化珪素とアンモ
ニアを反応させてシリコンイミドを製造した後、これを
熱分解することにより得られるが、炭素を窒素やアンモ
ニアにより窒化することはできず、従来炭素と窒素およ
び水素のみからなる無機のポリマー状化合物は知られて
いなかった。
[Prior art and problems to be solved] Conventionally, various nitrogen compounds such as silicon nitride and boron nitride have been known. For example, silicon nitride is made by reacting silicon tetrachloride with ammonia. It is obtained by thermally decomposing silicon imide after it is produced, but carbon cannot be nitrided with nitrogen or ammonia, and so far no inorganic polymeric compound consisting only of carbon, nitrogen, and hydrogen has been known. Ta.

そこで、本発明者らは種々の条件で検討を重ねた結果、
塩化シアヌルやメラミンのような炭素と窒素のトリアジ
ン環を含む化合物を反応原料とすることにより合成され
る窒化炭素とその製造方法を見い出し、すでに出願して
いる[(特願昭63−173186号)「窒化炭素およ
びその製造方法」]。
Therefore, as a result of repeated studies under various conditions, the present inventors found that
We have discovered carbon nitride that can be synthesized by using a compound containing a triazine ring of carbon and nitrogen, such as cyanuric chloride or melamine, as a reaction raw material, and a method for its production, and have already filed an application for it [(Japanese Patent Application No. 173186/1986)] “Carbon nitride and its manufacturing method”].

窒化炭素は螢光を発するという特性を有し、高圧水銀ラ
ンプ用螢光体として有望であるが、単一色発光素子とし
て用いるためには発光波長幅を狭くし、強度を増大する
ことが望まれていた。
Carbon nitride has the property of emitting fluorescence and is promising as a phosphor for high-pressure mercury lamps, but in order to be used as a single-color light-emitting element, it is desirable to narrow the emission wavelength width and increase the intensity. was.

[!l!!Iを解決するための手段] 本発明者らはこのような現状において前記問題点を解決
するため種々検討した結果、窒化炭素とMOI(水溶液
(ただし、M=K、Na、Li)を反応させることによ
ってアルカリ金属を含んだポリマーを合成でき、該化合
物は発光波長幅を狭くし、強度を増大することを見出し
、本発明に到達した。
[! l! ! Means for Solving I] As a result of various studies in order to solve the above-mentioned problems under the current circumstances, the present inventors have discovered that carbon nitride is made to react with MOI (an aqueous solution (where M=K, Na, Li)). The inventors have discovered that a polymer containing an alkali metal can be synthesized by using this method, and that this compound narrows the emission wavelength width and increases the intensity, leading to the present invention.

すなわち本発明は、一般式 C,;Nct)Iρ07N
8(ただし、M =K、Na、Li、 5.0≦α≦1
0.0. 0<β、T≦14.0.  O<δ≦5.0
)で表わされる層状構造を有する窒化炭素のアルカリ金
属化合物、および窒化炭素[(C3N、1)2N、)1
y1  (ただし、2≦X≦4,0≦y≦8)とMQH
水溶液(ただし、M=K、Na、Lりを反応させること
を特徴とする該化合物の製造法、更には該化合物からな
る螢光材料である。
That is, the present invention has the general formula C,;Nct)Iρ07N
8 (However, M = K, Na, Li, 5.0≦α≦1
0.0. 0<β, T≦14.0. O<δ≦5.0
), and carbon nitride [(C3N,1)2N,)1
y1 (however, 2≦X≦4, 0≦y≦8) and MQH
A method for producing the compound, which is characterized by reacting an aqueous solution (where M=K, Na, L), and a fluorescent material made of the compound.

