JPH02206094A - Voltage supply circuit for nonvolatile semiconductor storage device - Google Patents

Voltage supply circuit for nonvolatile semiconductor storage device

Info

Publication number
JPH02206094A
JPH02206094A JP1026990A JP2699089A JPH02206094A JP H02206094 A JPH02206094 A JP H02206094A JP 1026990 A JP1026990 A JP 1026990A JP 2699089 A JP2699089 A JP 2699089A JP H02206094 A JPH02206094 A JP H02206094A
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
source
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026990A
Other languages
Japanese (ja)
Inventor
Katsujirou Arai
新井 克次朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1026990A priority Critical patent/JPH02206094A/en
Publication of JPH02206094A publication Critical patent/JPH02206094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply a program voltage by a single power source by providing a power source circuit for supplying a power supply voltage, and a polarity inverting circuit having the opposite polarity of the power supply voltage, and also, for supplying a voltage whose difference to the power supply voltage becomes the program voltage. CONSTITUTION:To a gate G and a drain D of an EPROM element 1, a power supply voltage VDD is applied from a power source circuit 2. Also, to a well 5 and a source S of a semiconductor substrate 4, of the EPROM element 1, a voltage -(VPP-VDD) having the opposite polarity to the power supply voltage VDD, and also, whose difference to the power supply voltage VDD becomes a program voltage VPP is applied from a polarity inverting circuit 3. Therefore, consequently, the program voltage is applied between the gate and the source and between the source and the drain. Accordingly, the program voltage VPP can be supplied by a single power source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、書き換え可能たとえば電気的にプログラム
可能で紫外線消去可能な不揮発性半導体記憶装置の電圧
供給回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a voltage supply circuit for a nonvolatile semiconductor memory device that is rewritable, eg, electrically programmable, and erasable by ultraviolet light.

〔従来の技術〕[Conventional technology]

近年、04機器やマイクロプロセッサの急速な普及に伴
い、データの書き換え可能なROMたとえばEFROM
 (Electrically Programmab
le ROM)も大容量化の要望を受け、1Mビットク
ラスの製品まで市場にでてきている。
In recent years, with the rapid spread of 04 devices and microprocessors, rewritable ROMs such as EFROM
(Electrically Programmab
In response to the demand for larger capacity (LE ROM), even 1M bit class products have appeared on the market.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この不揮発性半導体記憶装置の大容量化に対して、チッ
プ供給メーカに技術的に要求されている課題は、つぎの
3項目に要約される。
The technical challenges required of chip suppliers to increase the capacity of nonvolatile semiconductor memory devices can be summarized in the following three items.

すなわち、+IIEFROM素子の微細化によるチップ
面積の縮小化、(2)プログラム電圧の低電圧化と高速
プログラム、(3)低消費電力を可能とする周辺回路の
CMO5化、である。
That is, reduction of chip area by miniaturization of +IIEFROM elements, (2) reduction of programming voltage and high-speed programming, and (3) CMO5 implementation of peripheral circuits to enable lower power consumption.

以下説明のために、データ消去状態のEPROM素子の
ゲートしきい値電圧をVTMψ、データプログラム状態
のしきい値電圧をVTMI と略式符号化する。VTM
φはEPIIOM素子の形状と基板濃度に依存しており
、前記(1)のEPROM素子の微細化に伴いセル形状
も限定されることから、基板濃度の寄与は太き(なって
いる。一方前記(2)のプログラム電圧の低電圧化に対
してEPROM素子を用いた製品の動作マージンの確保
から低いVTMφが必要となってくるが、低いVTMφ
は基板濃度も薄くなるためブログラム時間に対し不利に
なってくる。つまり、高速プログラムには基板濃度が濃
い状態が好ましく、その場合必然的にVTMφは増加し
プログラム特性は向上するが、動作マージンが高く狭く
なるため、プログラム電圧の低電圧化とは和犬れないこ
ととなる。
For the sake of explanation below, the gate threshold voltage of the EPROM element in the data erased state will be abbreviated as VTMψ, and the threshold voltage in the data programmed state will be abbreviated as VTMI. VTM
φ depends on the shape of the EPIIOM element and the substrate concentration, and since the cell shape is also limited as the EPROM element becomes finer as described in (1) above, the contribution of the substrate concentration becomes large. (2) In order to lower the programming voltage, a low VTMφ is required to ensure the operating margin of products using EPROM elements.
Since the substrate concentration becomes thinner, it becomes disadvantageous in terms of programming time. In other words, it is preferable to have a high substrate concentration for high-speed programming, and in that case, VTMφ will inevitably increase and the programming characteristics will improve, but the operating margin will be high and narrow, which is not compatible with lowering the programming voltage. It happens.

また、通常のEPROM素子をプログラムする時は、ゲ
ートとドレインにプログラム電圧を印加し、EPROM
素子のチャンネル領域を流れるチャンネル・ホソトレク
トロンをゲートに印加されたプログラム電圧により酸化
膜に貫通させ、中間層に蓄積させる。このように、EP
ROM素子にプログラム電圧を供給するために、電源回
路および高圧電源回路の2種類の外部からの電源系を必
要とするため、前記(3)の周辺回路のCMO3化を困
難なものとしている。
Also, when programming a normal EPROM element, a programming voltage is applied to the gate and drain, and the EPROM
A programming voltage applied to the gate causes the channel phototrectron flowing in the channel region of the device to penetrate the oxide film and accumulate in the intermediate layer. In this way, EP
In order to supply a program voltage to the ROM element, two types of external power supply systems, a power supply circuit and a high-voltage power supply circuit, are required, which makes it difficult to convert the peripheral circuitry described in (3) into a CMO3.

また外部の電源系が2種類であることは、EPROM素
子の微細化並びにプログラムの低電圧化および高速化に
対しても傷害の原因になっている。
Furthermore, the presence of two types of external power supply systems is a cause of damage to miniaturization of EPROM elements and reduction in voltage and speed of programming.

したがって、この発明の目的は、単一電源にすることが
できる不揮発性半導体記憶装置の電圧供給回路を提供す
ることである。
Therefore, an object of the present invention is to provide a voltage supply circuit for a nonvolatile semiconductor memory device that can be used as a single power supply.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の不揮発性半導体記憶装置の電圧供給回路は、
EPROM素子と、このEPROM素子のゲートおよび
ドレインに電源電圧を供給する電源回路と、前記EPR
OM素子の半導体基板のウェルおよびソースに前記電源
電圧と反対の極性をもちかつ前記電源電圧との差がプロ
グラム電圧となる電圧を供給する極性反転回路とを備え
たものである。
The voltage supply circuit of the nonvolatile semiconductor memory device of the present invention includes:
an EPROM element, a power supply circuit that supplies a power supply voltage to the gate and drain of the EPROM element;
The device includes a polarity inverting circuit that supplies a voltage having a polarity opposite to the power supply voltage to the well and source of the semiconductor substrate of the OM element, and whose difference from the power supply voltage is a programming voltage.

〔作用〕[Effect]

この発明の構成によれば、EPROM素子のゲートおよ
びドレインには電源回路より電源電圧が印加され、EP
ROM素子の半導体基板のウェルおよびソースには極性
反転回路より前記電源電圧と反対の極性をもちかつ電源
電圧との差がプログラム電圧となる電圧が印加される。
According to the structure of the present invention, a power supply voltage is applied to the gate and drain of the EPROM element from the power supply circuit, and
A voltage having a polarity opposite to the power supply voltage and whose difference from the power supply voltage is a program voltage is applied by a polarity inversion circuit to the well and source of the semiconductor substrate of the ROM element.

このため、ゲート・ソース間およびソース・ドレイン間
にプログラム電圧が印加されたこととなる。したがって
、単一電源によりプログラム電圧を供給することができ
る。
Therefore, a program voltage is applied between the gate and source and between the source and drain. Therefore, the program voltage can be supplied by a single power supply.

またプログラム電圧がEPROM素子の個々のMOS 
)ランジスタに印加されないので、MOS )ランジス
タに対し高圧化の工夫を特に必要としない。
Also, the program voltage is applied to each MOS of the EPROM element.
) Since the voltage is not applied to the transistor, there is no need for any special measures to increase the voltage for the MOS transistor.

〔実施例〕〔Example〕

この発明の一実施例を第1図ないし第4図に基づいて説
明する。すなわち、この不揮発性半導体記憶装置の電圧
供給回路は、EPROM素子1と、電源回路2と、極性
反転回路3とを有する。
An embodiment of the present invention will be described based on FIGS. 1 to 4. That is, the voltage supply circuit of this nonvolatile semiconductor memory device includes an EPROM element 1, a power supply circuit 2, and a polarity inversion circuit 3.