原料となる窒化炭素は先に出願した特願昭63−173
186号で詳述しているが、塩化シアヌルとアンモニア
または塩化シアヌルとメラミンを反応させた後、熱分解
することにより得られる。該化合物は、一般式[(CG
N、:J)2 NxHy’J  (ただし、2≦x≦4
゜0≦1≦8)で示される層状ポリマーで、塩化シアヌ
ル−アンモニア系、メラミンのみ、メラ塩化シアヌルア
ヌル系より合成されたものが本発明の原料として好まし
い、なお、窒化炭素に関し、先の出願の場合と一般式の
表現方法は異なるが、化合物中の構成原子の比率は全く
同じであり、全く同じ化合物を示している。
Carbon nitride, which is a raw material, is obtained from a patent application previously filed in 1983-173.
As detailed in No. 186, it is obtained by reacting cyanuric chloride with ammonia or cyanuric chloride with melamine and then thermally decomposing the reaction. The compound has the general formula [(CG
N, :J)2 NxHy'J (However, 2≦x≦4
Layered polymers represented by ゜0≦1≦8) synthesized from cyanuric chloride-ammonia system, melamine only, mela-cyanuric chloride system are preferable as raw materials for the present invention. Although the expression of the case and the general formula are different, the ratio of the constituent atoms in the compound is exactly the same, indicating exactly the same compound.

次にMOH水溶液(ただし、!4:に、Na、Li)と
窒化炭素の反応について述べると、反応に使用するMO
H水溶液(ただし、M=K 、 Na 、 Li )は
、KOH,NaOH,Li0)1水溶液が適しており、
好ましくはKOH水溶液が良い、濃度は0.1〜ION
が良い、0.IN以下ではアルカリ金属が導入されにく
く、ION以上の水溶液は作製しにくい、ただし、LL
OH水溶液は1.25Nの濃度までしか作製できない。
Next, we will discuss the reaction between an aqueous MOH solution (!4: Na, Li) and carbon nitride.
For the H aqueous solution (M=K, Na, Li), a KOH, NaOH, Li0)1 aqueous solution is suitable,
Preferably a KOH aqueous solution, the concentration is 0.1 to ION
Good, 0. It is difficult to introduce alkali metals below IN, and it is difficult to prepare aqueous solutions above ION, however, at LL
An OH aqueous solution can only be prepared up to a concentration of 1.25N.

使用量は、MOB水溶液(ただし、M=K、Na、Li
)100代に対しポリマーは0.1〜3gが好ましい、
ポリマーを3g以上入れると均一混合しに(い。
The amount used is MOB aqueous solution (M=K, Na, Li
) The polymer is preferably 0.1 to 3 g for 100s,
If you add more than 3g of polymer, it will not be possible to mix it uniformly.

反応温度は室温付近が良く、攪拌して0.5〜24時間
反応させ、反応終了後は生成物をろ過し、さらにアルカ
リ性がなくなるまで洗浄する。
The reaction temperature is preferably around room temperature, and the reaction is allowed to proceed for 0.5 to 24 hours with stirring. After the reaction is complete, the product is filtered and further washed until alkalinity disappears.

以上のような反応によって得られた化合物は、下記に示
す構造を持つ。
The compound obtained by the above reaction has the structure shown below.

これは、トリアジン環(CN六員環)を−NH−によっ
て架橋した二次元平面が積み重なった層状構造である窒
化炭素の空孔にアルカリ金属が入っている形である。ま
た、導入されたアルカリ金属が水酸化物の形で存在し、
さらに水和しているため化合物は酸素を含有し、水素含
有量も増加すると考えられる。
This is a form in which an alkali metal is contained in the pores of carbon nitride, which has a layered structure in which two-dimensional planes in which triazine rings (CN six-membered rings) are bridged by -NH- are stacked. Also, the introduced alkali metal exists in the form of hydroxide,
Furthermore, since the compound is hydrated, it is thought to contain oxygen and increase its hydrogen content.

上記のような構造は、以下に述べる元素分析。The structure shown above was determined by the elemental analysis described below.

X線回折、 IRスペクトル、SI光スペクトル等の結
果°を総合して推定したものであるが、それらについて
順次述べていく。
This estimate was made by integrating the results of X-ray diffraction, IR spectrum, SI light spectrum, etc., and will be described in turn.

第1表に種々の条件で生成した化合物の元素分析値を示
すが、CINαHθ0jK)、とするとαは5を越える
値をとり、β、Tは4以上の値をとり、δは0.1以上
の値をとっている。
Table 1 shows the elemental analysis values of compounds produced under various conditions. If CINαHθ0jK), α takes a value exceeding 5, β and T take a value of 4 or more, and δ takes a value of 0.1 or more. It takes the value of

次にXIIA回折法による分析結果について述べる。Next, the analysis results by the XIIA diffraction method will be described.

窒化炭素ポリマーとC6N、?’2tQaqKtoで示
される窒化炭素のアルカリ金属化合物のX線回折図を第
1図。
Carbon nitride polymer and C6N? Figure 1 is an X-ray diffraction diagram of an alkali metal compound of carbon nitride represented by '2tQaqKto.

第2図に示すが、その測定条件としては、Cu−にα線
、 30KV、 20mA、走査速度:1°/sin、
時定数:]、sec。
As shown in Fig. 2, the measurement conditions were: α rays for Cu-, 30 KV, 20 mA, scanning speed: 1°/sin,
Time constant: ], sec.

フルスケール: 10Kcp5である。Full scale: 10Kcp5.

窒化炭素ポリマーは、2θが26.5〜28.0°にピ
ークを持つ最大回折線がみられる。これはグラファイト
状層状構造を有することを示す、アルカリ処理後もその
回折線の位置は変わらず、基本的構造は変わらないと考
えられる。これは、窒化炭素の平面内構造の単位格子中
に1つずつ、0 、394n■の大きな空孔が存在し、
この中に直径0.304nmのにイオン+ 0.226
nmのNaイオンp O0146nmのL1イオンが導
入されていると考えられるため層状構造および眉間距離
は変化しないと考えられる。
Carbon nitride polymer has a maximum diffraction line having a peak at 2θ of 26.5 to 28.0°. This indicates that the material has a graphite-like layered structure; the position of the diffraction lines does not change even after the alkali treatment, and it is thought that the basic structure remains unchanged. This is because there are large vacancies of 0 and 394n in each unit cell of the in-plane structure of carbon nitride,
In this, there are ions with a diameter of 0.304 nm + 0.226
It is thought that the layered structure and the distance between the eyebrows do not change because it is considered that the Na ions of 146 nm and the L1 ions of 146 nm are introduced.

しかしながら、アルカリ処理後の回折線はブロードにな
り、結晶性が低下したことがわかる。これは水和水の導
入によって眉間距離がややばらつくためと考えられる。
However, after the alkali treatment, the diffraction line became broader, indicating that the crystallinity decreased. This is thought to be because the distance between the eyebrows varies slightly due to the introduction of hydration water.

第3図、第4図には、窒化炭素ポリマーと本発明の化合
物のIRスペクトルを示す、窒化炭素ポリマーは−N)
l−基を含むため3200cmに吸収バンドを有するが
、アルカリ処理後にはさらに3400cnに−OH基お
よび水和水による吸収バンドが現れている。
Figures 3 and 4 show the IR spectra of a carbon nitride polymer and a compound of the present invention; the carbon nitride polymer is -N)
Since it contains l- groups, it has an absorption band at 3200 cm, but after the alkali treatment, an absorption band due to -OH groups and hydration water appears at 3400 cm.