EPROM素子1は、第1図に示すように、n型の半導
体基板4内のp型のウェル5に形成され、第1導電体−
酸化膜一第2導電体−酸化膜一半導体基板からなる素子
である。EPROM素子1の周辺回路はCMO5(相補
型MO3)論理回路で構成され、不揮発性半導体装置は
EPI?叶素子1を記憶セルQmとして紫外線消去およ
び電気的プログラム可能に構成されている。記憶セルQ
mはn1ソース・ドレイン拡散層領域6を有する一種の
nチャンネル型MO3電界効果トランジスタであって、
そのゲートGとチャンネル領域との間にはシリコン酸化
膜7によって周囲と完全に絶縁されたフローティング・
ゲート(導電型半導体)8が位置している。
The EPROM element 1 is formed in a p-type well 5 in an n-type semiconductor substrate 4, as shown in FIG.
This is an element consisting of an oxide film, a second conductor, an oxide film, and a semiconductor substrate. The peripheral circuit of the EPROM element 1 is composed of a CMO5 (complementary MO3) logic circuit, and the nonvolatile semiconductor device is an EPI? The leaf element 1 is used as a memory cell Qm and is configured to be erasable by ultraviolet light and electrically programmable. memory cell Q
m is a type of n-channel type MO3 field effect transistor having an n1 source/drain diffusion layer region 6,
Between the gate G and the channel region, there is a floating layer completely insulated from the surroundings by a silicon oxide film 7.
A gate (conductive type semiconductor) 8 is located.

9は素子分離膜である。9 is an element isolation film.

電源回路2は、第2図のようにEPROM素子1のゲー
トGおよびドレインDに電源電圧VDI)を供給する。
The power supply circuit 2 supplies a power supply voltage VDI) to the gate G and drain D of the EPROM element 1, as shown in FIG.

この電源回路2は周辺のCMO8回路に使用されている
This power supply circuit 2 is used for peripheral CMO8 circuits.

極性反転回路3は、第2図のように、EPROM素子1
の半導体基板4のウェル5およびソースSに電源電圧V
DDと反対の極性をもちかつ電源電圧VDDとの差がプ
ログラム電圧VpPとなる電圧■BB−”PP−■DD
>を供給する。これによってEPROM素子1のゲート
G・ソース8問およびソースS・ドレインD間には実質
的にプログラム電圧VPPが印加されることになり、プ
ログラムが実行可能となる。この場合、電圧VBB−(
■PP−VDD)の絶対値はEPIIOM素子1のプロ
グラム素子の能力に準する値であり、低電圧でプログラ
ムされる素子であれば−(■、。
As shown in FIG. 2, the polarity reversing circuit 3
A power supply voltage V is applied to the well 5 and source S of the semiconductor substrate 4 of
A voltage that has the opposite polarity to DD and whose difference from the power supply voltage VDD is the program voltage VpP ■BB-”PP-■DD
> is supplied. As a result, the program voltage VPP is substantially applied between the gate G and eight sources and between the source S and drain D of the EPROM element 1, and programming becomes executable. In this case, the voltage VBB-(
(2) The absolute value of PP-VDD) is a value that corresponds to the capability of the program element of the EPIIOM element 1, and if the element is programmed with a low voltage, -(2,.

■DD)の絶対値は必然的に小ざくなる。なお、第2図
に示すように、ウェル6が電源電圧VDDと反対の極性
をもつ電圧VBBに固定されている。
■The absolute value of DD) inevitably becomes smaller. Note that, as shown in FIG. 2, the well 6 is fixed at a voltage VBB having a polarity opposite to the power supply voltage VDD.

第3図は極性反転回路の一例を示すロジ・7り図である
。この回路では容量10に電荷を蓄積し、容量に印加さ
れている電源電圧■DDを接地電位に切り換えることで
、もう一方の電極の電圧を極性反転させる。極性反転さ
れて出力される電圧VBB= (VPP  VDD)は
回路定数によって決まり、EPROM素子1のプログラ
ム特性に準する。
FIG. 3 is a logic diagram showing an example of a polarity inversion circuit. In this circuit, charge is accumulated in the capacitor 10, and by switching the power supply voltage DD applied to the capacitor to the ground potential, the polarity of the voltage at the other electrode is reversed. The voltage VBB=(VPP VDD) which is output with its polarity inverted is determined by circuit constants and conforms to the programming characteristics of the EPROM element 1.

第4図はXデコーダ11.Yデコーダ12および極性反
転回路3とEPROM素子1のアレイの構成を示す。X
デコ、−ダ11とYデコーダ12の信号により所定のE
PROM素子lが選択される。この時、全EPRO門素
子1のウェル5とソースSは−(V、。
FIG. 4 shows the X decoder 11. The configuration of an array of Y decoder 12, polarity inversion circuit 3, and EPROM element 1 is shown. X
A predetermined E is determined by the signals from the decoder 11 and Y decoder 12.
PROM element l is selected. At this time, the well 5 and source S of all EPRO gate elements 1 are -(V,).