第5図、第6図には、窒化炭素ポリマーとアルカリ処理
後の化合物の螢光スペクトルを示す、窒化炭素ポリマー
は365nmの紫外光によって励起され、465nmに
ピークを有する強い螢光を発しているが、アルカリ金属
、特にカリウムを含んだ化合物はさらにその2倍以上の
強度を示し、そのピーク幅も狭くなった。また、ピーク
位置も438nmにシフトし、青色の発光を示した0強
度が大きくピーク幅が狭いことから、単一色発光素子と
しての用途に有用である。アルカリ金属のうちKを含ん
だ化合物が最もその強度が大きく、IN−KO)!処理
後が最大で、それ以上に濃度を高(しても強度は増大し
なかった。(第7図) また窒化炭素ポリマーと同様、MOH水溶液(ただし、
M=K、Na、Li)処理後の化合物も空気中で安定で
ある。しかし、窒化炭素ポリマーが400℃まで安定で
あったのに対し、本発明のアルカリ金属を含んだ化合物
は200℃までで、300℃に加熱すると分解し始め、
色が白色から黄色に変色した。
Figures 5 and 6 show the fluorescence spectra of the carbon nitride polymer and the compound after alkali treatment.The carbon nitride polymer is excited by 365 nm ultraviolet light and emits strong fluorescence with a peak at 465 nm. However, compounds containing alkali metals, especially potassium, showed an intensity more than twice that, and the peak width became narrower. In addition, the peak position is also shifted to 438 nm, and the zero intensity indicating blue light emission is large and the peak width is narrow, so it is useful for use as a single color light emitting device. Among alkali metals, compounds containing K have the highest strength (IN-KO)! The strength was highest after treatment, and the strength did not increase even if the concentration was higher than that (Figure 7).Also, as with carbon nitride polymer, MOH aqueous solution (however
M=K, Na, Li) The compound after treatment is also stable in air. However, while the carbon nitride polymer was stable up to 400°C, the alkali metal-containing compound of the present invention began to decompose up to 200°C and when heated to 300°C.
The color changed from white to yellow.

以上、種々の分析方法により本発明の化合物の構造を推
定すると、前記したような構造をとるものと考えられる
As described above, when the structure of the compound of the present invention is estimated by various analytical methods, it is considered that the compound has the structure described above.

しかし、特願昭63−173186号で提案した窒化炭
素の構造体は、下記のようになる。この構造の場合、ア
ルカリ金属との反応を考えると、トリアジン環の三つの
窒素によって囲まれる空孔は窒素の不対電子対によって
満たされ、また今回提出した空孔より小さいため、この
平面構造中にアルカリ金属は入りにくいと考えられる。
However, the carbon nitride structure proposed in Japanese Patent Application No. 63-173186 is as follows. In the case of this structure, considering the reaction with alkali metals, the vacancy surrounded by the three nitrogens of the triazine ring is filled with unpaired electron pairs of nitrogen, and is smaller than the vacancy proposed this time, so this planar structure It is thought that alkali metals are difficult to enter.

また、先の提案による密度等のデータを再度検討した結
果、この先に提案した構造はとりにくく前述した本発明
による構造をとるものと考えられる。
Further, as a result of re-examining the data such as density based on the previous proposal, it is thought that the structure proposed previously is difficult to obtain and the structure according to the present invention described above will be adopted.

以上、本発明を実施例により詳細に説明する実施例! IN−KOH水溶液100鳳!に窒化炭素ポリマー0.
3gを加え、12時間攪拌し、ろ過2洗浄した後、約1
00℃で乾燥した。
The above are examples for explaining the present invention in detail using examples! IN-KOH aqueous solution 100 hours! Carbon nitride polymer 0.
Add 3g, stir for 12 hours, filter and wash 2 times, then about 1
It was dried at 00°C.

元のポリマーが黄白色〜黄色であるのに対し、処理後は
やや白っぽくなった。生成物の元素分析値を第1表に示
す、この生成物の組成はC3N&71129’、?、9
に7゜であり、元のポリマーCtl’D”<tにKが導
入されたと同時に酸素も含有され、また水素含有量も増
加した。これは導入されたKがKOHの形で存在し、さ
らにこれが水和されているためと考えられる。
While the original polymer was yellowish-white to yellow in color, the color became slightly whitish after treatment. The elemental analysis values of the product are shown in Table 1. The composition of this product is C3N&71129', ? ,9
7°, and at the same time that K was introduced into the original polymer Ctl'D"<t, oxygen was also included and the hydrogen content increased. This is because the introduced K existed in the form of KOH, and This is thought to be due to hydration.

これは、理想的な窒化炭素の構造[(CJNJ )2(
NH)、? ]71の単位格子にKOH・2H20を導
入した理論組成C,3Nq H1?OJK。
This is the ideal carbon nitride structure [(CJNJ)2(
NH),? ]Theoretical composition C, 3Nq H1 with KOH 2H20 introduced into the unit cell of 71? OJK.

とほぼ一致する。almost matches.

実施例2 1ON−KOH水溶液1001にポリマー0.3gを加
え、実施例1と同様の反応を行い、分析結果を第1表に
示す。
Example 2 0.3 g of polymer was added to 1001 of 1ON-KOH aqueous solution, and the same reaction as in Example 1 was carried out, and the analysis results are shown in Table 1.

反応生成物は実施例1よりさらに白く変化した。The reaction product turned even whiter than in Example 1.

また一部は水溶液中に溶解し、1μmのろ紙を通過した
。ろ取された生成物の組成はC6’!j”tJO/メj
4であり、元のポリマーに比べ窒素含有量が極端に減少
し、0.H,Kが増加した。一部が溶解したことから考
えても、濃厚水溶液で処理した場合、−NH−基が切断
され低分子量化されたためと考えられる。
A portion was dissolved in the aqueous solution and passed through a 1 μm filter paper. The composition of the filtered product is C6'! j”tJO/Mej
4, the nitrogen content is extremely reduced compared to the original polymer, and the nitrogen content is 0. H and K increased. Considering that some of it was dissolved, it is thought that when treated with a concentrated aqueous solution, the -NH- group was cleaved and the molecular weight was reduced.

実施例3 0、 IN−KO)1水溶液10(lslにポリマー0
.3gを加え実施例1と同様の反応を行い、分析結果を
第1表に示す。
Example 3 0, IN-KO) 1 aqueous solution 10 (lsl of polymer 0
.. 3 g was added and the same reaction as in Example 1 was carried out, and the analysis results are shown in Table 1.

生成物の色は元のポリマーとほとんど変わらなかった。The color of the product was almost the same as the original polymer.

生成物の組成はC6”!J%fialtKatt?!あ
り、実施例1.2よりKおよび0の含有量は少なかった
The composition of the product was C6''!J%fialtKatt?!, and the content of K and 0 was lower than in Example 1.2.

実施例4 IN−NaOH水溶液1001にポリマー0.3gを加
え、実施例1同様の反応を行い、分析結果を第1表に示
す。
Example 4 0.3 g of polymer was added to IN-NaOH aqueous solution 1001, and the same reaction as in Example 1 was carried out, and the analysis results are shown in Table 1.

生成物は元のポリマーよりわずかに白っぽくなった。生
成物の組成はC1+ N8H1CIqtJN%u7であ
り、実施例1よりアルカリ金属の含有率は少なかった。
The product was slightly whitish than the original polymer. The composition of the product was C1+N8H1CIqtJN%u7, and the alkali metal content was lower than in Example 1.

実施例5 IN−LiOH水溶液100鵬lにポリマー0.3gを
加え、実施例1と同様の反応を行い、分析結果を第1表
に示す。
Example 5 0.3 g of polymer was added to 100 liters of IN-LiOH aqueous solution, and the same reaction as in Example 1 was carried out, and the analysis results are shown in Table 1.

生成物の色は元のポリマーとほとんど変わらなかった。The color of the product was almost the same as the original polymer.

生成物の組成はC3N22HK20.4Lia、2.で
あり、同濃度で処理した場合、K、Na、LiのうちL
iの含有率は最も少なかった。
The composition of the product is C3N22HK20.4Lia, 2. , and when treated at the same concentration, L among K, Na, and Li
The content of i was the lowest.