VDD)が印加されている。VDD) is applied.

この実施例によれば、EPROM素子1のゲー)Gおよ
びドレインDには電源回路2より電源電圧VDDが印加
され、EPROM素子1の半導体基板4のウェル5およ
びソースSには極性反転回路3より電源電圧vDDと反
対の極性をもちかつ電源電圧■DDとの差がプログラム
電圧VPPとなる電圧−(VPP  ’DD>が印加さ
れる。このため、ゲート・ソース間およびソース・ドレ
イン間にプログラム電圧が印加されたこととなる。した
がって、単一電源によりプログラム電圧VPPを供給す
ることができる。またプログラム電圧VpPがEPRO
M素子1の個々のMOS )ランジスタに印加されない
ので、MOSトランジスタに対し高圧化の工夫を特に必
要としない。
According to this embodiment, a power supply voltage VDD is applied from a power supply circuit 2 to the gate G and drain D of the EPROM element 1, and a polarity inverting circuit 3 applies a power supply voltage VDD to the well 5 and source S of the semiconductor substrate 4 of the EPROM element 1. A voltage −(VPP 'DD> is applied that has the opposite polarity to the power supply voltage vDD and whose difference from the power supply voltage DD is the program voltage VPP. Therefore, the program voltage is applied between the gate and source and between the source and drain. is applied. Therefore, the program voltage VPP can be supplied by a single power supply. Also, the program voltage VpP is
Since the voltage is not applied to the individual MOS transistors of the M element 1, no special measures are required to increase the voltage of the MOS transistors.

さらにこの実施例は、電源回路2や極性反転回路3の回
路定数を変化すること等によりEPROM素子1のプロ
グラム特性に応じることができる。また電源回路2も単
純化できるとともにたとえば通常のCMOS製造プロセ
スでCMOS論理回路が構成できる。
Furthermore, this embodiment can respond to the program characteristics of the EPROM element 1 by changing the circuit constants of the power supply circuit 2 and the polarity inverting circuit 3. Further, the power supply circuit 2 can be simplified, and a CMOS logic circuit can be constructed using, for example, a normal CMOS manufacturing process.

なお、前記実施例は、半導体基板4がn型でウェル5が
p型であったが、半導体基板4がp型でウェル5がn型
であってもよい。
In the above embodiment, the semiconductor substrate 4 is of n-type and the well 5 is of p-type, but the semiconductor substrate 4 may be of p-type and the well 5 may be of n-type.

〔発明の効果〕〔Effect of the invention〕

この発明の不揮発性半導体記憶装置によれば、EFRO
M素子と、このEFROM素子のゲートおよびドレイン
に電源電圧を供給する電源回路と、前記EFROM素子
の半導体基板のウェルおよびソースに前記電源電圧と反
対の極性をもちかつ前記電源電圧との差がプログラム電
圧となる電圧を供給する極性反転回路とを備えたため、
単一電源によりプログラム電圧を供給することができる
。またプログラム電圧がEFROM素子の個々のMOS
 )ランジスタに印加されないので、MOSトランジス
タに対し高圧化の工夫を特に必要としないという効果が
ある。
According to the nonvolatile semiconductor memory device of this invention, EFRO
A power supply circuit that supplies a power supply voltage to the M element, the gate and drain of this EFROM element, and a well and source of a semiconductor substrate of the EFROM element having a polarity opposite to the power supply voltage and a difference from the power supply voltage programmed. Equipped with a polarity reversal circuit that supplies the voltage,
Program voltage can be supplied by a single power supply. Also, the program voltage is applied to each MOS of the EFROM element.
) Since the voltage is not applied to the transistor, there is an advantage that there is no need for special measures to increase the voltage of the MOS transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の半導体の説明図、第2図
は電圧を印加するための配線図、第3図は極性反転回路
図、第4図は全体の概略配線図である。 1・・・EFROM素子、2・・・電源回路、3・・・
極性反転回路、4・・・半導体基板、5・・・ウェル、
G・・・ゲート、D・・・ドレイン、S・・・ソース、
VDD・・・電源電圧、■pp・・・プログラム電圧、
■BB・・・反対の極性をもつ電圧 第 第
FIG. 1 is an explanatory diagram of a semiconductor according to an embodiment of the present invention, FIG. 2 is a wiring diagram for applying voltage, FIG. 3 is a polarity inversion circuit diagram, and FIG. 4 is an overall schematic wiring diagram. 1...EFROM element, 2...power supply circuit, 3...
Polarity inversion circuit, 4... semiconductor substrate, 5... well,
G...gate, D...drain, S...source,
VDD...power supply voltage, ■pp...program voltage,
■BB...voltage with opposite polarity