[発明の効果] 本発明の化合物は、従来にない新規な化学組成および構
造を持つ全く新しい窒化炭素のアルカリ金属化合物であ
り、優れた螢光特性、潤滑特性、イオン交換性、イオン
導電性等の性質を有する。
[Effects of the Invention] The compound of the present invention is a completely new alkali metal compound of carbon nitride with an unprecedented new chemical composition and structure, and has excellent fluorescent properties, lubricating properties, ion exchange properties, ion conductivity, etc. It has the properties of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、窒化炭素ポリマーと本発明化合物の
X線回折図であり、第3図、第4図は同じく窒化炭素ポ
リマーと本発明の化合物のIRスペクトルを示す図、さ
らに、第5図、第6図は窒化炭素ポリマーと本発明の化
合物の螢光スペクトルであり、第7図はKOH処理後の
窒化炭素ポリマーの発光強度およびピーク半値幅とKO
HilW度との関係を示す。 ¥1図 20角度(0) 波長(ηm) ノ反 長 (mm) 第3図 第4図 第7図 KOI−1511度(加端)
1 and 2 are X-ray diffraction patterns of the carbon nitride polymer and the compound of the present invention, and FIGS. 3 and 4 are diagrams showing the IR spectra of the carbon nitride polymer and the compound of the present invention, and further, Figures 5 and 6 show the fluorescence spectra of the carbon nitride polymer and the compound of the present invention, and Figure 7 shows the emission intensity and peak half-width of the carbon nitride polymer after KOH treatment and the KO
The relationship with HilW degree is shown. ¥1 Figure 20 Angle (0) Wavelength (ηm) Reverse length (mm) Figure 3 Figure 4 Figure 7 KOI-1511 degrees (edge)

Claims (3)

【特許請求の範囲】[Claims] (1) 一般式 C_6N_αH_βO_γM_δ(た
だし、M=K、Na、Li、5.0≦α≦10.0、0
<β、γ≦14.0、0<δ≦5.0)で表わされる層
状構造を有する窒化炭素のアルカリ金属化合物。
(1) General formula C_6N_αH_βO_γM_δ (where M=K, Na, Li, 5.0≦α≦10.0, 0
<β, γ≦14.0, 0<δ≦5.0) An alkali metal compound of carbon nitride having a layered structure.
(2) 窒化炭素[(C_3N_3)_2N_xH_y
](ただし、2≦x≦4、0≦y≦8)とMOH水溶液
(ただし、M=K、Na、Li)を反応させることを特
徴とする一般式C_6N_αH_βO_γM_δ(ただ
し、M=K、Na、Li、5.0≦α≦10.0、0<
β、γ≦14.0、0<δ≦5.0)で表わされる層状
構造を有する窒化炭素のアルカリ金属化合物の製造法。
(2) Carbon nitride [(C_3N_3)_2N_xH_y
] (however, 2≦x≦4, 0≦y≦8) and a MOH aqueous solution (however, M=K, Na, Li) is reacted with the general formula C_6N_αH_βO_γM_δ (however, M=K, Na, Li, 5.0≦α≦10.0, 0<
A method for producing an alkali metal compound of carbon nitride having a layered structure represented by β, γ≦14.0, 0<δ≦5.0.
(3) 一般式C_6N_αH_βO_γM_δ(ただ
し、M=K、Na、Li、5.0≦α≦10.0、0<
β、γ≦14.0、0<δ≦5.0)で表わさせる層状
構造を有する窒化炭素のアルカリ金属化合物からなる螢
光材。
(3) General formula C_6N_αH_βO_γM_δ (where M=K, Na, Li, 5.0≦α≦10.0, 0<
A fluorescent material made of an alkali metal compound of carbon nitride and having a layered structure expressed by β, γ≦14.0, 0<δ≦5.0.
JP2724089A 1988-07-12 1989-02-06 Alkali metal compound of carbon nitride and method for producing the same Expired - Lifetime JP2650753B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2724089A JP2650753B2 (en) 1989-02-06 1989-02-06 Alkali metal compound of carbon nitride and method for producing the same
GB8915029A GB2221679B (en) 1988-07-12 1989-06-30 Aminotriazine polymers and method of preparing same
FR8909334A FR2634214B1 (en) 1988-07-12 1989-07-11 AMINOTRIAZINE POLYMERS AND OLIGOMERS AND PROCESS FOR THEIR PREPARATION
DE3923009A DE3923009A1 (en) 1988-07-12 1989-07-12 AMINOTRIAZINE POLYMERS AND METHOD FOR THE PRODUCTION THEREOF
US07/378,914 US5023308A (en) 1988-07-12 1989-07-12 Aminotriazine polymers and method of preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2724089A JP2650753B2 (en) 1989-02-06 1989-02-06 Alkali metal compound of carbon nitride and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02206619A true JPH02206619A (en) 1990-08-16
JP2650753B2 JP2650753B2 (en) 1997-09-03

Family

ID=12215553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2724089A Expired - Lifetime JP2650753B2 (en) 1988-07-12 1989-02-06 Alkali metal compound of carbon nitride and method for producing the same

Country Status (1)

Country Link
JP (1) JP2650753B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044754A1 (en) * 2003-10-09 2005-05-19 Robert Bosch Gmbh Method for the production of carbonitride and oxycarbonitride ceramics
JP2005343775A (en) * 2004-06-07 2005-12-15 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon-based composite material
JP2011195412A (en) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology Carbon nitride involving metal, and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044754A1 (en) * 2003-10-09 2005-05-19 Robert Bosch Gmbh Method for the production of carbonitride and oxycarbonitride ceramics
JP2005343775A (en) * 2004-06-07 2005-12-15 Toyota Central Res & Dev Lab Inc Nitrogen-containing carbon-based composite material
JP2011195412A (en) * 2010-03-23 2011-10-06 National Institute Of Advanced Industrial Science & Technology Carbon nitride involving metal, and method for production thereof

Also Published As

Publication number Publication date
JP2650753B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
Yamanaka et al. New deintercalation reaction of calcium from calcium disilicide. Synthesis of layered polysilane
KR100217958B1 (en) Process for preparation of rare earth phosphates and products obtained thereby
WO2005102921A1 (en) Oxynitride powder and method for producing same
Van Deun et al. Dopant and excitation wavelength dependent color-tunable white light-emitting Ln 3+: Y 2 WO 6 materials (Ln 3+= Sm, Eu, Tb, Dy)
JPH06271316A (en) Production of spherical coprecipitate particulate containing yt and eu and calcined particulate and phsphor
Foy et al. Modulation of the crystallinity of hydrogenated nitrogen-rich graphitic carbon nitrides
US8506844B2 (en) Rare-earth doped fluorides and process for preparing
CN113740390B (en) Nickel-doped indium oxide nano-particle and preparation method and application thereof
Lian et al. Controllable synthesis and photoluminescence properties of Gd2O2S: x% Pr3+ microspheres using an urea-ammonium sulfate (UAS) system
KR20190111811A (en) Methods for Producing RED-Emitting Fluoride Phosphor and Host Crystal Thereof
Uekawa et al. Synthesis of ZnO nanoparticles by decomposition of zinc peroxide
JPH02206619A (en) Alkali metal compound of carbon nitride and production thereof
Sletnes et al. Luminescent Eu 3+-doped NaLa (WO 4)(MoO 4) and Ba 2 CaMoO 6 prepared by the modified Pechini method
JP3906352B2 (en) Method for producing YAG transparent sintered body
Liu et al. Efficient degradation of methylene blue dye by catalytic oxidation using the Na 8 Nb 6 O 19· 13H 2 O/H 2 O 2 system
Schipper et al. Thermal decomposition of sodalites
Du et al. Morphology-controlled hydrothermal synthesis and multifunctional luminescence properties of micro-crystals Gd 6 O 5 F 8: Eu 3+/Tb 3+/Tm 3+
Tret’yak et al. Effect of precursor morphology on the structural properties, optical absorption, and luminescence of BaI 2: Eu 2+, Eu 3+
CN105776331B (en) A kind of sacrifice masterplate synthetic method certainly for preparing rare-earth vanadate as masterplate with LRH
JP2704161B2 (en) Acid-treated derivative of carbon nitride and method for producing the same
Yalçın et al. Lithium tetraborate production from the reaction of boric acid and lithium carbonate using carbon dioxide
JP4796291B2 (en) Barium iodide hydrate salt powder
JPH0516364B2 (en)
JP7416441B2 (en) Hydrotalcite compounds and photoactive catalysts
JPS59162132A (en) Production of oxysulfate of rare earth element