Claims (1)

【特許請求の範囲】[Claims] EPROM素子と、このEPROM素子のゲートおよび
ドレインに電源電圧を供給する電源回路と、前記EPR
OM素子の半導体基板のウェルおよびソースに前記電源
電圧と反対の極性をもちかつ前記電源電圧との差がプロ
グラム電圧となる電圧を供給する極性反転回路とを備え
た不揮発性半導体記憶装置の電圧供給回路。
an EPROM element, a power supply circuit that supplies a power supply voltage to the gate and drain of the EPROM element;
Voltage supply for a non-volatile semiconductor memory device, comprising: a polarity inverting circuit that supplies a voltage having a polarity opposite to the power supply voltage to the well and source of a semiconductor substrate of an OM element and whose difference from the power supply voltage is a programming voltage. circuit.
JP1026990A 1989-02-06 1989-02-06 Voltage supply circuit for nonvolatile semiconductor storage device Pending JPH02206094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026990A JPH02206094A (en) 1989-02-06 1989-02-06 Voltage supply circuit for nonvolatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026990A JPH02206094A (en) 1989-02-06 1989-02-06 Voltage supply circuit for nonvolatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH02206094A true JPH02206094A (en) 1990-08-15

Family

ID=12208596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026990A Pending JPH02206094A (en) 1989-02-06 1989-02-06 Voltage supply circuit for nonvolatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH02206094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557914A (en) * 1994-02-07 1996-09-24 S.A.M.P. S.P.A. Meccanica Di Precisione Twisting machine with external and internal control panels
US5828826A (en) * 1995-07-27 1998-10-27 Sharp Kabushiki Kaisha Processing apparatus having a nonvolatile memory to which a supply voltage is supplied through a shared terminal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177500A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Semiconductor storage device
JPS6352399A (en) * 1986-08-22 1988-03-05 Hitachi Ltd Eprom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177500A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Semiconductor storage device
JPS6352399A (en) * 1986-08-22 1988-03-05 Hitachi Ltd Eprom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5557914A (en) * 1994-02-07 1996-09-24 S.A.M.P. S.P.A. Meccanica Di Precisione Twisting machine with external and internal control panels
US5828826A (en) * 1995-07-27 1998-10-27 Sharp Kabushiki Kaisha Processing apparatus having a nonvolatile memory to which a supply voltage is supplied through a shared terminal

Similar Documents

Publication Publication Date Title
KR0155078B1 (en) Semiconductor circuit having cmos circuit for use in strong electric field
US5594687A (en) Completely complementary MOS memory cell with tunneling through the NMOS and PMOS transistors during program and erase
US8817546B2 (en) Complementary electrical erasable programmable read only memory
JP2723278B2 (en) Decoder / driver circuit for high capacitance line programming
US20040109380A1 (en) Single poly embedded eprom
JP5235422B2 (en) Nonvolatile semiconductor memory device
JP2004281971A (en) Integrated circuit
JPS6025837B2 (en) semiconductor storage device
US6222764B1 (en) Erasable memory device and an associated method for erasing a memory cell therein
US5619150A (en) Switch for minimizing transistor exposure to high voltage
US20070069800A1 (en) Negative charge-pump with circuit to eliminate parasitic diode turn-on
KR100220939B1 (en) Word line driving method of memory device
KR100346991B1 (en) Semiconductor memory device
US11127469B2 (en) Nonvolatile semiconductor storage device
KR900001774B1 (en) The semiconductor memory device involving a bias voltage generator
JPH0212695A (en) Memory cell and its reading method
US20040252558A1 (en) Semiconductor memory device including MOS transistor having a floating gate and a control gate
US20150269972A1 (en) Configuration memory
JPS58191463A (en) Method and device for distributing integrated circuit high voltage
JPH02206094A (en) Voltage supply circuit for nonvolatile semiconductor storage device
JPS5953637B2 (en) memory circuit
KR100490605B1 (en) Nonvolatile semiconductor memory device
KR900001773B1 (en) The semiconductor integrated circuit
US6128221A (en) Circuit and programming method for the operation of flash memories to prevent programming disturbances
JP2003347435A (en) Semiconductor device